

Available online at www.sciencedirect.com

Biochimica et Biophysica Acta 1745 (2005) 223 - 253

http://www.elsevier.com/locate/bba

Genomic analysis of the protein secretion systems in *Clostridium acetobutylicum* ATCC 824

Mickaël Desvaux^{a,b,*}, Arshad Khan^a, Anthony Scott-Tucker^a, Roy R. Chaudhuri^a, Mark J. Pallen^a, Ian R. Henderson^a

^aThe Institute for Biomedical Research (IBR), The University of Birmingham-The Medical School, Division of Immunity and Infection,

Bacterial Pathogenesis and Genomics Unit, Edgbaston, Birmingham B15 2TT, UK

^bInstitut National de la Recherche Agronomique (INRA), Centre de Recherches de Clermont-Ferrand-Theix, Unité de Recherche 370, Equipe Microbiologie, F-63122 Saint-Genès Champanelle, France

> Received 28 January 2005; received in revised form 20 April 2005; accepted 20 April 2005 Available online 23 May 2005

Abstract

Consistent information about protein secretion in Gram-positive bacteria is essentially restricted to the model organism *Bacillus subtilis*. Among genome-sequenced clostridia, *Clostridium acetobutylicum* has been the most extensively studied from a physiological point of view and is the organism for which the largest variety of molecular biology tools have been developed. Following in silico analyses, both secreted proteins and protein secretion systems were identified. The Tat (Twin arginine translocation; TC #2.A.64) pathway and ABC (ATP binding cassette) protein exporters (TC #3.A.1.) could not be identified, but the Sec (secretion) pathway (TC #3.A.5) appears to be used prevalently. Similarly, a flagella export apparatus (FEA; TC #3.A.6.), holins (TC #1.E.), and an ESAT-6/WXG100 (early secreted antigen target of 6 kDa/ proteins with a WXG motif of ~100 residues) secretion system were identified. Here, we report for the first time the identification of a fimbrilin protein exporter (FPE; TC #3.A.14) and a Tad (tight adherence) export apparatus in *C. acetobutylicum*. This investigation highlights the potential use of this saprophytic bacterium in biotechnological and biomedical applications as well as a model organism for studying protein secretion in pathogenic Gram-positive bacteria.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Clostridium; Protein secretion system; Virulence factor; Gram-positive bacteria; Secretome

1. Introduction

The genus *Clostridium* includes bacteria which are obligately anaerobic, form endospores, are able to carry out dissimilatory sulfate reduction, and possess a Grampositive type of wall structure [1,2]. In a recently proposed hierarchical structure for clostridia, *Clostridium acetobuty*-

E-mail addresses: m.desvaux@bham.ac.uk, mdesvaux@sancy.clermont.inra.fr (M. Desvaux).

licum was classified in family 1, corresponding to the *Clostridiaceae* family, and genus 1, corresponding to group I of the previous Johnson and Francis classification [3]. *C. acetobutylicum* ATCC 824 was originally isolated from garden soil in 1924 [4]. This strain is one the best-studied solventogenic clostridia and is closely related to the historical Weizmann strain used to develop an industrial starch-based acetone and butanol fermentation process [5]. *C. acetobutylicum* ATCC 824 possesses a 3.9-Mb chromosome and harbours pSOL1, a megaplasmid of 192 kb coding for genes involved in solvent formation; loss of pSOL1 leads to a loss of solventogenicity of the strain [6–8]. In addition to *C. acetobutylicum* ATCC 824 [9], the genome sequence has been determined for two other clostridial genomes, *Clostridium perfringens* 13 and *Clos*-

^{*} Corresponding author. The Institute for Biomedical Research (IBR), The University of Birmingham-The Medical School, Division of Immunity and Infection, Bacterial Pathogenesis and Genomics Unit, Edgbaston, Birmingham B15 2TT, UK. Tel.: +33 4 73 62 47 23; fax: +33 4 73 62 42 68.

tridium tetani E88 [10,11]. The sequencing and annotation of 4 other clostridial genome, i.e., *Clostridium botulinum* ATCC 3502, *Clostridium difficile* 630, *C. perfringens* ATCC 13124, and *Clostridium thermocellum* ATCC 27405, are currently in progress. Among genome-sequenced clostridia, *C. acetobutylicum* ATCC 824 is undoubtedly the one which has been the most extensively studied from a physiological point of view and is the one for which the largest variety of molecular biology tools have been developed [9,12–15]. Thus, this bacterium appears to be an excellent model for studying the biology of clostridia and Gram-positive bacteria in general.

The availability of the complete genome of C. acetobutylicum allows us to focus on its secretome, i.e., the population of the gene products that are translocated through the cytoplasmic membrane to be either displayed on the bacterial cell surface, secreted in the extracellular milieu, or even secreted into a host cell [16]. Protein secretion systems in Gram-positive bacteria have attracted a lesser amount of attention than those of the Gram-negative bacteria. Indeed, consistent information about protein secretion in Gram-positive bacteria is essentially restricted to Bacillus subtilis, the paradigm of Gram-positive bacterial biology [17-20], and to scattered information arising from the study of Gram-positive pathogenic bacteria [17,18,20-23]. Protein secretion in clostridia has not been investigated thoroughly, and as a result, relatively little is known about the proteins and secretion systems involved [24].

In Gram-negative bacteria, five major systems, numbered from I to V and the chaperone/usher pathway, are currently recognized as being involved in the secretion of proteins from the cytoplasm to the extracellular milieu [25-28]. This classification is restricted to Gram-negative bacteria, where the cell envelope is composed of the cytoplasmic membrane and the outer membrane. Since Gram-positive bacteria possess only one biological membrane, i.e., the cytoplasmic membrane, the classification of protein secretion pathways is different. Thus, in Gram-negative bacteria, protein translocation through the cytoplasmic membrane corresponds to export into the periplasm, whereas in Gram-positive bacteria, it permits the secretion of proteins into the extracellular milieu [29-40]. Five major protein secretion systems are currently recognized in Gram-positive bacteria: the Sec (secretory) pathway, the Tat (twin arginine translocation) pathway, the ABC (ATP binding cassette) transporters, the fimbrilin protein exporter (FPE) system, and more recently, the ESAT-6/WXG100 (early secreted antigen target of 6 kDa/proteins with a WXG motif of ~100 residues) secretion system [17,18,23,41,42]. It is clear from studies of Gram-negative bacteria that not all the secretion pathways are systematically present in a single organism and that the extent to which each pathway is used varies from one organism to another. It seems plausible that a similar scenario will be found for Gram-positive bacteria.

By using a variety of bioinformatics tools, the protein secretion systems and secreted proteins of *C. acetobutyli*-

cum ATCC 824 were identified and characterized. Such comprehensive analyses not only provide insight into the portion of the proteome dedicated to bacterial secretion but also the physiology of this organism, as well as the possible biotechnological applications. This investigation is a prelude to in vivo study of the proteins secreted by *C. acetobutylicum* and highlights the potential use of this saprophytic bacterium as a model organism for exploring protein secretion in pathogenic Gram-positive bacteria.

2. Materials and methods

2.1. Computer methods

Prior to bioinformatic analyses, the complete genome, coding sequences, and annotation files for *C. acetobutylicum* ATCC 823 were downloaded from GenBank (ftp://ftp.ncbi. nih.gov/genbank/Bacteria/Clostridium_acetobutylicum/). The chromosome of *C. acetobutylicum* possesses a total of 3672 potential coding sequences (CDS), and the megaplasmid pSOL1 encodes 176 CDS. Each CDS was screened for the capacity to encode a secreted protein or a component of a secretion apparatus. Proteins are identified by their GenBank index (GI) number.

BLAST and PSI-BLAST [43,44] were performed at ViruloGenome (http://www.vge.ac.uk/), the National Center for Biotechnology Information (NCBI; http:// www.ncbi.nlm.nih.gov/BLAST/), and ClostriDB (http:// clostri.bham.ac.uk/) [45]. The presence of conserved domains and/or motifs was identified using Pfam (http:// www.sanger.ac.uk/Software/Pfam/) [46], CDD (http:// www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) [47], Scan-Prosite (http://ca.expasy.org/tools/scanprosite/) [48], SMART (http://smart.embl-heidelberg.de/) [49], and/or InterProScan (http://www.ebi.ac.uk/InterProScan/) [50]. The level of homology between two protein sequences was determined using BLAST 2 sequences using the matrix BLOSUM62 and default parameters, except that filter was turned off [51]. Sequence alignments were performed using ClustalW [52], with minor manual refinement using BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html).

All *C. acetobutylicum* predicted CDS were analysed and classified using the Transporter Classification Database (TC-DB) (http://www.biology.ucsd.edu/~msaier/transport/) as previously described [53,54]. This analysis was completed by combining results from TransportDB [55], a relational database describing the predicted cytoplasmic membrane transport proteins in bacteria (http://66.93.129.133/transporter/wb/index2.html). The identification of a FPE system was based on PSI-BLAST and BLAST searches from ViruloGenome and ClostriDB using ComGA (GI: 1303877), ComGB (GI: 1303878), and ComC (GI: 98253) from *B. subtilis* as queries. In a similar fashion, the ESAT-6/WXG100 secretion system was identified by using the previously described ESAT-6 from *Mycobacterium*

tuberculosis (GI: 38490389) and YukA from *B. subtilis* (GI: 7474744) [56]. While in *M. tuberculosis* and *Staphylococcus aureus*, the involvement of YukA homologues in ESAT-6 proteins translocation has been demonstrated, there is no direct experimental evidence in *B. subtilis* [42,57].

All predicted protein-coding genes were analysed using SignalP (http://www.cbs.dtu.dk/services/SignalP/), to detect the presence of signal peptides [58]. In these analyses, both the neural network and the hidden Markov model were used to examine the N-terminal part of each protein sequence. Sequences were sequentially analysed without truncation and with truncation set at 35, 70, and 140 amino acid (a.a.) residues (SignalP score >0.6). This analysis was completed by combining results from PSORT and PSORTb predicting the translocation and cellular localization of a protein (http://psort.ims.utokyo.ac.jp/) [59,60]. Signal sequence topology was predicted by combining the results from Kyte and Doolittle, as well as Eisenberg scale-mean hydrophobicity profiles using BioEdit, SignalP, and TMpred.

For the identification of lipoprotein patterns, searches were carried out using ScanProsite for the lipoprotein lipid attachment site (PS00013) (http://www.expasy.org) and G+LPP pattern [61]. Moreover, these results were combined with those from servers dedicated to the recognition of lipoproteins, i.e., DOLOP [62], PSORT, and LipoP (http://www.cbs.dtu.dk/services/LipoP/) [63]. The criteria used for the exclusion of sequences as false-positives unlikely to encode lipoproteins involved TMpred (http://www.ch.embnet.org/software/TMPRED_form.html) [64], SignalP, DAS (http://www.sbc.su.se/~miklos/DAS) [65], and TopPred2 (http://bioweb.pasteur.fr/seanal/interfaces/toppred.html) [66] and have been described previously [61].

From SignalP or PSORT searches, proteins bearing a Type 4 prepilin signal peptide were identified by the presence of a consensus (K/R)G(F/Y) motif present between the n- and h-domains of the signal peptide, the cleavage occurring between G and (F/Y), and a glutamine residue present at position +5 of the cleavage site [17,67]. Some variability in the a.a. present at position +5 was also taken into account [17,39,68].

3. Results

3.1. Absent protein secretion systems

A recent genomic survey of prokaryotic protein secretion systems suggests that the Tat pathway, instead of the Sec pathway, is used predominantly by certain bacteria and archaea [69]. However, neither homologues of the TatABCE translocon nor putative Tat substrates could be identified in *C. acetobutylicum* by ViruloGenome PSI-BLAST and TC-DB searches, indicating the absence of a Tat protein secretion pathway (TC #2.A.64) in this organism. Furthermore, this pathway appears to be absent from other sequenced clostridial genomes, and this could be a general feature of the genus *Clostridium* [10].

The ABC superfamily contains both uptake and efflux transport systems for a large variety of substrates, e.g., glucides, proteins, and ions. So far, ABC transporters for proteins have been identified only in Gram-negative bacteria; in Gram-positive bacteria, only ABC transporters for peptides have been identified [70]. As expected, no protein exporter could be identified in *C. acetobutylicum*; however, TC-DB searches revealed the presence of several peptide exporters belonging to the peptide-1 exporter (Pep1E) family (TC #3.A.1.111), the peptide-2 exporter (Pep2E) family (TC #3.A.1.123), the 3-component peptide-5 exporter (Pep5E) family (TC #3.A.1.124), or the β -Exotoxin I Exporter (β ETE) family (TC #3.A.1.126) (see Supplementary material in Appendix A).

It is worth mentioning that an ABC transporter, comprising an ATPase subunit (GI: 15893536) and an integral membrane protein (GI: 15893537), was identified as a member of the lipoprotein translocase (LPT) family (TC #3.A.1.125) (see Supplementary material in Appendix A). In *E. coli*, the LPT differs from other ABC transporters, as it is not involved in transmembrane transport of substrates but permits the localization of lipoproteins to the outer membrane [71]. So far, this transporter family has only been studied in Gram-negative bacteria, and its function in Gram-positive bacteria remains obscure.

In Gram-negative bacteria, members of the family of large conductance mechanosensitive ion channel (MscL; TC #1.A.22) permit the release of small proteins such as thioredoxin during osmotic downshift [72,73]. However, no homologue of this particular protein secretion system could be identified from the genome of *C. acetobutylicum*. Interestingly, MscL homologues could be identified in some other clostridial species, i.e., *C. histolyticum* (GI: 7674133), *C. perfringens* (GI: 20141572), and *C. tetani* (GI: 28210182). Experimental evidence for MscL as a protein secretion pathway in Gram-positive bacteria remains to be shown.

Despite the absence of the systems described above, a Sec system, a flagella export apparatus (FEA), a fimbrial protein export (FPE) apparatus, the tight adherence (Tad) export system, the holins, and an ESAT-6/WX100 secretion system were identified. Table 1 summarizes the protein secretion systems found in *C. acetobutylicum* (see also Supplementary material in Appendix A).

3.2. The Sec system (TC #3.A.5.)

The presence, remarkable conservation, and essential nature of the Sec translocon has given rise to the notion of a general protein secretion mechanism with *E. coli* as the bacterial paradigm [74]. The heterotrimeric SecYEG complex is the central component of the Sec apparatus; it forms a protein-conducting channel through the cytoplasmic

Ta	bl	le	1

Components of th	e protein secret	tion pathways pre	esent in C.	acetobutylicum
------------------	------------------	-------------------	-------------	----------------

Systems	Components	TC	GI	Gene location	Cellular location	Substrates ^a
1. The Sec system		#3.A.5.				602
Transmembrane component	SecY	#3.A.5	15896363	Chromosome	Membrane	
-	SecE	#3.A.5	15896398	Chromosome	Membrane	
	SecG	#3.A.5	15894002	Chromosome	Membrane	
ATPase	SecA		15896101	Chromosome	Peripheral	
	SecA (fragment)		15896773	Chromosome	Peripheral	
Auxiliary protein	SecF	#2.A.6.4.1.	15895545	Chromosome	Membrane	
• •	SecD	#2.A.6.4.1.	15895546	Chromosome	Membrane	
	YajC	#9.B.18.	15895549	Chromosome	Membrane	
	SpoIIIJ	#2.A.9.3.2.	15896967	Chromosome	Membrane	
	FtsY	#3.A.5	15895029	Chromosome	Cytoplasm	
	Ffh	#3.A.5	15895031	Chromosome	Cytoplasm	
Signal peptidase	SPase I		15895037	Chromosome	Membrane	
			15895904	Chromosome	Membrane	
	SPase II		15893593	Chromosome	Membrane	
			15895384	Chromosome	Membrane	
2. Flagella export apparatus		#3.A.6.1.				18
Transmembrane component	FlhA		15895416	Chromosome	Membrane	
r	FlhB-FliR		15895417	Chromosome	Membrane	
	FlhB		15893927	Chromosome	Membrane	
	FliP		15895419	Chromosome	Membrane	
	FliO		15895418	Chromosome	Membrane	
ATPase	FliI		15895428	Chromosome	Cvtoplasm	
ATPase regulator	FliH		15895429	Chromosome	Cytoplasm	
Chaperone	FliJ		15895427	Chromosome	Cytoplasm	
I I I I I I I I I I I I I I I I I I I	FliS		15895474	Chromosome	Cvtoplasm	
3. The FPE system		#3.A.14.				7
ATPase	ComGA homologue		15895375	Chromosome	Membrane	
Transmembrane component	ComGB homologue		15895374	Chromosome	Membrane	
Type IV prepilin peptidase	ComC homologue		15896039	Chromosome	Membrane	
4. The Tad export apparatus	8					?
ATPase	TadA homologue		15895251	Chromosome	Peripheral	
Transmembrane component	TadB homologue		15895250	Chromosome	Membrane	
Transmembrane component	TadC homologue		15895249	Chromosome	Membrane	
Unknown function	TadZ homologue		15895252	Chromosome	Cvtoplasm	
5. The holins		#1.E.			- J - F	
Holins	LrgA homologue	#1.E.14.	15893901	Chromosome	Membrane	3
	LrgA homologue	#1.E.14.	15004877	Megaplasmid	Membrane	?
	TcdE homologue	#1.E.19.	15895117	Chromosome	Membrane	1
6. The ESAT-6/WXG100 secretion pathway						10
Membrane-bound ATPase transporter	YukA homologue		15893337	Chromosome	Membrane	
Portor	YukA homologue		15893699	Chromosome	Membrane	
	YukA homologue		15896940	Chromosome	Membrane	
	- and I monitorogue		100,0,10			

^a Details of the substrates related to each secretion pathway are discussed in the corresponding paragraph.

membrane [75]. The SecYEG complex is ubiquitous in all domains of life (termed Sec61 $\alpha\gamma\beta$ in eukaryotes) [76], and as expected, genes encoding each component were identified in *C. acetobutylicum* (Table 1).

In addition to the SecYEG complex, several other proteinaceous components are required for Sec-dependent secretion. The cytosolic ATPase SecA, which provides the driving force for protein translocation, has only been identified in bacteria and chloroplasts. In *C. acetobutylicum*, besides a full-length SecA homologue (839 a.a. long), a small SecA fragment is also present (166 amino acids long) and is presumably non-functional (Table 1). No duplication of SecY is observed; in *Streptococcus gordonii*, the duplication of SecA and SecY constitutes a specialized

system for the transport of large serine-rich proteins involved in pathogenesis [77].

In *E. coli*, three auxiliary proteins, i.e., SecD, SecF, and YajC, form a transmembrane complex loosely associated with SecYEG, which contributes to the efficiency of protein translocation [78]. By contrast, in *B. subtilis*, SecD and SecF are fused into a single protein [79]. TC-DB, Pfam, and PSI-BLAST searches indicate that a gene previously annotated as encoding a protein homologous to SecD/SecF protein exporters (GI: 15896672) is most certainly related to the Gram-positive bacterial hydrophobe/amphiphile efflux-2 family (HAE2) (TC #2.A.6.5) of the drug exporters of the resistance-nodulation-cell division (RND) superfamily (TC #2.A.6.) and has no connection to the Sec apparatus.

However, similar searches identified two open reading frames in *C. acetobutylicum* encoding separate SecD and SecF proteins, as well as YajC (Table 1).

In *E. coli*, the integral membrane protein YidC associates with the SecYEGDF–YajC complex and permits cytoplasmic membrane insertion of polytopic membrane proteins [80]. YidC has also been shown to catalyse membrane protein insertion in a Sec-independent manner [81,82], leading some authors to suggest YidC be classified as an alternative inner membrane translocation pathway [83], even though YidC has not been implicated in the translocation of proteins across the cytoplasmic membrane [84]. Two homologues of YidC are found in *B. subtilis*, i.e., SpoIIIJ and YqjG [17,18], however, only a SpoIIIJ-like protein (GI: 15896967) could be identified in *C. acetobutylicum*.

To allow proteins destined for translocation across the cytoplasmic membrane to interact with the Sec translocon, bacteria have developed several distinct protein targeting pathways. In Gram-negative bacteria, SecB and the signal recognition particle (SRP) pathway are considered to be two distinct protein-targeting pathways converging on the Sec translocon [85]. The SRP pathway was considered a specific mechanism for the integration of inner membrane proteins [86,87]; however, it was recently shown that the SRPdependent pathway is involved in the secretion of some extracellular proteins in Gram-negative bacteria [88]. The SRP pathway requires the action of the SRP (Ffh/SRP54) and the SRP receptor (FtsY/SRP receptor- α family), which, like the SecYEG translocon, are ubiquitous in all domains of life [76]. Thus, it was not surprising to find Ffh and FtsY in C. acetobutylicum.

In Gram-negative bacteria, SecB possesses the dual function of preventing folding and targeting the protein to be secreted to the Sec translocon. As in all Gram-positive bacteria sequenced so far, the SecB chaperone is absent from *C. acetobutylicum* [18]. However, in *E. coli*, it was recently shown that SecB should be considered as only one of a plethora of molecular chaperones available to newly synthesized polypeptides before their translocation through the cytoplasmic membrane [87,89]. Indeed, in *B. subtilis*, the chaperone function has been attributed to CsaA (GI: 2619042); however, no homologue of CsaA could be found in *C. acetobutylicum*.

After Sec-dependent translocation through the cytoplasmic membrane, the signal sequences of most proteins are removed by the action of a signal peptidase (SPase). Membrane-bound SPase I and II permit the cleavage of the signal sequence from the precursor proteins and lipoproteins, respectively [18]. While in most Gramnegative bacteria, one SPase I and one SPase II are expressed, in *B. subtilis*, five SPase I and one SPase II are have been identified [18,90]. In *C. acetobutylicum*, two homologues of each SPase I and II have been identified (Table 1). The reason for this redundancy is unclear, but in *B. subtilis*, differences in substrate specificity have been observed.

3.2.1. The signal sequences of the Sec-dependent secreted proteins

All proteins targeted to the Sec translocon possess an Nterminal signal peptide. The signal sequence is composed of three domains: (i) a positively charged amino terminus or ndomain, (ii) a hydrophobic core region or h-domain, and (iii) a consensus signal peptidase recognition site, also called c-domain [39].

Investigations with SignalP and PSORT of all C. acetobutylicum CDS identified 491 proteins, 37 of which are encoded on the plasmid pSol1, as potential substrates of SPase I (Table 2). The signal peptides of these proteins have lengths varying from 16 to 53 residues, with an average of 32 residues (Fig. 1). The length of the n-domain ranges from 2 to 31 residues, with an average of 10 residues but with a favored length of 7 (Fig. 1). These signal sequences contain, on average, 2-3 positively charged to a.a., i.e., lysine or arginine, but some could contain up to 14 (Table 2). Like B. subtilis, the h-domain has an average of 19 residues, with a favored length of 17–18 residues (Fig. 1) [17]. Interestingly, more than 50% of the predicted signal peptides possess at least one helixbreaking residue in the h-domain (Table 2). When present at the end of the h-domain, these residues facilitate the cleavage by SPase [17].

Because of steric interference with SPase I, a.a. tolerated at positions -3 and -1 of the signal peptide, with respect to the N-terminus of the mature exported protein, are generally small and uncharged [17]. In B. subtilis, the sequence consensus at the SPase I cleavage site, i.e. (A/V)-(S/F/K)-A at positions -3 to -1, is not fundamentally different from the consensus found in C. acetobutylicum, i.e., (V/A/I)-(K/F/Y)-A (Fig. 2); the consensus are given when the frequency of an a.a. at a given position is higher than 10%. Except for cysteine, all residues appear to be allowed at position +1 of the cleavage site, though an alanine residue is most abundant at this position (Fig. 2). In E. coli, though, it has been shown that proline at position +1 would effectively inhibit SPase I activity; therefore, its presence at this position seems unlikely, and such signal peptidase cleavage sites would be mispredicted [91,92].

By merging the results of ScanProsite, G+LPP, DOLOP, and LipoP together, 111 probable lipoproteins were identified in *C. acetobutylicum* (Table 2), 4 of them encoded on pSol1. The signal sequences of lipoproteins in *C. acetobutylicum*, like in *B. subtilis* [17], (i) are shorter, with an average of 21 a.a., (ii) possess shorter n- and h-domains, with an average of 6 and 12, respectively, and (iii) have more conserved structural features than the signal peptides of nonlipoproteins (Figs. 1 and 2). Once again, the lipobox motif in *B. subtilis*, i.e., L-(A/S/T)-(A/G)-C [17], is not fundamentally different from the consensus found in *C. acetobutylicum*, i.e., (L/F/I)-(T/S/V/A)-(G/A/S)-C (Fig. 2). The invariant cysteine at position + 1 is lipid-modified before the signal peptide is removed by SPase II.

Table 2

Substrates of the Sec translocon in C. acetobutylicum

GI	Function	Signal peptide		Gene location	SPase
Metabolism	n of carbohydates				
15893386	Xylanase	MRSKQKRKLKSVFIVVIALIVLLSA <u>VIA</u>	AV	С	I
15893559	L-lactate dehydrogenase	MKKNTKISVIGAGFVGSST <u>VFA</u>	LM	С	I
15893624	β-mannanase	MTLKNPKKLF LSIFAVLYIISAANPTK <u>VSA</u>	FF	С	I
15893648	Galactoside symporter	MKEKIKLSNILGYSSINFLGSGAQGLMSAWLLFFYSSVCGINS <u>VKA</u>	AS	C	I
15893675	PTS, cellobiose-specific component BII	MVRILLFCSAGMSTSMLVSKM <u>KKA</u>	AE	C	I
15893719	Sugar permease	MIKKIKISGIYGLNIILGLITIVPLIYALCVSLMPQDQ <u>IFS</u>	FP	C	I
15893822	PTS, arbutin–like BC component	MMQKIQR FGAAMFVPVLFFAFYGM <u>VVG</u>	FS	C	1
15893828	β-mannanase	MRRNNDIEQKKKILSAMLVSVLLVSPKIN <u>SKV</u>	YA	C	1
15893829	β-mannanase	MTFNKRKRTIISLLATTLILSPLVTNK <u>VYA</u>	VP	C	1
15893830	p-mannanase	MILNKRKKVLISMVTMVGILSPLANSK <u>VYA</u>	IP	C	T
15002060	DTS anzuma II. A BC component	MERRELESMIVAASLVVGVGFSNI <u>CIA</u>	KP AC	C	Ţ
15803864	P 13 enzyme II, ABC component		AG	C	T
15803866	Endo, arabinasa		72	C	÷
15803050	Sugar ABC transporter	METCERPLATICULTUTATCMEDUC	KK	C	T
15803052	Sugar_binding periplasmic protein	MKMSKKBLATIGVVIVIIAAIGMIL	KK	C	Ť
15893954	Sugar permease	MKRKNKTLIFFEYTILVIFATAATEPVIVMISSS	FM	c	ī
15893992	Sugar ABC transporter	MKKDNKTVSGTVNALKSLAFPMASVLVSLFVAVFFVMWSKGVA	тт	C	Î
15893993	Sugar ABC transporter	MDKTLLTTATAAATFRMATPLITT	AT	C	Î
15893994	Endo-1.4- β -glucanase	MKRNRMKILNLPIFFVVLMFLLSNVGIIRVKA	NN	C	Î
15894023	Glucanotransferase	MKKKLIIVVMIFVVIFSILINLRIR	IK	Č	Ĩ
15894091	Pectate lvase	MGRRFSKRLLVAILASSMAISATFSANA	ST	C	I
15894099	Pectate lyase	MLKQTKRRLSKAVVSAVILSSVSFYGMSSSIKA	NA	С	Ι
15894112	Endoglucanase	MFRRLFSKVKILFLALTLLGTYLTLNLNTVVA	TN	С	Ι
15894113	Endoglucanase	MFKNLFSKAKISLLTFAFLGTSLSGAYSACA	AT	С	Ι
15894197	Cellulosomal scaffolding protein	MKKRNIAILGMFMMTASLGISKNHVFA	DT	С	Ι
15894198	Endoglucanase	MLKISKNFKKIMAVALTSTVIFGSLSGLLTNK <u>VAA</u>	AT	С	I
15894200	Endoglucanase	MVKKRLKSLIAVFITTAMMGGFMNLTDGKVMA	DE	С	Ι
15894202	Endoglucanase	MKRNKILVSALAIAFSSMVLTP <u>VSG</u>	ΓK	С	Ι
15894203	Endoglucanase	MKKLLATLVTVFMICMQITP <u>VQA</u>	AK	С	I
15894204	Endoglucanase	MKK LVACLTMVLLLGTQIKPLT <u>ITA</u>	DT	С	Ι
15894205	Endoglucanase	MKKLKVISTVVAGVFLSTLVSFSSITK <u>VKA</u>	AD	C	Ι
15894247	Xylanase	MKKAKEKYLIFILIFLLLPIN <u>AKA</u>	ES	С	I
15894324	Xylanase	MKTNGISLILKRSAMILSIALI <u>VLG</u>	AT	C	I
15894360	β-glucosidase	MNKNLKRNLAVLVSSTFLVSTTINLTSSKP <u>IKA</u>	EN	C	1
15894010	Short-chain alconol denydrogenase	MKLPFNVNLKNKVAVVTGGTGVLGSSWVN <u>ALA</u>	EC	C	1
15804722	Ribase APC transmoster	MKIKDSRFKVKNIVLVLTLILLCGFYIIV <u>REG</u>	TI	C	T
15004741	Ribose ABC transporter	MNKNIKKIVIFILLIFTVVFILINLKVLEG	NG	C	T
1580/808	Levanase/Invertase		NT.	C	T
15894834	Chitinase	METEROFFNEGGEFFFIFEIWAVVEFFERWEIDVAL	KD	c	T
15894839	Glycosyltransferases	MKLKKHKSNEKI, LTCCTVIETITVI, WRITTCTI, PI GGTTVSI, VA	AT	c	ĩ
15895048	Levansuerase	MNKLKTVKCTLIGSMICSGITTOOTFA	ST	c	Ť
15895049	Levanase	MKRKKLKLLTTLMTFTVTTLTVLLSLYTONNSTT	KS	C	Î
15895050	Levansucrase	MKTRKTYKMISSLMVILAILTIPFLILRHNTGYT	SI	C	Î
15895239	Pectate lyase	MNKKILSLLTSVAIISSVASFGVOA	KS	C	I
15895518	UDP-glucose pyrophosphorylase	MSIRKAVIPAAGLGTRFLPATKAOP	KE	С	Ι
15895520	β -glucosidase fused to β -amylase	MYSGKKKVWKKT LYYFVAAALTLNTVPEIIRPVSAKA	AP	С	I
15895583	Xylanase	MLCIMEKKKKYITVFMIIIFLASIVGFSFFNYNEKKA	NY	С	Ι
15895641	Oligopeptide ABC-type transporter	MKRNIGFYKIVYSRLKRDRRALLGLLILFIIIAFAFLGP <u>FLS</u>	KY	С	Ι
15895642	Oligopeptide ABC-type transporter	MIRYIVKR LFFMIPIIIITSFIIYMIFTLAPG <u>DIA</u>	TS	С	Ι
15895649	Xylanase	MHVIYARKVCVKKLFFPIFLLIFCVGIF	MY	С	Ι
15895779	β-galactosidase	MNNNFKKVLMCLLGVGIYISAVTFPSK <u>IYA</u>	DT	С	Ι
15895818	Endoglucanase	MKSKISKLLIVAAITMASVGWGALKVGA	TT	С	Ι
15895830	β-galactosidase	MLKKLIKRISLMLLGTGLIINSAFFSISTSANTFANG	AD	С	I
15896062	Endoglucanase	MLRKKIKT IIYSSLLLGAFVSATVLPVN <u>TFA</u>	AS	С	I
15896065	Glucoamylase	MKTKSIMQKVALALLSFTFSTSIVGITPSR <u>TMA</u>	EE	С	1
15896144	Fusion of β -glucosidase and glycosidase	MYNSSKTRIWKRTLYCLVAAAVVVSAMPQALNIN <u>VKA</u>	DT	С	I
15896209	Galactitol/fructose PTS IIC component	MNGIVEFANAVFKPLINLGAAPMMFIVLSVLAILMRVKVSKA	IE	С	1

GI	Function	Signal peptide		Gene location	SPase
Metabolism	of carbohydates				
15896261	Xylanase	MKKRFILILVVILVSVIVLPNK <u>VAA</u>	VN	C	I
15896628	Pectate lyase	MKYLTKKLFLISTFMGISLASVFSLATT <u>AYA</u> MKKRVI.TII.MSTFI.TTCAVI.SVTSI.SAKA	22	C	Ţ
15896708	C-arabinoruranosidase	MRNKKRTTSLVTGLAMLFTCAVGNTSLKVHA	DA	C	Ť
15896839	Gluconate permease	MPLLIVVIGVALLLLLMIKFKVNGFISLILVALVVGIAEGMNPAKA	VS	c	Î
15896916	Polygalacturonase	MLGKYKLQAILAATALLFNVLFVNVNGKIVRA	AD	C	I
15004733	Permease MDR-related	MKMWKKNLIVCWFGMFITSIGMSOI	AP	Р	I
15004757	Xylanase	MLKSKLSKICTGVLALGLALSISGVGT <u>FKA</u>	AM	Р	Ι
15004758	Xylanase/chitin deacetylase	MKKLLTVILILTLLSIPYSV <u>KSA</u>	KA	Р	Ι
15004760	Pectate lyase	MKKIVCLVASAALSLSLFSLPQLASS <u>VNA</u>	AS	Р	Ι
15004775	Xylanase	MLKRKLILGLATTLLFMQTATITNVTALA	SS	Р	I
15004801	Amylase	MKRIFSLRKSLLAVVVTLTAFSGSLFYPI <u>SNR</u>	FQ	P	1
15004817	β–xylosidase	MLKKRKFSFKKLGCIAVLICMAVA	AK	P	1 T
15004818	Xylanase	MKKASYIMAFSLAFALVSPV <u>ACH</u>	AD	P	T
15004819	Xylanase B yulosidasa	MKKRFISSTLILTTILSISGASKAFA	ΔT	p	T
15004820	p-xylosidase	MKNKIKKIULSVUTESMICLPETDGETSIKA	AS	р	ī
15004821	Xylanase	MNIKLKRTLISLVAFSMTCLPFVGTGSSVKA	AS	P	Î
15004822	Xylanase	MFKKSNAFLLTFALICGIGFA	KS	P	Î
15004827	Arabinose efflux permease	MNTTINNSNLKYNNLILILGLAGFVSA	AD	Р	Ι
15004831	Arabinose efflux permease	MEETNKTSYWPMMIAIFLGSFLVSLGTSTINLALPFLMKSFS	AN	Р	Ι
15004832	Glycogen-binding regulatory phosphatase	MKLNKSAGKIITLIAFVAAFFIINIGVVPN <u>AKA</u>	DT	Р	Ι
15004834	Arabinose efflux permease	MTQMNSRKKSIIASLMVAMFLGAIEGTVVTTA	MP	Р	Ι
15004871	Amylase	MSKRSKLLKRRMLSLSVICVLIGYGPVFNPVRSO	AK	Р	Ι
15896619	Xylanase	MNKPNERKKILIKRSILVG	<u>C</u> T	С	II
15893727	Xylanase	MSKFKKILLIIITIIV <u>IAS</u>	<u>C</u> L	С	Π
15894630	Periplasmic sugar-binding protein	MKKTSRILIIFAATCFLLTA	<u>C</u> A	C	П
15894735	Sugar-binding periplasmic protein	MNFKKHNKFIIAAILIVIIAGG <u>SFL</u>	CI	C	П
15896165	Sugar-binding periplasmic protein	MKRFLKKIFVAVMCSSMVFY <u>VSA</u>	<u>C</u> T	C	Ш
15894201	Cellulosome integrating protein	MKKKGIITAVILSLLVIG <u>TVG</u>	<u>C</u> K	C	ш
15895662	Xylanase		CW	C	п
15896269	Xylanase	MANEAQARARA DI MASTIVISI <u>VII</u>		C	п
Metabolism	of lipids and fatty acids		70	C	т
15893827	GDSL lipase	MAKSSVANIETESNI.SCGLISLIMTI.AAS	ST	C	ī
15893904	Charol uptake facilitator protain	MHYSLAVKI.VCEMI.GTATI.VI.FCNGAVA	NV	C	T
15894643	Phospholipase D	MNRKKLTCIFMGITVFFLGIGIFELIKSTAKA	NA	C	Î
15894935	Phospholipase D	MKLGNSKYLLGIMLIVIICIIVFTRGDS	DN	C	I
15895068	CDP-diglyceride synthetase	MSLNKRYLGAVILAPLLIILFLGGIYLKIF <u>VFA</u>	LS	С	Ι
15895090	Phosphatidylglycerophosphate synthase	MNLANKLTLMRIFLVPVFLIFIVVRQIPYGRSIATA	IF	С	Ι
15895514	Lysophospholipase	MRKLSKK VFLIFAVTTIFILGNSAWD	RT	С	Ι
15895877	GDSL-like Lipase	MGNGYKSDKKMTVTVLVLLIITITVIISGI <u>IHD</u>	KK	С	Ι
15896276	GDSL-like lipase/acylhydrolase	MLKK LTIGFVVIAAGIVLLLSIFGI <u>KEA</u>	AS	С	Ι
15896559	Phospholipase D	MRFFIKFIFHR ATFVVISALIQLFVLIF <u>VII</u>	KF	С	I
15004719	GLPQ related phosphodiesterase	MKRANYKILYAVMVVLIFGLLFSGSNN <u>IKA</u>	DT	Р	I
15893720	Periplasmic glycerol-3-P-binding protein	MKKTSRILIIFAATCFLLTA	<u>C</u> A	С	11
Metabolism	of proteins, peptides and amino acids		-	0	T
15893373	Endopetidase	MKKSDLFFIFISLAFTVIF <u>LNC</u>	TS	C	I
15893470	Oligopeptide transport permease protein	MLRYIVKRLLQMIPILIGVSIVIFIIFSLAPG <u>DIV</u>	DN	C	1 T
15893504	BioY protein precursor	MKFKTRDLVLIPLFTAMTIIGA	FI	C	1 T
15893593	Signal peptidase II	MITVVGVKFKKAGKIYYFSPGDLNINKGDDVIVET	AR	C	T
15893/90	Chapterena with dependent methods activity	MDNARAWIYIIYAIYYYINIASLFUGGRFU <u>VFA</u> MDNARAWIYIIYAIYYYINIASLFUGGRFU <u>VFA</u>	DT	c	T
1589384/	Pariplasmic aspartyl protococ	MNSYVKRMITISTAVFTMCSFASTUHA	EP	C	T
15894033	Metal_dependent protease	MSKTKILGLLTAIAITFNATTNLTIK	AY	č	ĩ
15894126	ABC-type spermidine transport system	MKKHRRSISQYPYFLWSILFILVPIFLVIYFSLTSSD	ST	C	Ι
15894139	Amino acid permease	MANSNLKKDNLSIIETIALSVAIIAPTAAMSINVSLM	\mathbf{SL}	С	I
15894242	Zn protease	MKYLKNKHFIVPAFIFLCSLTLFASSLVSINKTOY	KM	С	Ι
15894888	Branched-chain amino acid permease	MKELSKKNTFFVGLLLFSMFFGA	GN	С	I
15895037	Signal peptidase I	MGKSLIEFGKS IIIAIIVAVIIIMFVFET <u>VSV</u>	DG	С	Ι

GI	Function	Signal peptide		Gene location	SPase
Metabolism 15895095	of proteins, peptides and amino acids Aspartate aminotransferase	MNFSKKAGOIAASITLEITAKA	DE	С	I
15895250	TadB homologue	MKLLKIINLILILSLLCISYILSKR	LI	С	Ι
15895545	Translocase subunit SecF	MLKVIKHTKVWFGISLTIIFLGIAFMIYR	GV	C	Ī
15895546	Translocase subunits SecD	MKKKGRSTIFFIISVLIIAGLAYLGSTGLNV	GD	С	Ĩ
15895558	Metalloprotease	MGKKILSAFIVLTSVMLYSAPIYA	EK	C	Ī
15895675	Transglutaminase–like enzyme	MKTNPVTLILVFLFLFPIARGFLFK	FS	C	I
15895782	Metalloprotease	MKKKLLSLVLTTAVVSSISGFSSVSA	ОТ	C	Î
15895783	Metalloprotease	MKCKLI.STILTTILSTI.GSFNNVLA	SO	č	î
15895904	Signal peptidase I	MGKENEESKSLGONVKEYAILLVVALGIAVIFRTFVFARA	NV	č	Î
15896098	Aminopeptidase	MKIKLMLIPLILFASIFSFTFY	KY	č	Î
15896429	Oligopeptide ABC transporter	MFLFKNKNIKTSNKSLSKOTLKRILKNKLAIMSIIFLISILIFNFLGPFFS	PY	C	Ĩ
15896449	Metalloprotease	MKKISSATVWIVVFLVVIFTILMLVOGGKA	TN	č	ĩ
15896462	Parvulin–like peptidyl–prolyl isomerase	MVKSKLNTCKKTKYKKRGIKMKSAKOIATALLVGMFTFSA	VG	C	Ī
15896465	Periplasmic trypsin–like serine protease	MNNSNGNEGNINFRSRNKLRLNKVLKFISFITISALSGA	IT	C	Ĩ
15896590	Amino acid transporter	MTSKKEOKNELKRTLTARHMNMIAIGGSVGTGLFFA	SG	C	I
15896865	Oligopeptide ABC transporter		HS	C	I
15896872	Oligopeptide ABC transporter	MFRYIIKRFIASIVTLWIVVTFTFLLAHA	IP	С	Ι
15896877	Oligopeptide ABC transporter	MFKYIIKRFIASIVTLWLVVTFTFLLAHA	IP	С	I
15004769	Metalloprotease	MAKIIKHLINTTIAAAIVLTIGTGVHA	AP	P	Ī
15893671	Periplasmic amino acid-binding protein	MKKSVKKIMAVILTAVIGVGLLAG	CS	С	п
15894124	Periplasmic spermidine-binding protein	MKNIKKIIALAATVILTCSSLTA	CN	С	П
15894753	Periplasmic Pro/Glv–binding protein	MKKSIKRIMVTALAIVFAVSLTA	CA	C	п
15895643	Periplasmic binding protein	MKKWHMMSLIASANVMIFLTA	CG	Č	п
15895925	Periplasmic peptide-binding protein	MKNFIRVCIAFMLVCLILTG	CV	C	п
15896427	Periplasmic oligopeptide-binding protein	MKRKFITVVIPSIIIASLLSS	CT	C	П
15896568	Periplasmic amino acid binding protein	MKRKGIFASAVLALTLVIGITG	CS	C	п
15896866	Periplasmic oligopeptide-binding protein	MKSKKLLSVILSAAVISTVALSG	CG	C	П
15896868	Periplasmic oligopeptide-binding protein	MLKRKLTKLSAVLVSAALASSLLAG	CG	C	п
15893469	Periplasmic oligopeptide binding protein	MKRKVLAIFVITAMFSTILFTG	CG	C	П
15893955	Sugar-binding periplasmic protein	MKNKKNKVVTISIIVFVGIVII	CT	C	п
15894167	Periplasmic amino acid-binding protein	MKKKLITLSMALLMSVGIFTG	CT	C	П
15895803	Reductase/isomerase/elongation factor	MKKTTLAALLVIMSISFTA	CG	Č	п
15895810	Reductase/isomerase/elongation factor	MNKRILLAMVVVIISFALMS	CT	Č	п
15895982	Predicted hydrolase	MRKSSKIKRIVLAVVLVITITAN	CV	Č	п
15896854	Periplasmic amino acid binding protein	MLKKTESLSVVLVLTLATETG	СТ	C	П
15896904	Periplasmic sugar-binding protein	MGWLKKLCLFSIITCIIFSTVG	<u>C</u> V	C	п
Metabolism	of nucleotides and nucleic acids				
15894130	Barnase	MKKKNFAAICFTLVFMIFGAFLNNVVCVOA	КT	С	Ι
15894550	Competence ComEA protein	MKNKK AVVGSITIIFIFVVLI <u>FIG</u>	YE	С	Ι
15894553	ComEC competence related protein	MKR PLVFYFVSIILGILTAALLKIDILIGA <u>VIA</u>	AS	С	Ι
15895219	Phage related transcriptional regulator	MDNRQRIITFKILRLASGLSAERVAAA	LS	С	Ι
15895240	Plasmid transfer factor TraK	MHKKFNYRLIICIFILHTLICIYLLTPLIVIR	SE	С	Ι
15894883	Ketopantoate reductase	MKRIRNISVVGMGAVG	CA	С	Π
Cell wall, e	nvelope biogenesis				
15893327	Cell-wall hydrolase	MVNIKKNT ALVAAFIITATTLTNVK <u>AYA</u>	VT	С	Ι
15893497	Sortase	MKKLNIIAATLISSGVILIGFT <u>LGA</u>	KΥ	С	Ι
15893506	Protein containing LysM motif repeat	MSKNKLR FILFLICVFIVGSGI <u>VYY</u>	DQ	С	I
15893600	Cell wall-associated hydrolase	MYSLFLWASVKIFTMESRGRYVVHKRILSTVVAFGIVASMGSTSVFA	AP	С	I
15893683	Peptidoglycan-binding domain	MRNLKMKALSLGIMSTVLISSTAFA	AT	С	I
15893789	Cell division protein	MRVSTLK LFFIDALKSLKRNKTIST <u>AAA</u>	AT	С	Ι
15893797	Penicillin-binding protein	MNNISSNIKKVLFIFLVIFFVTI <u>SYI</u>	TΥ	С	Ι
15894034	Protein with ErfK domain	MDTTETEKKKSKRNKIIIGAAAAFCILLVIYLGMA	RY	С	Ι
15894280	Penicilin binding protein	MKRKLLSILLSGILSLSISSSALA	AV	С	Ι
15894385	Murein transglycosylase	MKAK IFIFFIIVIALFLALNTRNI <u>LKH</u>	FY	С	Ι
15894393	Autolysin	MKNKNRIVTLLTAVLVISAVIFMPLN <u>IHA</u>	QI	С	Ι
15894515	Lytic murein transglycosylase	MIKSKFKFLVFAAALAFVGMGKNAVHA	AT	С	Ι
15894526	Shape-determining protein MreC	MKLFKNRLTVTVIVLSVSFLLLISYSAKR	KK	С	Ι
15894528	Penicillin-binding protein	MKKAKLKKIFNRFNALMVVVLLVFSGIIAQLINLQIL	QТ	С	Ι
15894529	Penicillin-binding protein	MKKSAKFKKIFNRVNVLKVVVLIVFIGITVQLVNLQIL <u>QNA</u>	NY	С	I
15894530	Penicillin-binding protein	MKKKVKIKNIFNRLNVLRVTVLIVFFGVTA	QL	С	I

GI	Function	Signal peptide		Gene location	SPase
<i>Cell wall, er</i> 15894533	<i>velope biogenesis</i> Cell division protein	MILNKLKIDKRTLKOIDFLIFLIPIVIAIFSSINIYSA	VН	С	т
15894546	Cell envelope transcriptional regulator LvtR	MYFNKKRVIIVCCFVLLCIAIGLGSFFYVSL	FS	č	Ī
15894549	D-alanyl-D-alanine carboxypeptidase	MRKLIIFTLTVMFLFSTININIYA	KV	С	I
15894595	Peptidoglycan-binding domain protein	MKNLKLKALSLGIVSTVLISSSAFA	AI	С	Ι
15894804	Amidase	MKKTLKILAGFVAVVIIIALGIFT <u>SRK</u>	LY	С	Ι
15894965	Penicillin-binding protein	MERTRIKCILIFLGIFAVFAFLCTRLYLIMNVYS	KD	С	Ι
15895151	N-acetylmuramidase	MKNRIETLLVAFTFVSATFFIPLN <u>VHA</u>	ΤI	С	Ι
15895315	Murein hydrolase	MKRSKGLGSMFKNMAKNKGKKVLKALIKKIMFPWGLIFCLFIFIVIFA	IS	С	Ι
15895327	D-alanyl-D-alanine carboxypeptidase	MKIYRSIVLALIVCILTPATF <u>AKA</u>	DK	С	Ι
115895333	D-alanyl-D-alanine carboxypeptidase	MKKR GIAIGAMALLLLFLQSLFLPFS <u>VKA</u>	FG	С	Ι
15895394	Cell division septal protein divIB/FtsQ	MKEENEYIVKRRKKRRRKRITIFLFLLICILVTLCLKLPYFN <u>IKY</u>	IN	С	Ι
15895568	Carboxypeptidase MrcB	${\tt MSDNTKTNSRNKSVKRTKKVKKKKFGFFKKLFTILFCLFILLSVAASGV} {\tt IFA}$	IV	С	Ι
15895581	Exporter of O-antigen and teichoic acid	MNKVAKNFFSMGFSTLVSQFLTFFTGTYA	AH	С	Ι
15895592	Cell wall hydrolase	MTKK MNIIFAMFVLMFISIFSSK <u>VNA</u>	QT	С	Ι
15895602	UTP-glucose-1-P uridylyltransferase	MRVKK AIIPAAGLGTRFLPATK <u>AOP</u>	KE	С	Ι
15895682	Protein with ErfK domain	MKISKFQK IIFVLILILIIEIILVIQF <u>YKM</u>	SP	С	Ι
15895921	Cell-wall hydrolase	MKNTKK IISLLFFLVAFVIITPSIS <u>SKA</u>	DN	С	Ι
15895953	Metallo-dependent hydrolase	MKNLKLKALSLGIVSTVLISSSAFA	\mathbf{AT}	С	Ι
15895979	RCC1 repeats protein	MNFKKIFIISTVLGISISL <u>ANA</u>	NN	С	Ι
15896129	Undecaprenyl-phosphate	MEKK YIMFIIAMAISFLTTPIVR <u>KFA</u>	KH	С	Ι
15896196	Cell wall hydrolase	MKKLFTNLLLLCSIVFLGALLNGHN <u>VQA</u>	SD	С	Ι
15896197	Cell wall hydrolase	MKKIFTNVLLVGFLVFISAILYGHS <u>VQA</u>	SD	С	Ι
15896297	Cell envelope transcriptional regulator LytR	MKTKDKKKFGFWKK FFIVFFILIFG <u>IGA</u>	SG	С	Ι
15896314	Cell envelope transcriptional regulator LytR	MKSKKKFGFLSK FFITILILIVVIG <u>VTA</u>	GG	С	Ι
15896343	Amidase	MLKRDNFFKVFIK VFSVFIAVTFVFSVMPNN <u>VNA</u>	ΚT	С	Ι
15896541	D-alanyl-D-alanine carboxypeptidase	MKKIILALIIISVISASLFIYK <u>NNQ</u>	ΡK	С	Ι
15004780	Penicillin binding protein	MLEKRSKKINIIKR LFLYILVFAAVFGGIVYL <u>KYA</u>	\mathbf{PT}	Р	Ι
15893309	Protein with ErfK domain	MIKKEILKFLLSSLISS <u>IVA</u>	<u>c</u> s	С	Π
15893601	Cell wall-associated hydrolase	MHRKFLTALIALGI <u>TVS</u>	<u>C</u> S	С	II
15893754	Serine protease domain	MKTHKLLSIVLASVLLTSS <u>FTG</u>	<u>С</u> Т	С	Π
15895098	Protein with ErfK domain	MFKQKK IIFIAIIVIFI <u>FSG</u>	<u>c</u> s	С	II
15896915	Penicillin-binding protein	MKRKYLLLLTLLLTISF <u>TFG</u>	<u>C</u> S	С	II
15004762	Rare lipoprotein A	MKKAKSFVCLMTLL	<u>C</u> V	Р	Π
Defense me	chanisms				
15893949	Multidrug-resistance ABC transporter	MKYSNINKKLGSFLSSSKNIIKTVKLLWKSS <u>SLS</u>	FΙ	С	Ι
15894233	Metallo β -lactamase	MRNNIKKLSLIFCFIFTIMFLSAWSKVGNVN <u>VMA</u>	AN	С	Ι
15896063	β–lactamase	MKMKKCLVSCLLVALISIPPMK <u>VFA</u>	AN	С	Ι
15896672	HAE2 family protein	MAKLLYNLGSWVYKRPKRVIVAWVVFLAILGVAVLNTGI <u>KFS</u>	DN	С	Ι
15896843	Multidrug-resistance ABC transporter	MNLLKITKRDFINTAKNPTLLLCNTAFALLLIGIFGFITKN <u>SYG</u>	\mathbf{NT}	С	I
15896844	Multidrug-resistance ABC transporter	MIIINIFKNNLSRLLCKKA ILLTSIIFIPLMIIGG <u>VYF</u>	TS	С	I
15895880	Metallo β–lactamase	MNSLKRLLKCVITLVCILIL <u>ISG</u>	<u>C</u> S	С	П
Sporulation				G	
15893621	Sporulation penicillin–binding protein	MKKKRKNPRLVLGKKLLTVLFIFSIVFSALIFRLFFIMF <u>VHS</u>	DT	C	I
15893887	Spore germination protein	MKINNKLLFIPVILIFIAVFIGG <u>KGE</u>	LV	С	1
15893974	Spore cortex–lytic enzyme prepeptide	MKGILKYKRSIVLSLAVLISYLSIYVWLLPYNNAVN	AI	C	I
15894303	SpoVB	MKKQSTVKGFAVLSIGTMISKVLSLVYVPLLTRIL <u>GGA</u>	EP	C	I
15894558	Stage II sporulation protein P	MVVKVINKKQDKFYFKLGMFILIFLILGVSLLNIIG <u>INV</u>	DK	С	I T
15894805	Spore germination protein GerKB	MIHLSKHQLFTLTFIFQIGSTPLFALGIEA	EQ	C	1
15895342	Stage IV sporulation protein B	MKNKKINIVYYILTPVILVVFLAYN	KV DD	C	I T
15895357	Stage III sporulation protein AG	MNFKKFLSNLKFDSKDEKTKKSTVTNIVILGLIGILLI <u>ITA</u>	DF.	C	I T
15005205	Stage III sportiation protein AE		ID CC	C	T
15805200	Stage V sporulation protein D	MOKATI UDKAMTANDA TETUET TI MOUTELI OVUT PUDVIA DA	22	C	T
15806115	Stage v sportulation protein D	MFKRILVDKATIKNKIFIVFLILTCVIFLLCYKLFNVMVARS	5K TC	C	T
15806151	Stage II sportlation protain P	NURTETUTT A TEVTOENOUTY A	TG	C	Т
15806222	Stage II sportulation protein K	MERETHATTI PUT CHOCI DUBOCA	12	C	T
15806545	Spore correction protein Corre	MERTINATILITLEWCOLPNT <u>CSA</u>	ΔT QT	C	T
1500/052	Stage V sporulation protein D	MERCECONVERTOR CALL DRANDER AND DET AND DE	AW	D	T
15802022	Stage v sportiation protein	MARTIN AND ANT AND	11 CP	C	т
15805355	Spore germination protein		CA	c	п
120222200	Sponnin	MARKONVIIVIEMVEIV	<u>~</u> n	U I	11

GI	Function	Signal peptide		Gene location	SPase
Sporulation	SpoIID-like protein		CS	C	п
15896546	GerKC	MRKITSTELLCG	<u>c</u> s	C	п
15004723	GerKC	MKSCRKKFLKIISCILIAVNLTS	CI	P	II
Ion transpo	rt and efflux			C	т
15893399	Adenylylsulfate kinase	MNNKKSTNVVWQETKIKRQNREKMLKQKGAVLWFTGLSGSGKSTV <u>ASA</u>	LE	C	I
15895572	Cotion offlux system protoin	MIIKKNHFDLDKFFICFFSIFVIIILVILCFPIVSV <u>VKY</u>	SG	C	T
15803070	Ammonium transporter Nrg A		ы мг	C	T
15803073	Putative Mn transporter	MKKKESDILETESIVERITEANA	GN	c	Ť
15894075	Ferrichrome transport permease	MITEKKREMKHRLVILITILITVITVISLGIG	DV	C	Î
15894379	Cation efflux system protein	MKKINSAVLSIASNSMLIIFKLTAGI	TM	C	Ī
15894983	Phosphate permease	MEKRSFLKKLKTEYVGRGFATICGVFIVILTLSIIFFIA	SK	С	Ι
15895707	Hemin permease	MNLNLTKNMKYILLLILLFIVLIFTFIFS <u>IST</u>	GS	С	Ι
15896572	Mn transporter	MKKKNKLLFILGIIGPGLIT <u>VNA</u>	GN	С	Ι
15896786	Na+ ABC transporter	MKNTTMIVFKKELKDIFRDRKTIIFSILIPMLLLPLISFFMSSV <u>VNK</u>	SE	С	Ι
15896912	K+ transporting ATPase	MMKYFKSALRLGIVLIIICGLIYPLFITAVGO	$\mathbf{T}\mathbf{V}$	С	Ι
15004807	Heavy metal resistance membrane protein	MNKTSKLFWLDRYLTIWIFTAMA	IG	Р	Ι
15893573	Molybdate-binding periplasmic protein	MNMKKIITFLSISAFLVSC <u>LSG</u>	СТ	С	II
15894273	Periplasmic metal ion -binding protein	MKKKFLSVLLSGAVLIGALTG	CS	C	II
15894679	Periplasmic nitrate-binding protein	MKKKKILSLISAVIMTSAI <u>ITG</u>	СТ	С	11
15894871	Zn-binding lipoprotein related	MIKKFFSLIAVLIGLVVLAS	CS	C	11
15895706	Ferrichrome-binding periplasmic protein	MYTKTKASISALLILITIT <u>LSS</u>	CS	C	11
15896091	Zn-binding lipoprotein	MKKFLCFIMSVGLILS <u>LVG</u>	CG	C	п
15890515	Permease, cation efflux pump	MENETIMAFFIGIACFSLTA	CT	C	11 11
15803610	Permease, cation efflux pump	MNKSKLATAAVEVCATSE <u>SVG</u>	CV	C	п
15893010	Periplasmic nitrate -binding protein	MKKAYFKII.TI.FTII.CITFTC	CS	C	п
15894077	Ferrichrome-binding periplasmic protein	MKKTLTSIMITMITGSA	CS	C	П
15894982	Periplasmic phosphate-binding protein	MKSKKIKLMSVAITMTIMAGLFVG	CG	C	Π
15895258	Ferrichrome-binding periplasmic protein	MIKIIKKTTVIAMTIAMVTTV <u>FSG</u>	CS	С	Π
Madilia					
MOILITY and	Mathyl according champtonic protein	NORDOWNET DUBTION OF TAXAL TRUTH DUTE TO A	ΕV	C	т
15803404	Sulfate transporter permease	MARDSMGFIRMFILRSREESEEEINVEEIVIVVEFMIE <u>IRA</u> MORDSMTTVTCIEDDVIEVIIIIA	TW	C	T
15893517	Sensory transduction histidine kinase	MSFIRVLKDNFRFTLLYVLLGAFVSA	ти Е.	C	ī
15893542	Methyl-accepting chemotaxis protein	MNKRVIGIKGKVLTSSMLVLLLTLVSTSGTVTYOVNSK	AY	č	Î
15893582	Sensory transduction histidine kinase	MKRKSSNYIKITSLFTKSIVMIFVIMFFVDMLIMIKVTEYR	PT	С	Ι
15893609	Sensory transduction histidine kinase	MSIKTKLVFSNIAMCLIPLILCLITLFGLNNL <u>YSR</u>	KL	С	Ι
15893724	Methyl-accepting chemotaxis protein	MSSKSNSKISSDLKTKFVLCSLLPSTIAMCIYGA	II	С	Ι
15893734	Methyl-accepting chemotaxis protein	MGKKGFKNLKVSSGIIILFVLAVFSSV <u>LIG</u>	AV	С	Ι
15893795	FHA-domain containing secreted protein	MVSVYN ISSLAVIGASLSNMSTIFKFV <u>IIA</u>	IV	С	Ι
15893815	Sensory transduction histidine kinase	MLRNREFKKFAILISLIATATVTIGFVINMSAGILTIT <u>SSA</u>	AF	С	Ι
15893832	Methyl-accepting chemotaxis protein	MKLMDWKVSKKVGVCFLCIIACFTIIVLID <u>IFS</u>	MK	C	I
15893833	Methyl-accepting chemotaxis protein	MKSGGIKANLSLLVIFMLIFAVGLGGFSFYSLNN <u>IKS</u>	ES	C	I T
15893855	Histidine Kinase	MKKIFKPFLKLYSFSKKKVVKSIRLELVVTFGICLLAAFILG <u>SWY</u>	TG	C	I
15893927	Flagellar biosynthesis related protein	MAKERKKAAALKYDLGYEAPI <u>VTA</u>	VG	C	I T
15893942	Methyl accepting chemotaxis protein	MURINGRIALLY SMLTIALIIIFIIS <u>FCL</u>	LL LL	C	I
15894102	Methyl-accepting chemotaxis protein	MUNSNI, I.NKTEKKMNSFI, FTI, SI, SMDVIAFI	FV	C	Ī
15894151	Histidine kinase	MONKKI, EVETKYETI, VEMTVGIIEG	GK	Č	Î
15894196	Methyl-accepting chemotaxis protein	MVKGWRKLSKSIRSKLIITISLVCMIPIIIFGA	IS	Č	Î
15894631	Chemotaxis sensory transducer protein	MNRANTDSNKARRSLRVKLITILVGIIIPMTFLSIGTFAIM	KS	С	Ι
15894666	Chemotaxis sensory transducer protein	MRIFNDMRIFKK LILVFGVISIFTIIVGI <u>VGL</u>	тs	С	Ι
15894831	Sensory transduction histidine kinase	MRSIRREVSIILILCTISGVILSALFVNIAMN	AT	С	Ι
15894878	Chemotaxis sensory transducer protein	MSIKKKLSIVIIALVIFSTVA <u>VGA</u>	AI	С	Ι
15894978	Sensory histidine kinase	MKKKLVLYNLGILIITLIMITVLFI	ΚI	С	Ι
15895416	Flagellar biosynthesis protein FlhA	MEEGRRLKFNVKDNRDVIVSLAIVGIVIMMIVPLPA	KV	С	Ι
15895418	Flagellar biosynthesis protein FliQ	MSENMIIKIMKDAITTGLIVSAPMLIVSIIIGLFISI <u>FOA</u>	\mathbf{TT}	C	Ι
15895419	Flagellar biosynthesis protein FliP	MKKKS FIMLAVFLVFLAFLGARAHA	AP	C	I
15895421	Flagellar protein FliL	MSEKKKDKGEKGGGKSKIIIILLMVIIVVFIAAALAYFF <u>VFS</u>	KK	C	I T
15895431	Flagellar basal body M-ring protein FliF	MKKLLESLKNLRNKWGEISKRKKIVFLIIVVAIIASLVVFL <u>VST</u>	ΤR	C	1

GI	Function	Signal peptide		Gene location	SPase
<i>Motility and</i> 15895699	l signal transduction Histidine kinase	MKIKGSITTKLEVITI.SEVUVEILGMLVEOSAFEG	KF	С	T
15895809	Methyl-accepting chemotaxis protein	MOFKRASLNSIRSKLIISLISICVIPLLIIGTFSYNYA	KS	č	Ī
15895837	GGDEF domain containing protein	MEDKKKFILKVFLIFVVSVFLICIFWYS	II	C	Ī
15895875	Methyl-accepting chemotaxis protein	MKSIKGK ILLMIETLIIVVIVGMGILAGMLSSNALR	NN	С	Ι
15895986	Protein containing SH3 domain	MRKSKLTFIATFLILLFLSMPYKAHA	AS	С	Ι
15895987	Transduction histidine kinase	MKNIWMVTTFLFLFILVMLI <u>FYH</u>	LY	С	Ι
15896003	Methyl-accepting chemotaxis protein	MKLMGKMKVGTKLVSSFLIIMVFLIIVG <u>ITA</u>	LG	С	Ι
15896019	Methyl-accepting chemotaxis protein	MKRVTDLKIFTKLIIAFIFVAVISTIAGV <u>VGV</u>	LK	С	Ι
15896020	Sensory transducer protein	MKSMASPKIFTKLILSFIFVAVISAFA	GI	С	Ι
15896029	Methyl-accepting chemotaxis protein	MSISKKAKVKKSLGIKTSLVLSFSVIIFITMSILSFMIY <u>TKS</u>	KK	С	Ι
15896058	Methyl-accepting chemotaxis protein	MKLKTKLIIMITIMIVTSAILCLIGIIG <u>VYS</u>	ΙT	С	Ι
15896076	Methyl-accepting chemotaxis protein	MKVRSIRTRTLVSVLPVIIVILMVLVSI <u>SYY</u>	FS	С	Ι
15896466	Histidine kinase	MRKGIFSKMIATYTGIIAISFVVTSAVLSFWFQNF <u>YFS</u>	QK	С	I
15896595	Methyl–accepting chemotaxis protein	MELLKKTKEHISFKIILPIVICCILSIVITAVVC	IQ	C	I T
15896038	Methyl-accepting chemotaxis protein	MFRGIKNVKISNIIIFMGVFSILLTSIVGFLGFNN <u>MQK</u>	IN	C	I T
15896714	Methyl-accepting chemotaxis protein	MKKMKLNNIKLSVKMIFTLIIPVASLILITGIF <u>VRY</u>	TD TD	C	I T
15806753	Histidine kinase	MILLFRILKVVRLILEFGIIIIVIIMUGIMSI <u>ERM</u> MKI DIKI DI LEIVMETVEMVSICIVI KEIFA	T V	C	T
15896805	Sensory histidine kinase	MELETER DE LE LE LE LE LE MENERE LE	ΔF LI	C	T
15896920	Methyl_accepting chemotaxis protein	MKRIFYPGIRI, MNKI, KYSKK FIJ, TEMVET, VPI, VAIL TET, INOI, NNDVTV	SD	C	T
15004718	Protein tyrosine phosphatase II superfamily	MHKKTKI.TCTGTLATATVTTSTYN	FD	P	Ť
15894857	Methyl-accepting chemotaxis protein	MSFIKNLKVRTKLAA	CF	c	Î
15895847	Protein containing GGDEF domain	MEKKREKSFLFKVFIIFMLSLISIAV	CL	С	Π
15896747	Methyl-accepting chemotaxis protein	MKTIKKKLIVAFILIIL	<u>с</u> т	С	Π
Virulence fa	actors				
15893694	Protein with fibronectin type III domain	MNYKK ITSVILSALIISAAFSYHS <u>VKA</u>	AD	С	Ι
15894169	Hemolysin III homologue	MFSKLKDPVSGITHLVGAVLSIIALVCMVHHS <u>IVA</u>	DS	С	Ι
15894206	Sialidase	MNKR IVSMVAGLSIIFTTGFVTHIS <u>AAA</u>	NK	С	Ι
15894234	Hemolysin III homologue	MEEDSFYTKGEEIANAITHLVGAALAIAAIVILV <u>VFA</u>	AR	C	I
15894364	Clostridial enterotoxin	MLKNKITLLLSSIYILGSISTP <u>TLA</u>	SE	С	I
15895758	Phospholipase C	MRIKNKCLVLLIPLGISIMFDIR <u>VKA</u>	FQ	C	I
15896298	Virulence factor MVIN	MAKDKRISLLKVTSMVIIINLLSKITGFIRDF <u>ITA</u>	SK	C	I T
15890550	Homologue internalin A call adhesion domain	METERIFSTLIIAAFVFSFTTTTNN <u>VSA</u>	DT	C	I T
15806518	Protein containing cell adhesion domains		IL VV	C	I I
15896510	Protein containing cell adhesion domains	MNDEKIKVILATIACEVSESAETCTSSVKA		C	T
15896520	Protein containing cell adhesion domains	MNRFKIKYLLATLACTVSFSAFTCTASVKA	DT	C	I
15896523	Protein containing cell adhesion domains	MKKLKSMCSPIIFITFLMFFNFEGLNIKCK	AD	Č	Î
15896524	Homologue internalin A. cell adhesion domain	MRRLKTKFLFTTLACFVSFSIFSSTNTYKA	DT	Č	Ī
15896525	Homologue internalin A, cell adhesion domain	MRELKFKHLLSTLVCFISFSIFIPLNTYKA	DT	С	Ι
15004707	Transglutaminase with cell-adhesion domain	MKKKNVVLSIVLALVFILFYSGSTLKA	DS	Р	Ι
15004708	Transglutaminase with cell-adhesion domain	MKKNVLLTIVLIFMLVISY <u>SGG</u>	DF	Р	Ι
15004851	Phospholipase C	MKNVFKKITTAIIASSLTLTFSFT <u>TFA</u>	EA	Р	Ι
15004863	Protein containing cell adhesion domains	MKKKLKSVLIWFLIFTFNLSLGSFREVFA	DN	Р	Ι
15894668	Cell-adhesion protein with ChW-repeats	MRKALKFTFTIGVFFLLL	<u>C</u> A	С	II
15895377 15896337	Protein containing cell adhesion domains Protein containing cell adhesion domains	MKNKFKVSLVVFLIV <u>ILG</u> MNKRIKVFFLVFLIVILG	<u>C</u> F CF	C C	II II
Inter C					-
Unknown fu	Uncharacterized conserved protein		217	C	т
15802200	Membrane protein	MINING AND	л V 777	C	T T
15803322	Putative nermease	MNKKVVKVEYIFMAFALFFGV <u>LFA</u> MUCUMTUCNIIIIIMAI TUCIAEM	AU VT	C	T
15893434	Predicted nermease	MWPLISNELVKITKKKKEWITEIVEFALELAVSTVOV	SS	c	T
15893435	Predicted permease	MYRLITNELOKIFKRRKVI.VVSTVFTATTLEFSI.VOV	KE	č	ī
15893445	Hypothetical protein	MKIKVOKKTFFTIMFI.CILIGFFA	AY	č	Î
15893459	Predicted permease	MGAYIFAFKMLKKNTKKNLIYLISIIFTMAIVFNLLNVINNTNFFA	AE	C	I
15893465	Predicted permease	MHILSMIKSQLKLLFNNRLAVFAIILAPILLTFLVSYSS	SS	С	Ι
15893486	Uncharacterized conserved protein	MKDKIELRTDKLLLSLILVLSAILNFA	NI	С	Ι
15893491	Uncharacterized membrane protein	MSKKELLKRYIFFLIGLFVNALGVSFITKA	KL	С	Ι
15893498	Predicted phosphohydrolase	MISLKSRKKLIAIAVGVTVIMSSATALGIS <u>TFA</u>	NS	С	Ι
15893499	Uncharacterized membrane protein	MNSRFKGIRIIIFSAIAIFFLAFLYIFNITHPVKFS	YE	С	Ι

GI	Function	Signal peptide		Gene location	SPase
Unknown fi 15893500	Unction Hypothetical protein	MEREFIGITAVAVIAVCCVMYTNS	OK	C	т
15893519	Predicted permease	MTLCKMALRNVKSNFRNFWAYFLSTSFSVFVTYTFTATA	YN	C	Î
15893529	Predicted permease	MRILHIAYYIFKKEFKSSIVMMIIFPIALIAILGNSLK	SD	č	Î
15893530	Predicted permease	MNIILFGIKRLMNKKRMVIFVYLLPLIFSIFVMNISTSKI	KV	C	Ī
15893534	Predicted permease	MNVFYIAINTIKSNISDKKTLIMMLLMPIVIILILGNALK	SV	C	Ī
15893535	Predicted permease	MTIFFNNIKRIFRKKANIIVMFLFPILFISIISSISSGGSG	FT	C	Î
15893536	Predicted permease	MLEFRIASKFLRSSKGOTILIILGIAIGVSVOVFIGTLIOGLOKSLV	DK	С	I
15893556	Predicted membrane protein	MLNFIKYETKTVYREYLLVLLIAVLANVALMTRVGA	WD	С	Ι
15893578	Uncharacterized membrane protein	MCKLIKCELLKLKSMLGAILAFFFPLLLVSIGLLNIYTGSV	KI	С	I
15893612	Predicted permease	MOLTRLIKMSIOSIWANKVRSFLTMLGIIIGIASVIVLVGI	GO	С	Ι
15893623	Uncharacterized membrane protein	MSNKNMFKTRQLTVIGLLSAISIVLGLTGYGFIPLPIAKA	TI	С	Ι
15893632	Predicted membrane protein	MLLR LMPSMYKIIRKTLALIG	IE	С	Ι
15893640	Predicted membrane protein	MKFNLINVIKNIAKSVILGIVVSYIFLLVFSNFINSGDA	VG	С	Ι
15893645	Uncharacterized membrane protein	METLKKNWTKFILSFIMLVLAIICVYTLSTYKSS <u>EKN</u>	TG	С	Ι
15893665	ABC transporter permease	MKYKKVLSNSLKINFFSYVGFIISSSFAIMITF <u>IYS</u>	тv	С	I
15893710	Predicted membrane protein	MKKRINAIITILAFIFLGLYV <u>SKW</u>	SI	С	Ι
15893711	Conserved membrane protein	MNKKLSFGQRYSKLRSGYKIVICFLLIMIAIILFEILTHGYK	RN	С	I
15893712	Uncharacterized membrane protein	MSHDTKKLARAALLLAIAIVFQFI <u>GKN</u>	FP	С	I
15893743	Permease	MNKNFRNMLIAFMGAFFLSLFSNTLSPFITT <u>IKN</u>	TY	С	Ι
15893745	ABC transporter permease	MNISKILALRYIKRQKRRTIITILGIVLSVALFTAIGTMLASLOHY	QT	С	Ι
15893782	Uncharacterized probably secreted protein	MEKGKKVFIPIVTAVFLILVLAIFMIYYF <u>INR</u>	EH	С	Ι
15893787	Uncharacterized conserved protein	MKKFKE YLYITLGFLIVAASVKFFFEPN <u>NIA</u>	GG	С	Ι
15893803	Uncharacterized conserved protein	MKFIDWIKPGIKLKRWIMLGGMGVLFISFALA	EL	С	Ι
15893817	Predicted permease	MNVFNKVALQGMKKSRTRTIVTVIGVILSVTLITGVTTFG	IS	С	Ι
15893863	Uncharacterized protein	MKVNVKKIVLYLVGICLISYGIAMA	LS	С	Ι
15893889	Predicted membrane protein	MNDGR MLGLFTFIIMIISIISQIIALSA	SQ	С	Ι
15893935	Predicted membrane protein	MSKTQSLTRGSIYAAVCIVFIYLSTIIPAGRLS <u>FLA</u>	AA	С	Ι
15893956	Predicted membrane protein	MNIIKLTKVRLIIGVVVLLTLIIASNYLNFRV	ND	С	I
15893958	Hypothetical protein	MKNIVVAVSLFVVILLLSFFS <u>IRY</u>	LN	С	I
15893965	Uncharacterized conserved protein	MKDKTKKR LIYAIIALIVIIAIFVVVI <u>VKR</u>	QY	С	Ι
15893979	Uncharacterized conserved protein	MKK VVIGAFSSAIIIILIVLSSIYIK <u>VKK</u>	WD	С	I
15894005	Predicted membrane protein	MVYSNIYFGGIELKKVRTKLSLIVSAAFTLSFIGILPPQLMA	KТ	С	Ι
15894020	Predicted membrane protein	MNIKRNIR IMLTIVLCIAVFFQILRLNFVMNFF	KN	С	I
15894029	Uncharacterized protein	MKFKKT FLSLALTFILSQSYSS <u>VLL</u>	AR	С	Ι
15894044	Predicted membrane protein	MKKFNNFIRKTLIIALMVLLISGQKVAVLA	RA	С	Ι
15894076	Predicted permease	MDKTNSITNFSSKLILSVIILIIMFILSLI <u>LGA</u>	EK	С	I
15894110	Predicted membrane protein	MKKTFFKNLFKSISTTLSRFLSILIIIAVGVSFYVGVRA	SS	С	Ι
15894116	Uncharacterized membrane protein	MKKIKNKKKIFKVILFGLFIIYIIALFKIIL <u>FKS</u>	IS	С	I
15894122	Predicted integral membrane protein	MRTIWLVFIANFKRAYSNKKKFFINLLVPVAAIILAIVVNYVSS	PS	С	Ι
15894135	Uncharacterized conserved protein	MTKKISSIENNAKLNFLMQNLMIIVGSLIVALGFNLFLSPSKI	AS	С	I
15894155	Predicted membrane protein	MVNFFVIVLANCRRYLKNFRYTASMIVVPILLTGFVTFFNLGNFGTDA	DD	С	Ι
15894162	Predicted permease	MTNENIVDSNLRKKGLIFAVLASTLWGISGIAAQY	LF	С	I
15894177	Uncharacterized membrane protein	MLPLKLKIIPSNKYKQYFLVFIALLSLLLLGVYIVNS	NE	С	Ι
15894211	Predicted membrane protein	MIRFQKRMAIFFLTISILIICGD <u>IEK</u>	II	С	Ι
15894239	Hypothetical protein	MLKNFIFKNKKPLIAAFLVILIIFYIDHRINL	NK	С	Ι
15894243	Hypothetical protein	MKSLK GVTTGAVIGAVTGMIIAPQLS <u>KSA</u>	RK	С	I
15894253	Predicted membrane protein	MVNEMRIFERNYNMKIKINNLKKKGLVVYILLILLFRLILATGLRVWA	FG	С	Ι
15894254	Predicted membrane protein	MNTKMHNKKKRIFSIYILLILLIRLFLSTGVRIWA	FG	С	I
15894281	Predicted membrane protein	MNVTTISLKYFFFALTIIGALLSFYYRSL <u>VSK</u>	TS	С	I
15894282	Predicted membrane protein	MKNKLLNASLAFFISFILGPI <u>LLY</u>	VI	С	Ι
15894297	Predicted phosphohydrolase	MKKRKTFLSLLIAAVATFGIYSATA	IK	С	Ι
15894305	Predicted membrane protein	MKKILKC IIFIVF <u>VFA</u>	AI	С	Ι
15894329	Predicted membrane protein	MHMAFSIKTLAILFLLMIAVMSVYNFTKR <u>FFI</u>	SK	С	Ι
15894345	Predicted membrane protein	MKKLLENYKVMISLISISLFILVKNTGOA	NF	С	Ι
15894359	Predicted permease	MSKSTKVDLVFLFFTAIWGLSFPLTKNVLGYTS <u>IFA</u>	FL	С	Ι
15894363	Predicted phosphohydrolase	MKKSKKLLKTLTATICTMGIICATSIT <u>VNA</u>	QY	С	Ι
15894365	Uncharacterized protein	MSRIKNILLVFSISVTTSAVLLSKPAIKAYA	AD	С	Ι
15894366	Uncharacterized protein	MNNIKKTLLIASVLALGTKMGMDLNAVKAYA	AE	С	Ι
15894368	Membrane-associated metal-binding protein	MTGKTH ISIGLMSSAAVLSVNNPTPE <u>NIA</u>	VG	С	Ι
15894380	Uncharacterized protein	MNKNNKYKATMLLAIFAGGYFI <u>SSA</u>	FR	С	I
15894463	Predicted membrane protein	MKKSGCLGCFVPIFLVILNISIGA	WS	С	Ι
15894489	Predicted membrane protein	MIKKFSLLVISLFFASLIAVSISA	RG	С	1

Signal peptide

Table 2 (continued)

Function

GI

				location	
Unknown fi	unction				
15894521	Hypothetical protein	MRYTRYDLKHRKSSSIPFLMCLTIILALSFFIGT <u>FIF</u>	KT	С	Ι
15894559	Predicted membrane protein	MIKRYK IIFCMMVFFGVIIFIILNN <u>IEL</u>	NR	С	I
15894574	Membrane protein with hydrolase domain	MKIVQLMKKDKSIKVMTFLFAFIIIYVILL <u>TSV</u>	DT	С	I
15894594	Hypothetical protein	MKFNKITSLLIAFSIIGTSTLS <u>VSA</u>	TT	С	I
15894605	Uncharacterized conserved protein	MKRKYSHVFTFINKILLMVLGS <u>VIA</u>	SV	C	I
15894645	Predicted membrane protein	MKSGSNSKNQIKWMDSFTKTLLAVMFVILIFIFVSG <u>KYM</u>	EE	C	I
15894681	Unchracterized conserved protein	MPTLTFKLIFSYR IFIYLLVFVLFPIL <u>LFY</u>	NS	С	I
15894779	Predicted membrane protein	MVSFLTPNYK LLSVILIISSIFIPPTR <u>FIS</u>	FT	C	1
15894783	Hypothetical protein	MSIKRISMFLLAAVVVGSASL <u>SIY</u>	EN	C	1
15894/98	Hypothetical protein	MRRFFVYFIPTALLFLFIFIMLSGNLLKNP <u>IGK</u>	ET	C	1 T
15894810	Protein containing Cnw-repeats	MKNKKIVGFIAAAAVAFGLGLPSNSH <u>FNA</u>	DT	C	T
15804836	APC type transport system	MMIRKLEIRKRALFIIILSIFIVSTIEFIV MCUISCI EUI DEEUUUUDCIEUI CII CMIISCIUOTDUDU	MIN	C	Ť
15804840	Bradictad mambrana protain	MGRISSLFRLKFFVRRIRGIFVLGILGMIISSIVQIP <u>VPI</u>	PO	C	T
15804843	Predicted membrane protein		FN	C	÷
15804804	Hypothetical protein	MEINMARSKERSISGIFGARFITSITTIFLIS <u>ISF</u> MEINMARSKERSISGIFGARFITSITTIFLIS <u>ISF</u>	KN	C	T
15804062	Uncharacterized protein	MENOTIL KEKUVIELELLULICASA	AV	c	Ť
15894979	Hypothetical protein	MNFTI.MKKMKKEKRVSTAYRTAFTVTGLTISIMAAA	DG	C	Î
15895045	Uncharacterized conserved protein	MKNHKKI, TTI, STILLITI, TSILAVYNTKKY	TK	C	Î
15895051	Predicted membrane protein	MKIKGITATSMSTLLIGSTSSVVKA	SS	č	Î
15895136	Flavodoxin oxidoreductase	MKVIIIGAGWAGAAAAITAKKAGA	DV	Č	Î
15895137	Hypothetical protein	MNKRRLLVLTLTLAITFPTAVFA	KG	С	I
15895143	Uncharacterized protein	MLNKTGKIILGAVAIILILLGVAIGSKK	GN	С	Ι
15895182	Predicted membrane protein	MKRKRLIVKRLSIISSITVSVFGILLILYGLGVINCY	DP	С	Ι
15895233	Predicted phosphohydrolase	MKVKKRVIKTNVVLFFEFIFLLNMI <u>SGA</u>	DF	С	Ι
15895238	Surface-layer related glycoprotein	MKINKILMVSIIFIFIFNLNICV <u>IVK</u>	AD	С	Ι
15895244	Hypothetical secreted protein	MKKFSILNGRNKFTKRAKIKSNKMKLLIGAMGLILCCELLVGVVYK	\mathbf{LH}	С	Ι
15895246	Hypothetical protein	MQISKLKGDASIAVLSLFTVI <u>LMG</u>	LC	С	Ι
15895247	Hypothetical secreted protein	MDSVINKRKAGGVQIVVATLLGVLIMSSVF <u>IYF</u>	IS	С	I
15895253	Predicted membrane protein	MNFVTKITKNHIINTIIIAIAAIILLVSLSINPIIG	KH	С	Ι
15895273	Predicted permease	MRILIKYVFKSMWEKKLRSLLVIFAIAVSVSLFYSSLSV	KN	С	I
15895296	Predicted flavodoxin	MLKKIILIIGIILILLIIVMVLMFSRLNKP <u>RQA</u>	NQ	С	Ι
15895314	Hypothetical protein	MHGKLK VVILASVMFSIFLLGTIFSTLEF <u>VSE</u>	NN	С	I
15895320	Predicted membrane protein	MKKSKVLGFVSSVFSLLFMKVR <u>VYA</u>	DS	С	Ι
15895366	Hypothetical protein	MRNK MLIFSVLICLLFFLSMLNI <u>EKY</u>	NE	С	I
15895376	Predicted membrane protein	MKNIKILLFNILNLIIISIMLLT <u>VYL</u>	KN	С	Ι
15895391	Conserved membrane protein	MKNNEASIFIFIASVFLGVLISSNMSFGN <u>KEK</u>	KL	C	Ι
15895393	Conserved membrane protein	MKKFGAQIGVAFVCCILGFMIAHQLKIV <u>SFO</u>	DT	C	I
15895498	Uncharacterized protein	MKKIYSICVAVFILTSTFGGS <u>VEA</u>	QK	C	1
15895519	Uncharacterized membrane protein	MKKVKITKEGIALCIIVLISAVLNFFNLSIEGYGN <u>AYY</u>	AS	C	I
15895523	Predicted permease	MNILTKFITKSILEKKSRAFLIIFSILISTTL <u>LVA</u>	SL	C	1
15895548	Predicted membrane protein	MEKSSKIYVSAAGGVLRAIFVTLIVILIFSFVSTKI <u>SFS</u>	EG	C	T
15895501	Hypothetical protein	MKNLKLKALSLGIISTLLISSS <u>SFA</u>	AT	C	T
15805500	Bradictad mambrana protain	MULTINI NNUTTUEDVI TAETTETI CVACDENE	FD	C	T
15895658	Uncharacterized ABC transporter	MERCETI FDI DEVUGEVENVMETSI TENTISMULIA	EM	C	T
15895669	Predicted membrane protein	MKKTEDKI KKFEYKYKYDELCILVI SSLTII ILHDI YKSCHWUFS	DT	C	I
15895679	Predicted membrane protein	MNKRSTLRIKIPIKIKIPI ICIIVISSIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	VT.	C	ī
15895684	Uncharacterized membrane protein	MNKTNTKFLVTTALSTALSTALSTALSTALSTALSTALSTALSTALSTAL	TS	C	Ĩ
15895687	Predicted enzyme with TIM-barrel fold	MIKRRTGVKVFLGLCSIVLIGILILSNVSSTVGA	YE	C	Î
15895713	Flavodoxin dehydrogenase	MKSTKILILGAGPAGFSAAKA	AL	C	Î
15895720	Hypothetical protein	MKKRILVTGIIMLIAAAAILLFSRYKSYA	LV	Č	Ĩ
15895728	Hypothetical protein	MRKSILAIVLILLSLIGYSKG	KV	C	I
15895743	Predicted membrane protein	MDFKLFKDIKTR YLFIAMTAVTIVSGILLAFINVLFN	IS	С	I
15895744	Hypothetical protein	MKEVKFMLRKALAIVLFSMIICIIVGWNFNRVNERA	EF	С	Ι
15895749	Predicted membrane protein	MRIIGLRTLKTALGAAIAIIIAEFLGLKYA	AA	С	Ι
15895757	Predicted membrane protein	MVLRKLKKVLGKLSLIIAVLSIILILNVFLKF	IP	С	Ι
15895762	Hypothetical protein	MNRKKK IALAAVFLTTIIVLLSFNQVKS	QE	С	Ι
15895772	Predicted membrane protein	MLKMKRWKLNLIAAAAFAIA	AV	С	Ι
15895776	Predicted membrane protein	MFKKIINLISIIIITAYIFVT <u>IYA</u>	FY	С	Ι
15895785	Hypothetical protein	MKKRLLIIFFSVIIICSSCSTAYA	AA	С	Ι
15895795	Protein containing ChW-repeats	MRSNN IVTITFIAVIIGISMLCFKPSV <u>AYA</u>	GA	С	Ι

SPase

Gene

GI	Function	Signal peptide		Gene location	SPase
Unknown fi	Inction Protein containing ChW repeat		FC	C	т
15895815	Uncharacterized membrane protein	MNRCTTAL TIGAS VINICS REVEAL	UF	C	T
15895840	Hypothetical protein	MKRUINE ALAVITIGITILALO	AS	C	ī
15895843	Uncharacterized membrane protein	MKKTFKTFT.RDLKSTKRSPSATGMTVGLCFT.PSLVA	WT	c	Î
15895844	Protein containing ChW-repeats	MKSNKTIGFIAAAAFVFILGMPTDKSYK	AD	Č	î
15895846	Predicted membrane protein	MENLKKKFNRYGSIIKYI.SYSTFVTVTDTAAVWVTMSFI.NVGTVYA	NT	Č	Î
15895851	Hypothetical protein	MKKVIKFI, TIMFI, VIEVIIVRPYTVRA	ES	C	Î
15895856	Hypothetical protein	MRKKIITFAIFTLFVVVGLIPSKAAFA	EV	č	Ĩ
15895876	Hypothetical protein	MKSKMKIIFSITMFFALVSVGVIKLNKENAAAYA	AK	C	I
15895887	Hypothetical protein	MKKLRNVIICVLISIIIQSGLLYYMNAYM	FK	С	Ι
15895888	Uncharacterized protein	MSKKSRKADKRTRYKKKKSIVKTIILFLAFEIIFTGVTVVPYS	LY	С	I
15895891	Uncharacterized protein	MYSNNRNIKNSRGKKHRKNLKRKKTSKIKLFIYFLMFQFLFGIGTAPW	IV	С	Ι
15895893	Hypothetical protein	MKFKIFFLRLKHIYYIILAIVFIVLFTIFLVSRKS	IE	С	Ι
15895901	Hypothetical protein	MAKPSIFSSDYEKQQRKRKQRRNISIFLLICVIFLVLVYLGFKTNLKN	VK	С	Ι
15895906	Uncharacterized membrane protein	MEQNIKIDKSSKELRKMARQQLKGKWGASALILLLFLISLSFA	IP	С	Ι
15895930	Predicted membrane protein	MVKKT VECLGWVFVSLTTLALIFTVLTT <u>YOL</u>	VT	С	Ι
15895962	Uncharacterized membrane protein	\mathbf{MLK} LSNFLQVLLSILVFIFIFFIIVKF <u>TVA</u>	FK	С	Ι
15895988	Predicted permease	MKIMNEYTYNQIKKNKRHTISILVAITIASALLCSLCIFIYSM <u>WSA</u>	KV	С	Ι
15896009	Uncharacterized membrane protein	MIKKIYGSRLQTRQITMVGLLFAVTIVLGATGLGFLPIPP <u>FKT</u>	TI	С	Ι
15896014	Uncharacterized protein	MKLRSIVSK LLVLFILTYVVSAMPLK <u>AKA</u>	DA	С	Ι
15896018	Polyferredoxin	MIKKISKLQIAR FISQLIFLFLLPGIF <u>VLA</u>	FS	С	Ι
15896022	Uncharacterized protein	MVKK LVIAAIGVLVSIGLVVG <u>VRY</u>	FV	С	Ι
15896037	Predicted permease	MNSKKIFTDKKLVVLFASICCFLWGSAYPG	VK	С	Ι
15896096	Conserved membrane protein	MKNSKLSTLIKISLLSVIGFILMFIEVPLP <u>IFP</u>	GF	С	Ι
15896114	Hypothetical protein	MNNDWKNNKSNKQSRVMDFLKRNAFYIVLFLCLCIIGA	VS	С	Ι
15896126	Predicted membrane protein	MNLNIKRMLKVVTLYDAIIAAIVSVILLFAANYKISLIVIIGI <u>FSA</u>	IF	С	Ι
15896137	Predicted membrane protein	MNLDKAIKKQNSYDSLFILFMCFIFCALPV <u>VLV</u>	HS	С	Ι
15896149	Uncharacterized protein	MKSSAKRIAYTLAVSLIVVFST <u>SYA</u>	IL	С	Ι
15896181	Predicted membrane protein	MDNFSFSKSIKTISQSPSAIATLVGVLILIAVLLKVK <u>KIK</u>	FT	С	1
15896183	Uncharacterized membrane protein	MIYMAFLHLKRILVQNKRGFIITILFPTIVVSLVAFFSNGVSSNTTI <u>NIA</u>	vv	С	1
15896191	Hypothetical protein	MSKIFKTKTLITFLTLISLIFVGGNK <u>ILA</u>	LS	C	1
15896228	Hypothetical protein	MMQMSFLNKDIFRNIAILGIVILAALLFIKLIPVIIIG <u>GLA</u>	IW	C	1
15896236	Hypothetical protein	MKFILVDGKKLGAIIIVVGLMLVLFGIGNN <u>FND</u>	KI	C	Ţ
15896275	Hypothetical protein	MLIMGFLKNKKVVISLIIIICLLFLSIISYLSFKY <u>VKA</u>	AN	C	1
15896277	Unsherestarized protein	MIKLIKNEIIKMLFKKKVILIMAIILIEAC <u>AFA</u>	YG	C	Ţ
15806325	Uncharacterized protein	MNKRVFLSVITMLAIIITFNNNVGN <u>ALA</u>	AU	C	T
15806320	Uncharacterized protein	MERTFEILECTECFSFIFINS <u>SON</u>	AN	C	¢
15806416	Bradicted membrane protein		EN VT	C	T
15806486	Uncharacterized membrane protein	MIKEISIFISLIFILVICIIGFIKEKIIFMIVLV <u>IFA</u> MIKEISIFISLIFILVICIIGFIKEKIIFMIVLV	CT	C	Ť
15806401	Hypothetical protein	MINGIPHINNFRITTIANVFIGIT <u>VGA</u>	RW	C	T
15896510	Predicted membrane protein	MTELEVELMILATILIVELAEV	KV	c	Ť
15896513	Uncharacterized membrane protein	MNFORFKA TVKKEVTOLKRDRASEGIA IMMPIVMIFLEGVA	VN	c	ī
15896527	ABC-type transport system	MIKLLKKLKPFWISVIALLFLAFFOSMA	DT.	č	Î
15896532	Predicted membrane protein	MGEIMNRESKKFYLFSGIIAFAICVIWVIFVKTA	PY	C	î
15896563	Predicted secreted protein	MLSISKOYKIRFTILTI.TI.TISPSFNAVA	AT.	Č	Î
15896600	Hypothetical protein	MNNNLEETKRLNAKSASOKSFASSSSFKNA	AS	C	I
15896611	Predicted permease	MSKDKKRIIALAIFLLGIFMGA	ID	С	Ι
15896630	Possible S-layer protein	MSRKDKRVVSFLVMFFMIAGFVVNMKDIANA	SP	С	I
15896644	Predicted membrane protein	MNIINLFKNNIKRILKOKAIIIIAVIVVPIMICVAILFSTKAEM	KT	С	Ι
15896656	ABC-type transport system	MMKKNNAPKGSPLKTLKRLLLYVFTQYKLLFFVVIFTIFISAISNVVG	TL	С	I
15896700	Hypothetical protein	MRRTAIIKGSLISAIIVIVFFGVFQIYKS	YF	С	Ι
15896793	Probable S-layer protein	MRKTKMSIFGVMVFTCMIFVVGLNASKLKA	QQ	С	Ι
15896796	ABC-type transport system	MAIILKFMLKNIKEKKLRTFLVVFSIMASAALYFA	SS	С	Ι
15896800	Uncharacterized secreted protein	MKKIMVSIALLLTIILGLSFNVKA	SE	С	Ι
15896816	Hypothetical protein	MKIGNKK VILPVVFLFIIAIYVGFN <u>VFR</u>	YE	С	Ι
15896817	Predicted permease	MKLSDCIKMAFSDLNKRKFRTVLTSFGIAIGTLLVILMGGF	GE	С	Ι
15896818	Predicted permease	MKFKDGLRMAGRDLTRRKGRTFWTSLAIAVGTMLVVTLVSLGTSG <u>EKM</u>	AM	С	Ι
15896846	Hypothetical protein	MKNLKKKLLSAGVILSVTLGASLPVLA	NN	С	Ι
15896715	Uncharacterized membrane protein	MKEKKSFILLWGGYIIGFIVLLLALNAYEGA	ΚY	С	I
15896907	Hypothetical protein	MLKKRTKINIPIIIIVLLIVWILYSIRPVEOI	SL	С	Ι
15896908	Uncharacterized conserved protein	MKRNFMKSIIETLSFNKRAISIIIGLCIIFTGSIFISSYHKSR	NI	С	Ι

GI	Function	Signal peptide		Gene location	SPase
Unknown fu	inction			2	Ŧ
15896911	Uncharacterized protein	MRKFTFVVVLLFIVGSISYYLF <u>RSL</u>	RE	C	Ţ
15896925	Predicted membrane protein	MGNMNSKVKKLLFLVLCSFIIIGILSVNHISVLA	51 TF	C	T
15896943	Hypothetical protein	MIKASUSNKARCVEWWHILLKSGLLETCMULCIVELASPKCEA		C	I
15004788	Hypothetical protein	MTIKCISIIMEMNIMIKKIFFGSFTIIAFI.VTTMAVV	KN	P	Ť
15004780	Hypothetical protein	MIRCISIEMEMAIMARKIITUSIIIIAEUVIMAVI	VK	P	1 T
15004705	Membrane protein	MELKGIMKI, NKI, INKSYI, STVEWAT, TL TVTT, FTMPDMGKT,	VR	P	Ť
15004815	Hypothetical protein	MRKKLLSLVMTGATALTLIPAVNSSA	AK	P	î
15004826	Hypothetical protein	MKIHLKRLIPTICFFIICLVIFLKFIYSNSPEKA	vs	P	î
15004838	Putative oxidoreductase	MKIIKTINMGIIGCSTILPRAIIGPAKA	ID	P	Î
15004855	Hypothetical protein	MKKKLFLVSIVLILGIASTTMYLKHKSKA	KV	Р	I
15004850	Membrane protein	MKHYMIVFLRSAISYIILLLFTRFMG	кк	Р	Ι
15893328	Hypothetical protein	MHNGKLIKSILISLFVIFIVG	CG	С	п
15893346	Hypothetical protein	MKKNKLKILAAALGVTIIVGLTG	CN	С	п
15893347	Hypothetical protein	MKKNRIKIIVAILGVVTVVTLAG	CD	С	п
15893502	Predicted membrane protein	MKNIRKSAVILIILLLVPINLIG	СК	С	Π
15893512	Hypothetical protein	MKKMVLISLAAASLIT <u>LSA</u>	Ст	С	Π
15893951	Hypothetical protein	MSKRLKKNLIITGLIIAICTVVSG	<u>c</u> s	С	п
15894157	Hypothetical protein	MKFKKGIIIIFTFLIIGMLSA	CD	С	Π
15894275	Predicted membrane protein	MTKNNILNNKITKVILFRICFIIAITTALV	<u>C</u> G	С	п
15894522	Predicted membrane protein	MNGKTFKNVLFLSLIG	<u>c</u> v	С	п
15895339	Hypothetical protein	MIIRILIVIATIFVAVIFLG <u>IIG</u>	<u>C</u> I	С	п
15896071	Hypothetical protein	MKNIKTKITAIILGIFTVVSLAG	<u>c</u> s	С	II
15896077	TPR-repeat-containing protein	MINYKKKIAALMLLATCLSG	<u>c</u> s	С	п
15896250	TPR-repeat-containing protein	MRKNYTIYASIIFLITTLI <u>LSG</u>	<u>c</u> s	С	п
15896952	Hypothetical protein	MKKIFSFIAAISVSAS <u>LVG</u>	<u>C</u> G	С	п
15893351	Hypothetical protein	MLKMNRVFIIFIFVLLAVG	<u>c</u> s	С	п
15893367	Hypothetical protein	MNKKILLTTLIGASIFI <u>MAG</u>	<u>c</u> s	С	п
15893441	ABC transporter permease component	MMWNLIKNEFIKLRYKRKYIICTIVFALICIGF	<u>C</u> A	С	П
15893501	Predicted membrane protein	MKNMKKGVVMLLMLLLVSTMLMG	<u>c</u> k	С	П
15893679	Hypothetical protein	MKEKKIKILCSIAIMFMILLSVG	<u>c</u> s	С	п
15893777	Hypothetical protein	MKGFWFKIVLIFVVFLGVFMLFG	<u>C</u> N	C	Ш
15893990	Med/BMP family	MIKKKTIAILTTVMIVAGLFAG	<u>c</u> s	C	П
15894093	Hypothetical protein	MKKITIICLSLFLIMLPA	<u>С</u> Т	C	ш
15894115	Hypothetical protein	MKTIKYLKSNLPSFFKKLTILSPLFIFLLTG	<u>C</u> N	C	ш
15894129	Hypothetical protein	MKKSIILIFLLILICAAV <u>FTA</u>	<u>co</u>	C	п
15894352	Hypothetical protein	MMVIIQGKQMKKIVLILICIFTFSLVG	<u>C</u> N	C	ш
15894378	Hypothetical protein	MNLSKLVIIIKAKKITFLILLVIFCTS <u>FSG</u>		C	ш
15894400	Hypothetical protein	MTKRARVGLFGLCVI <u>STL</u>		C	п
15894598	Hypothetical protein	MKKKVYKNRLALFLSATITLTS <u>FVG</u>		C	п
15895138	Hypothetical protein	MOLI VUVE CVVI I NI MOLI LELSI I T <u>FSA</u>		C	п
15805245	Hypothetical protein	MNERVENTETTERMUTMECAARC		C	п
15895245	Hypothetical protein	MULTURE CALL STOLES CALL		C	п
15895554	Lucharacterized protein	MTLEKKVILSVVALVTETESE		C	п
15895719	Hypothetical protein	MILKREVIIISV VALIVIIIII		c	п
15895776	Hypothetical protein	MKKCKILSAILALVAAVLCC	CC	C	п
15895720	Hypothetical protein	MKKBRILSALLIVSTVAVLGG	CV	C	п
15895798	Uncharacterized conserved protein	MIKKYIKFISISIVIALWTVG	CS	c	п
15896056	TPR_repeat_containing protein	MIRKITETTKIMSTEMIJI.SLIG	CT	C	п
15896117	Predicted membrane protein	MKYNKLIFCFALLMFISLIFI	CG	C	n
15896235	Hypothetical protein	MKHRRLLGFFLISIMIFSMITFTG	CO	Č	п
15896290	Hypothetical protein	MKKIVLIVTLVIFFLATG	CK	C	П
15896413	Hypothetical protein	MKRKLILIAVVIMFMFTG	CS	С	Π
15896485	Predicted membrane protein	MKRFFSYICILLIVFTSTS	СТ	С	П
15896779	Predicted membrane protein	MKKKGIIILILASLSLTFSS	CT	С	п
15896794	Uncharacterized conserved protein	MKKIKMVSIMALTGLMIFAAG	<u>c</u> s	С	п
15896847	Hypothetical protein	MKKKILILLVILILILTSVG	CK	С	Π
15896924	Hypothetical protein	MYNKKALMSLIIIFIVIFSG	CN	С	п
15894596	Predicted membrane protein	MKKVIGIISIVLFVLISFOS	CA	С	Π
15894812	Predicted membrane protein	MVINKKIKRT MLQNKSQYIGSLALIIIS	<u>C</u> M	С	п
15896268	Uncharacterized conserved protein	MGNKIFNLIVVVLCA	CI	С	II

(continued on next page)

GI	Function	Signal peptide	Gene location	SPase
Unknown fu	nction			
15896331	Hypothetical protein	MKKNFFNKKTALLMVTSILS C	С	II
15896571	Predicted membrane protein	MKSNIMNGILSI <u>MIG</u> <u>C</u>	С	II
15896696	Uncharacterized conserved protein	MKISTKDLVLCALFAAIS C	C C	II
15004761	S-layer glycoprotein	MEYSTVQFIGKINILLKKLIIAVNYKKLIAIISFSPILLVG C	1 P	II
15004859	Hypothetical protein	MYKKLLVGALILLNVV <u>FYG</u> C	5 P	Π

^a The positively charged n-domain is indicated in bold letters, the hydrophobic h-domain is shaded grey, and the c-domain is underlined. Potential cleavage site is indicated with a gap in the a.a. sequence. I and II stand for SPase I and SPase II, respectively. U stands for uncleavable signal sequence. C stands for *C*. *acetobutylicum* chromosome, while M refers to the megaplasmid pSol1.

3.2.2. Cell-surface display of Sec-translocon substrates

Once translocated through the cytoplasmic membrane, the signal peptide is cleaved from the precursor protein, and the mature protein can either be released into the extracellular medium or remain in contact with the cell envelope. In Gram-positive bacteria, 5 major types of surface proteins are currently recognized: (i) proteins anchored to the cytoplasmic membrane by hydrophobic transmembrane domain(s), (ii) lipoproteins which are covalently attached by their N-terminus to long-chain fatty acids of the cytoplasmic membrane after cleavage by SPase II, (iii) proteins binding to component(s) of the cell wall, (iv) proteins attached to the cell surface by S-layer homology (SLH) domains, and (v) proteins covalently anchored to the cell wall and possessing a LPXTG motif [93,94].

A number of membrane-associated proteins could be identified in *C. acetobutylicum* (Table 2), including various permeases, PTS components, ABC-transport system components, enzymes (such as sortase and peptidases), protein secretion systems components (such as the Sec translocon and flagella export apparatus), signal transduction system components, and adhesins, as well as proteins with unknown functions. Despite the prediction of a cleavage site for all of them, it cannot be ruled out that for some of these, the signal sequence remains uncleaved and allows the anchoring of the protein to the cytoplasmic membrane. Putative lipoproteins are also listed in Table 2.

Several domains have been shown to be involved in noncovalent attachment to the component of the cell wall: (i) the repetitive hydrophobic GW modules which contain highly conserved Gly-Trp dipeptide and bind lipoteichoic acids [95], (ii) the choline binding domain, also called cell-wall binding domain of Type 1, involved in the specific recognition of the choline-containing cell wall teichoic acids [96], and (iii) the cell-wall binding domain of Type 2 [97]. It is worth mentioning that p60 of *Listeria monocytogenes* (GI: 16802625) is also known to be noncovalently attached to the cell wall [98,99], however, domains permitting attachment to the cell wall have not been yet characterized. In *C. acetobutylicum*, proteins possessing GW modules similar to internalin B (GI: 16802478) or autolysin Ami (GI: 16804596) could not be identified following BLAST and PSI-BLAST searches. Similarly, from Pfam, searches no protein bearing cell-wall binding domain of Type 2 (PF04122), as in Cwp66 from *C. difficile* (GI: 11066029), could be detected.

3.2.2.1. Choline-binding proteins. Choline-binding domains are found in the autolysin LytA and antigen PspA from *Streptococcus pneumoniae* [96]. These 20-a.a.-residue-long domains are characterized by conserved aromatic residues and glycines are found in multiple tandem copies. They are suggested to be responsible for the specific recognition of choline residues of teichoic and lipoteichoic acids.

While several proteins bearing such a domain were previously identified in *C. acetobutylicum* NCIB 8052 [100], Pfam searches revealed that only one protein (GI: 15894364) displays such domains (PF01473) in *C. acetobutylicum* ATCC 824. This protein, annotated for some unclear reasons as an uncharacterized protein related to enterotoxins of other *Clostridiales*, bears a higher number (more than 50 times) of repeated choline binding domains (*E*-values ranging from 1.0×10^{-2} to 4.9×10^{-6}).

3.2.2.2. ChW proteins. Previous analyses of the C. acetobutylicum genome revealed the presence of a putative extracellular molecular complex [9]. All the proteins involved in this system possess ChW (Clostridial hydrophobic domain with a conserved W residue) repeats. This repetitive domain can be found several times along the protein sequence and was proposed to function in either substrate-binding or protein/protein interaction [9]. Pfam searches identified 20 proteins possessing such ChW repeats (PF07538) in C. acetobutylicum (Table 3). Two of them (GI:15004707 and 15004708) are encoded on the plasmid pSol1. While no function could be attributed to four of them (GI: 15894810, 15895795, 15895796, and 15895844), additional domains related to adhesin, internalin, glycosyl hydrolase, or protease could be detected for the remainder. Therefore, this system was proposed to be involved in the degradation of polymers (glucide, protein) and interaction with the environment (substrate, cells) [9]. No experimental data is yet available for the formation of

Fig. 1. Features of signal peptides of proteins predicted to be secreted via the Sec-dependent pathway. (A) Length distribution of the complete signal peptides. (B) Length distribution of the n-domains. (C) Length distribution of the h-domains. (1) Secretory signal peptides substrate of SPase I. (2) Lipoprotein signal peptides substrate of SPase II. Distributions are expressed as a percentage of the total number of predicted secretory or lipoprotein signal peptides.

this putative molecular complex on the clostridial cell surface. In ChW proteins, within the repetitive module, a glycine is systematically present before the conserved Trp [9]. Interestingly, in *L. monocytogenes*, a family of surface proteins containing a highly conserved Gly-Trp dipeptide motif, and hence called GW proteins, interact with lip-

oteichoic acids of the cell wall through these hydrophobic repetitive modules [95].

3.2.2.3. Cellulosome. It has previously been shown that *C. acetobutylicum* possesses a cellulosome which is an extracellular enzymatic complex of high molecular weight.

Fig. 2. Features of predicted Sec-dependent signal sequence c-domains. (A) Frequency of a.a. at position -3 of the cleavage site. (B) Frequency of a.a. at position -2 of the cleavage site. (C) Frequency of a.a. at position -1 of the cleavage site. (D) Frequency of a.a. at position +1 of the cleavage site. (1) Secretory signal peptides substrate of SPase I. (2) Lipoprotein signal peptides substrate of SPase II. Frequencies are expressed as the percentage of the total number of predicted secretory or lipoprotein signal peptides.

This complex, normally dedicated to efficient degradation of various plant cell wall materials, seems inactive in *C. acetobutylicum* [101]. Several cellulosomal components

could be identified among the secreted proteins of *C. acetobutylicum* (Tables 2 and 4). Cellulosomes are organized around a specialized scaffolding protein, called CipA in

C. acetobutylicum (GI: 15894197); different catalytic components bind to CipA by cohesin/dockerin domain recognition, which is the main characteristic of components belonging to a cellulosome [102]. The cohesin/dockerin interaction is calcium dependent and species specific [103,104]. CipA bears five cohesin domains, and ten proteins possessing a C-terminal dockerin domain could be identified in C. acetobutylicum (Table 4); a signal sequence could be predicted for all but one (GI: 15894199). With the exception of two (GI: 15893851 and 15896708), all the cellulosome components are present in the *cel* locus [105].

While it is clear that the proteinaceous components of the cellulosome are scaffolded together on CipA, the molecular mechanisms allowing extracellular assembly of the cellulosome and anchoring to the cell surface remain elusive. It has been speculated that the gene product of *orfXp*, which is present in the C. acetobutylicum cel cluster (GI: 15894201) and encodes a lipoprotein with a cohesin domain (Table 1), could be involved in this process [106]. It has recently been demonstrated in C. cellulovorans that EngE, a cellulosomal cellulase, anchors the cellulosome by integrating into the cell wall layer via its N-terminal SLH domain and by

cohesin/dockerin interaction with its cognate cellulosomal scaffolding protein CbpA, a homologue of the C. acetobutvlicum CipA [107,108]. A protein homologous to EngE and annotated as a cellulosomal endoglucanase was identified in C. acetobutylicum (GI: 15896708). Pfam and ScanProsite searches did not reveal the presence of SLH domains (i.e. PF00395 or PS01072) in other protein of C. acetobutylicum.

3.2.2.4. LPXTG proteins. In Gram-positive bacteria, a range of proteins are anchored to the bacterial cell surface by transpeptidase sortases, which cleave and further covalently link them to peptidoglycan via penta-glycine cross-bridges [109]. The protein substrates of this enzyme harbour a conserved LPXTG sortase-cleavage site followed by a transmembrane-spanning hydrophobic domain and by a hydrophilic charged domain at the C-terminus. In various clostridia, sortase-like proteins have been identified, but none of them have been characterized [110]. While in some bacterial genomes several genes coding for sortase-like proteins have been found, C. acetobutylicum possesses only one sortase (GI: 15893497). However, as reported in Streptococcus pyogenes and S. aureus, the presence of additional enzymes nonribosomally synthesized and called LPXTGases cannot be excluded [111]. Only 1 potential substrate, with its gene adjacent to the sortase gene, has been reported so far in C. acetobutylicum [110]. A search for additional potential substrates using iterative PSI-BLAST, SignalP, and Pfam searches identified three other putative sortase substrates in C. acetobutylicum (Table 5). They all possess a signal sequence of class 1 or 2 (Table 1), a plausible LPXTG-like motif, followed by a membrane-spanning hydrophobic domain and a charged Cterminal tail. For one of them, the conserved motif differs by a single residue, i.e., LPXSG (GI: 15896849); such variation of the LPXTG-like motif from the canonical sequence has already been reported in the literature [109,110,112]. The SpoIID-like protein (GI: 15895771) as a substrate for sortase is more dubious since (i) two LPXTG motifs are present in the C-terminal part of the protein, which both overlap a putative peptidoglycan binding domain (Pfam 01471, E-value= 3.0×10^{-14}), (ii) the transmembrane segment, present after the first LPXTG motif occurring from the C-terminus is rather short and exhibits a charged lysine residue (Table 5).

3.2.2.5. Ricin-B proteins. A putative system involved in xylan degradation was recently speculated to be present in C. acetobutylicum [9]. The 6 enzymes involved in this putative complex bear a conserved C-terminal ricin-B domain, also called CBM 13 (Carbohydrate-Binding Module Family 13), involved in carbohydrate binding (Table 6); four genes encoding a ricin domain are detected on pSol1, two of them are encoded on the C. acetobutylicum chromosome. Experimental evidence for the formation of a cell surface complex is not yet available.

Table 3 C. acetobutylicum proteins containing ChW repeats

15004707

15004708

GI	Annotation		
15894810	Protein containing ChW repeats		
15895795	Protein containing ChW repeats		
15895796	Protein containing ChW repeats		
15895844	Protein containing ChW repeats		
15893828	β-Mannanase ManB containing ChW repeats		
15893829	β-Mannanase ManB containing ChW repeats		
15893830	β-Mannanase ManB containing ChW repeats		
15895558	Extracellular neutral metalloprotease, NPRE, fused to ChW repeats		
15895592	Possible cell wall hydrolase containing		
	N-acetylglucosaminidase domain and ChW repeats		
15894668	Protein containing ChW repeats and cell-adhesion domain		
15895634	Uncharacterized protein containing predicted cell adhesion domain and ChW repeats		
15896523	Uncharacterized protein containing predicted cell adhesion domain and ChW repeats		
15896517	Possible surface protein, responsible for cell interaction; contains cell adhesion domain and ChW repeats		
15896518	Possible surface protein, responsible for cell interaction; contains cell adhesion domain and ChW repeats		
15896519	96519 Possible surface protein, responsible for cell interaction; contains cell adhesion domain and ChW repeats		
15896520	Possible surface protein, responsible for cell interaction; contains cell adhesion domain and ChW repeats		
15896524	Possible surface protein, responsible for cell interaction;		
15896525	Possible surface protein, responsible for cell interaction; contains cell adhesion domain and ChW repeats		

Transglutaminase-like predicted protease domain fused to

Transglutaminase-like predicted protease domain fused to

ChW repeats and cell-adhesion domain

ChW repeats and cell-adhesion domain

2	Δ	2
4	-	4

the device is not to	Annotation	Dockerin domain ^a	
94197	Scaffolding protein, CipA	¥* * * * * * * * * * * * * * * * * * *	*##
93851	Cellulase, CelE orthologue	VKYGDINDDGVVNGRDIMVLTOWIAG KPVTHDTAADVNGDGT	TVNGRDEMILROYVSGKVTSFPVESNK
94198	Processive endoglucanase family 48, Cel48F orthologue	ATPEDVNGDGVVNGRDEMELROWLAGKLDASKINLAAADVNNDGV	VNCRDIMELTKLIAK
94199	Non-processive endoglucanase family 5, Cel5A homologue	VOKEDVNGDGAVNGRDVMELRKWISC OITTENKDVADINGDGV	/INCRETCALIKMISNNO
94200	Non-processive endoglucanase family 9, Cel9G orthologue	VVVEDINGDGEVNGRDEMELRKWIAG KTTDANKDSADINGDEV	/INGROLMELIRKISSUNP
94202	Endoglucanase A, endo-1,4-beta-glucanase	SVKEDVNGDGVVNGRDEMELRKWLAG STSNFDLNAADLANDGA	AVNCRDELELIKLVFEK
94203	Non-processive endoglucanase family 9, Cel9G orthologue	VKTGDVNGDNTVDGRDEMELKKKLAG NNPNINLKAADLNGDGI	[VNGRDEVILIKLISGKO
94204	Cellulose-binding endoglucanase family 9; Cel9L orthologue	TILEDLNDDGVVNGRDIVMMROWLAG KTVSGRDKNALDINGDEA	AVNCRDIMELIKKVSNN
94205	Non-processive endoglucanase family 5, mannase A orthologue	GLKEDVNGDGVINGRDEMVLROWLAG OSVNINKANTDVNGDGV	VNCRDEMEIVKIVMSK
94206	Sialidase with several ASP-boxes	VTLEDVNDDGIINGRDVMVLTOWIAG KDVTDKKAADVNGDGT	TVNCRDIMTLROYISGKITSFSSTK
96708	Endoglucanase family 5 with S-layer homologuey	ALLEDVDGNGVVDSLDITLIRSKLAG KAVTINKTSADMMNDGR	VUSGADLMALMKKIAKGA
Dockerin domai	ns of the catalytic components of the cellulosome which bind to the celluloson	e scaffolding protein CipA. The symbol * indicates residues involved in c	alcium binding, and # indicates residues

involved in species-specific cohesin/dockerin interaction.

3.3. The flagella export apparatus (FEA; TC #3.A.6.)

The bacterial flagellum can be subdivided into 5 major parts: (i) the flagella motor/switch, which operates and controls a rotary mechanism; (ii) the basal body, a passive structure which receives torque from the motor and transmits it to the hook and then to the filament; (iii) the hook and junction proteins, which function as a universal joint; (iv) the flagellar filament and its distal cap, which function like a propeller; and (v) the flagella export apparatus (FEA), which permits the translocation of some flagellar components prior to their assembly [113,114]. Based on studies of Gram-negative bacteria, the FEA is composed of the transmembrane components FlhA, FlhB, FliO, FliP, FliQ, and FliR, the chaperones FliJ, FlgN, FliS, and FliT, the ATPase FliI, and its regulator FliH [113-115]. FliI would permit the coupling of ATP hydrolysis to protein export and seems negatively regulated by FliH [116]. Except for FlhB, which seems to gate the export pathway and determines the substrates transported, the function of the remaining transmembrane proteins in the transport machinery complex is still unclear [113,114]. In Gram-negative bacteria, the FEA is related to the Type III secretion system [30,117–119]. As already pointed out, because of the presence of an outer membrane which necessitates additional protein structure(s) to complete the secretion, the Type III system terminology is restricted to Gram-negative bacteria. In contrast to Gramnegative bacteria [119-121], in Gram-positive bacteria, the export of proteins not involved in the flagellum morphogenesis has been reported only in Bacillus thuringiensis [122]. Proteins secreted through the FEA possess no cleavable signal peptide. From the study of the Type III secretion system in Gram-negative bacteria, conflicting evidence exists about (i) secondary or tertiary protein structure recognition, (ii) the involvement of general and/ or specific chaperones targeting the protein prior to export, and (iii) cotranslational export involving mRNA recognition [113]. As a consequence, no conserved recognition signal for flagellar protein export has been reported yet (Table 6).

Bacterial motility has been experimentally demonstrated in C. acetobutylicum [123-125], and genes involved in flagellar assembly are essentially present in two clusters on C. acetobutylicum chromosome [9,126]. Compared to Gram-negative bacteria, most of the FEA components could be identified in C. acetobutylicum (Table 1). As in B. subtilis, FliO also appears to be missing from the C. acetobutylicum FEA [90]. Interestingly, as well as a FlhB homologue (GI: 15893927), an FlhB-FliR fusion protein (GI: 15895417) is also present, but no FliR homologue could be found. While the general chaperone FliJ (GI: 15895427) and the FliC-specific chaperone FliS (GI: 15895474) could be identified (Table 1), neither homologues to the FliD-specific chaperone, FliT, nor the FlgKand FlgL-specific chaperone, FlgN, could be found in C. acetobutylicum. In B. subtilis, FlgN is also absent, but a

Table 5Substrates of the sortase in *C. acetobutylicum*

GI	Function	Cleavage site	C-terminal domain	
			Transmembrane segment	Charged tail
15893498	Phosphohydrolase, Icc family	LPKTGE	FFDATMLLSIALICLASGAILIFV	NKKKSSPTK
15893644	2,3-Cyclic-nucleotide 2'phosphodiesterase	LPKTGS	MIDSTVLLIIGTLLLLLGLAFIIW	NKFKNKQKSVQ
15895771	SpoIID-like protein	LPVTGN	VDAATLKVINNMLI	NKPETKNLIF
15896849	Membrane protein	LPKSGG	ILINLWSLFIVFVIILFFTFLIF	KNILRILKKYQPIELIRGA

FliT homologue had been identified [90]. By analogy with proteins known to be secreted through the FEA in Gramnegative bacteria [113,127], 16 proteins all involved in flagellar morphogenesis could be identified as substrates of this system in *C. acetobutylicum* (Table 7).

3.4. The fimbrilin protein exporter (FPE; TC #3.A.14)

In B. subtilis, the components of the FPE systems are encoded by the *comG* locus, which consists of seven CDS (comGA-GG), and comC, which is located elsewhere on the chromosome. Because proteins encoded by the comGoperon and *comC* of Gram-positive bacteria resemble proteins found in Type II secretion system (TTSS), the Type 4 pilus (Tfp) assembly apparatus, and Type IV secretion system (TFSS) of Gram-negative bacteria, they have also been collectively called PSTC (pilus/secretion/ twitching motility/competence) [128,129]; the mechanism involved has been suggested to be ancient and predating the divergence of Gram-positive and Gram-negative bacteria. In B. subtilis, which is the only Gram-positive bacterium where the FPE has been experimentally investigated, the FPE is part of the Com (*com*petence development) pathway, which allows the internalization of exogenous DNA [17]. The Com pathway involves (i) the FPE, which may form a channel across the cell wall, permitting incoming DNA to access (ii) the bacterial competence-related DNA transformation transporter (TC #3.A.11), which permits bacterial DNA uptake across the cytoplasmic membrane [67,128,130]. In the FPE, the ATPase ComGA is homolo-

Table 6

C. acetobutylicum proteins encoded on pSol1 and bearing C-terminal ricin-B domain

GI	Annotation	
15004775	Possible xylan degradation enzyme (alpha/beta hydrolase	
15004921	Dessible wiles desredation ensures (elveessil hydrolese	
13004821	family 30-like domain and ricin-B-like domain)	
15004822	Possible xylan degradation enzyme (glycosyl hydrolase	
	family 30-like domain and ricin-B-like domain)	
15004823	Possible xylan degradation enzyme (glycosyl hydrolase	
	family 43-like domain, cellulose-binding domain and	
	ricin-B-like domain)	
15893994	Endo-1,4-beta glucanase (fused to two ricin-B-like	
	domains)	
15893866	Endo-arabinase related enzyme (family 43 glycosyl	
	hydrolase domain and ricin-B-like domain)	

gous to PulE of the TTSS, PilB of the Tfp assembly apparatus, and VirB11 of the TFSS in Gram-negative bacteria [129]. The integral membrane protein ComGB is homologous to PulF of the TTSS and PilC of the TFP [129]. ComGF is required for the binding of DNA to the cell surface but has no known orthologue [128]. The prepilins ComGC, ComGD, ComGE, and ComGG exhibit similarities to Type 4 prepilins [131]. ComC is a prepilin-specific SPase, which cleaves the prepilins between the n- and hdomains of the signal peptide [17]; those signal sequences belong to the class 3.

TC-DB searches of the *C. acetobutylicum* genome revealed that a protein, initially annotated as a general secretion pathway ATPase (GI: 15895375), is homologous to ComGA, VirB11, PulE, and PilB (Table 1; see also Supplementary material in Appendix A) [129,132]. A domain characteristic of the ATPase components of the TTSS and TFSS could also be identified (PF00437; *E*-value= 5.2×10^{-101}). Next to its gene, TC-DB searches revealed the presence of a second CDS (GI: 15895374) coding for a protein homologous to ComGB, PulF, and PilC (Table 1; see also Supplementary material in Appendix A)

Table /	Ta	ble	7
---------	----	-----	---

C. acetobutylicum proteins secreted through the flagellar export apparatus

Homologue	GI	Function
Rod		
FliE	15895432	Integral membrane ring (MS ring)
		junction protein
FlgB	15895434	Basal-body rod protein, transmission shaft
FlgC	15895433	Basal-body rod protein, transmission shaft
FlgF	15895409	Basal-body rod protein, transmission shaft
FlgG	15895408	Distal rod protein, transmission shaft
Hook		
FlgD	15895422	Hook capping protein, off during
		hook/filament transition
FlgE	15895423	Hook protein
FliK	15895426	Hook length control protein
FlgK	15895480	First hook filament junction protein
FlgL	15895471	Second hook filament junction protein
	15895424	Flagellar hook associated protein
Filament		
FliD	15895473	Filament capping protein
FliC	15894833	Flagellin
	15895436	Flagellin
	15895476	Flagellin
	15895479	Flagellin
	15895413	Flagellin
FlgM	15895482	Antiflagellar σ factor

and predicted to possess three membrane spanning segments by TMpred. Looking for a ComC-like protein, a Type 4 signal peptidase (GI: 15896039) was located elsewhere on the chromosome (Table 1; see also Supplementary material in Appendix A). No homologue to ComGF could be identified. When searching for substrates of the FPE, four proteins predicted to possess Type 4 prepilin signal peptides (GI: 15895370-15895373) were encoded by CDS located downstream of comGA and comGB (Table 8). An additional putative Type 4 prepilin (15894276) is encoded elsewhere on the chromosome (Table 8). These proteins were originally annotated as prepilin peptidases, hypothetical proteins, or as belonging to general secretory pathway; PSI-BLAST searches indicated that they were all homologous to fimbrial proteins/pilin precursors (Evalues $<4.0\times10^{-24}$ after 2 iterations). As in *B. subtilis*, the coding regions of the first four CDS present downstream of comGB overlap [67]; it was suggested that such an arrangement allows the translational coupling of the CDS involved to ensure that the synthesis of their cognate proteins is closely coordinated. Therefore, it seems that a complete set of proteins related to FPE is present in C. acetobutylicum (Table 1).

3.5. The tight adherence (Tad) export apparatus

The Tad system, encoded by the *tadZABCDEFG* locus, is a newly characterized secretion pathway firstly described in Actinobacillus actinomycetemcomitans and that allows the secretion and assembly of Flp pili, which mediate the tight adhesion of bacteria to surfaces and are essential for colonization and pathogenesis [133,134]. From a genomic survey, it appears that tad-related loci are widespread among bacteria and have undergone extensive gene shuffling and horizontal gene transfer [135]. To date, a Tad locus has been reported in four Gram-positive bacteria, namely Corvnebacterium diphteriae, M. tuberculosis, M. bovis, and Streptomyces coelicolor [135]. As the Flp pili do not have to cross an outer membrane in Gram-positive bacteria, the genes necessary for pilin secretion across the outer membrane are absent. Thus, in Gram-positive bacteria, the tad locus is shorter than in Gram-negative bacteria and appears only to encode TadZ, TadC, TadB, and TadA [135]. TadA is an ATPase localized at the periphery of the cytoplasmic membrane [136]. TadB and TadC are integral membrane proteins that may form homoor hetero-oligomeric structures in association with TadA and thus constitute the secretion apparatus [129]. No function has yet been attributed to TadZ, but it appears to be an essential component of the Tad system, with no homologue in any other known bacterial protein secretion system [135,137]. The Flp prepilins secreted through this system share homology with other Type 4 prepilins [138,139]. However, they belong to a distinct subfamily and are distinguished by (i) a relative small size(<90 a.a.), (ii) a shorter carboxy-terminal domain, and (iii) an invariant tyrosine residue immediately following the conserved glutamate conserved tyrosine residue [138,139]. flplike genes are closely linked to almost every tad locus identified so far.

In. C. acetobutylicum, Pfam searches identified a protein (GI: 15895251) with an ATPase domain (PF00437; Evalue= 1.4×10^{-9}) which was previously predicted to be involved in pili biogenesis. A CDD search of this protein revealed a domain (COG4962; *E*-value= 3.0×10^{-88}) related to the Flp pilus assembly protein ATPase CpaF (GI: 15155107), a TadA homologue from Agrobacterium tumefaciens [135,137]; PSI-BLAST searches clearly indicated that this protein is homologous to TadA of A. actinomycetemcomitans (GI: 32452626; E-value= 2.0×10^{-23}). PSI-BLAST searches also revealed that two proteins (GI: 15895250 and 15895249) encoded downstream of this gene were homologous to TadB and TadC, respectively (after 1 iteration, E-value=3.0×10⁻⁸⁸ and 4.0×10⁻⁵³, respectively); CDD searches identified that 15895249 possesses a COG2064 domain related to the Flp pilus assembly protein TadC (*E*-value= 3.0×10^{-10}). PSI-BLAST searches revealed the CDS located upstream of tadA (GI: 15895252) is homologous to CpaE from Vibrio vulnificus (GI: 37680838; *E*-value= 2.0×10^{-88} after 3 iterations), i.e. a TadZ homologue [135,137]. Therefore, in C. acetobutylicum, a tad operon seems to be present (Table 1) [135]. However, taking into account the features of Flp prepilin, searches at a.a. and nucleotide levels in proximity of the tad operon, as well as within the whole genome, did not reveal the presence of homologue(s) to Flp prepilin(s). No prepilin other than the ones already described for the FPE system could be identified (Table 8).

Table 8

Predicted signal sequences substrates of the Type 4 prepilin signal peptidase in C. acetobutylicum

GI	Annotation	Signal peptide ^a	
15895370	Hypothetical protein	MQFYKVK <u>kg</u>	FTLIEMVAASAIFCVFTVFAISVLFSLINGYKKDMKSNNDQAN
15895371	Hypothetical protein	MWKLRNKKG	<u>FTLIEVMCSFSIFSILFLFAVNLKVDELKMGKINDDIQNYTYY</u>
15895372	Prepilin peptidase	MEEELLMTSRQSKKG	YILIELLCTIAIMLILCSVIAISFKSYKDIKNGIEVKYVNNEM
15895373	General secretion pathway protein, pilin family	MMKKRG	<u>FTLIELIISMSIIAILGAILVPNIYSYIRRANNEKAKDMAALV</u>
15894276	General secretion family related protein	MKNRINN <u>KG</u>	<u>FTLIELIIVIAILAILAAILVPSISAYKIKAEKSNIQASARTL</u>

^a The positively charged n-domain is indicated in bold letters and the hydrophobic h-domain is shaded grey. The recognition sequence by the prepilin peptidase is underlined. Predicted cleavage site is indicated with a gap in the a.a. sequence.

M. Desvaux et al. / Biochimica et Biophysica Acta 1745 (2005) 223-253

3.6. The holins (TC #1.E.)

Holins are small membrane proteins whose function is mainly associated with the collapse of the membrane potential and permeabilization of the membrane [140]. Concomitant to the holin-mediated permeabilization event, a protein is secreted across the cytoplasmic membrane. Holins are also involved in the secretion/activation of enzymes with muralytic activities, which hydrolyze the cell wall polymer as a prelude to cell lysis [141]. The primary function of holins then appears to be the transport of specific lytic enzymes lacking N-terminal signal sequences. It is important to emphasize that the structure of holins is still uncertain, but they are believed to be present as homo-oligomeric complexes that form pores through the cytoplasmic membrane, which provide a passive, energy-independent transport function [140]. Twenty-one distinct families of holin proteins are currently recognized in TC-DB. In C. acetobutylicum, three holinlike proteins with no detectable N-terminal signal peptide were found (Table 1).

The first holin is a protein of 117 a.a., lacking putative signal sequence, and previously annotated as a predicted membrane protein of the YohJ family (GI: 15893901). However, it shows 32% identity and 60% similarity to LrgA, a holin originally identified in S. aureus (GI: 1575025), and harbours the LrgA family domain (PF03788; *E*-value= 1.3×10^{-33}), thus it should be classified as TC #1.E.14 (Table 1). As with LrgA, and as predicted by TMpred, this homologue possesses 4 putative TMSs. This protein family acts as murein hydrolase exporters involved in programmed cell death, a process that is analogous to apoptosis in eukaryotes [141]. As in S. aureus, this LrgA homologue clusters with its potential substrate, originally annotated as a predicted membrane protein of the YohK family (GI: 15893900), a potential membrane associated protein homologous to LrgB (GI: 1575026) with 28% identity and 47% similarity [142]. In S. aureus, an additional operon, designated *cidAB*, where the gene products CidA and CidB share 23% and 32% identity with LrgA and LrgB, respectively, functions in a way dramatically opposed to the *lrgAB* operon [143]. While *lrgAB* genes confer negative control on extracellular murein hydrolase activity, cidAB genes activate autolysis. Therefore, CidA would act as a holin while LrgA would act as an antiholin. In C. acetobutylicum, homologues of CidA and/or CidB could not be identified on the chromosome. However, a second putative holin encoded on the megaplasmid pSol1 and originally annotated as a membrane protein (GI: 15004877) is homologous to LrgA (41% identity and 55% similarity), but this gene is not part of an operon with a *lrgB* or cidB homologue (Table 1). PSI-BLAST searches revealed the presence of three probable autolysins lacking putative signal sequences which could be substrate for these holins (GI: 15893844, 15895879, and 15895935). One of them, annotated as an autolytic lysozyme (GI: 15893844), has already been reported as being involved in *C. acetobutylicum* autolysis [144].

From a Pfam search, a protein originally annotated as an uncharacterized protein, B. subtilis YtkC orthologue, and related to the regulatory protein UtxA (GI: 15895117) possesses a holin domain related to TcdE (PF05105; Evalue= 1.7×10^{-49}) (Table 1). In C. difficile, tcdE is located between the genes *tcdA* and *tcdB*, which encode two large toxins [145]. The holin TcdE then permits the release of TcdA and TcdB into the extracellular medium. In C. acetobutylicum, no genes coding for toxins could be found in proximity to the gene coding for the TcdE-like protein. However, PSI-BLAST, TC-DB, and Pfam searches revealed the presence of a gene encoding a protein lacking a potential signal sequence (GI: 15893630) and possessing a clostridial binary toxin A domain (PF03496; E-value=2.1×10⁻⁷⁴), and exhibiting 27% identity and 42% similarity with the actin-specific ADP-ribosylating binary toxin genes CtdA from C. difficile (GI: 8926247). This constitutes the first report of such an exotoxin in C. acetobutylicum.

3.7. The ESAT-6/WXG100 secretion system

ESAT-6 family genes encode small proteins which were originally identified in M. tuberculosis [146]. These proteins are potent T-cell antigens of fundamental importance in bacterial virulence [147]. ESAT-6 proteins are secreted into the extracellular milieu even though a typical Sec-dependent signal sequence is lacking. A genome sequence survey has permitted the identification of distant homologues of ESAT-6 in both high and low G+C Gram-positive bacteria [56]. The secretion of ESAT-6-like proteins in low G+C Grampositive bacteria was recently demonstrated in S. aureus [57]. In C. acetobutylicum, nine ESAT-6 proteins were originally reported [9,41]. Using BLAST, PSI-BLAST, and Pfam searches, one other putative ESAT-6 protein was identified in C. acetobutylicum (Fig. 3). Altogether, ten potential ESAT-6/WXG100 proteins were identified, which all possess a conserved WXG motif, with a protein length of approximately 100 residues, and with no signal sequence identified using SignalP, PSORT, or searching for lipoproteins. No N-terminal signal peptide could be detected. While no function could be attributed to the ESAT-6/ WXG100 proteins, they all share the Pfam domain PF06013 referring to proteins of 100 residues with WXG motif and could be hypothesised to play a role in bacterial virulence [57,148]. The corresponding genes are present in four clusters, three of which also contain YukA homologues (Table 1).

From a genomic survey, it was revealed that ESAT-6 genes cluster systematically with large membrane-bound ATPases similar to YukA from *B. subtilis* [41]. In *M. tuberculosis* and *S. aureus*, it was demonstrated that YukA-like proteins are involved in the translocation of ESAT-6-like proteins and, thus, would form a novel Grampositive secretion system [23,42,57]. No TC number has

Fig. 3. Sequence alignment of ESAT-6/WXG100 proteins present in *C. acetobutylicum*. The WXG motif is squared. Sequence alignments were performed using ClustalW, with minor manual refinement using BioEdit.

yet been attributed to this novel transport system. At the C-terminus of all YukA homologues, an AAA-ATPase domain (IPR003593),which is also present in Gramnegative Type II and Type IV secretion systems, is found and has been suggested to supply energy for ESAT-6/WXG100 protein secretion [41]. Interestingly, in YukA-like proteins from *C. acetobutylicum*, a forkhead-associated (FHA) domain (PF00498; *E*-value $\leq 5.8 \times 10^{-9}$) normally involved in phosphopeptide recognition is also present at the N-proximal end. Generally, the presence of such a domain strongly suggests interaction with a protein partner in a process regulated by reversible phosphorylation [149,150]. Signalling interactions between proteins encoded within the WXG100 clusters of *C. acetobutylicum* have been speculated [151].

4. Discussion

Among low G+C Gram-positive bacteria, protein secretion in C. acetobutylicum could clearly be investigated as an alternative model to B. subtilis. One of the most striking differences is the apparent absence of a Tat pathway. It should be noted, however, that until experimental evidence becomes available, the absence of homologues in any bacterial genome does not necessarily indicate that functional analogues of such proteins are absent; this requires more experimental investigation to be confirmed. At least five protein secretion pathways alternative to the Sec-dependent pathway seem to be present for the transport of specific proteins in C. acetobutylicum. This computational analysis is a prelude to in vivo study of the proteins secreted by C. acetobutylicum; such proteomic investigations of protein secretion in C. acetobutylicum may also reveal the presence of secreted proteins that could not be predicted by genome sequence analyses [152-154]. Alternatively, the number of truly secreted proteins, i.e., in the extracellular milieu, could be overestimated by in silico

approaches, especially in clostridia, because of the lack of a reliable data set for the refinement of signal peptide predictions. For example, several proteins predicted to possess cleavable signal peptides such as SPases, SecD, or SecF are probably not cleaved. This also stresses the need for further experimental work to validate or invalidate such bioinformatic analyses. Studies published so far on the clostridial secretome appear to indicate a high discrepancy in the number of secreted proteins in various clostridial species, from 15 in *C. difficile* to over 200 in *C. perfringens* [155,156]. From this bioinformatic investigation, we could expect an even higher number of proteins to be secreted by *C. acetobutylicum*.

Surprisingly, from this study, a number of potential virulence factors secreted either via the Sec-translocon, the holins, or the ESAT-6/WXG100 secretion system have been reported. The presence of such virulence factors has never been emphasized by previous investigations and is quite unexpected for a saprophytic environmental bacterium commonly considered as non-pathogenic to animals or plants [9,11]. This aspect of *C. acetobutylicum* physiology, which has never been investigated previously, undoubtedly requires further in-depth investigations to assay the expression of pili and virulence factors, as well as their functions and activities. The lack of investigations in this direction in *C. acetobutylicum* certainly results from its highly recognized status as a biotechnological microorganism [1,2].

With 602 proteins identified as potential substrates of the Sec translocon, this apparatus appears to be the primary secretion pathway used in *C. acetobutylicum* (Tables 1 and 2). The majority of these proteins have no clear identified function (44%). The second largest group of secreted proteins is dedicated to carbohydrate metabolism (15%), which is highly relevant to the lifestyle of this soil microorganism. Each of the other categories of secreted proteins represents less than 9% of the total number of proteins secreted via the Sec translocon in *C. acetobutylicum*. The number of secreted proteins related to bacterial virulence has also been identified, including phospholipase C, virulence factor MviN, hemolysins, and adhesins (Table 2). Compared to B. subtilis [20,153], in C. acetobutylicum, the number of proteins secreted via the Sec translocon for which no function has been attributed is high. Alone, this stresses the necessity to carry out proteomic analysis of this microorganism in order to confirm the secretion of these proteins and to further characterize their function and regulation [157]. With the exception of SecB, all components of the Sec system could be identified in C. acetobutylicum. In S. pyogenes, it was recently shown that protein secretion through the Sec pathway occurs at a distinct microdomain of the cytoplasmic membrane dedicated to protein export, i.e. the exportal [158]; it was suggested that such a subcellular organization may represent a paradigm in Gram-positive bacteria. The absence of SecB seems a general feature of Gram-positive bacteria [17,20]. Interestingly, in E. coli, when proline or glycine is present in the middle of the α -helical h-domain of signal sequences of Sec-dependent secreted proteins, these residues would promote the formation of a hairpinlike structure that would permit the complete insertion of the signal peptide into the cytoplasmic membrane [20]. The presence of these helix-breaking residues in the hdomain of signal sequences also appears to be an important parameter discriminating between SRP-targeting or SecB-targeting pathways [159]. From a recent study in E. coli, it appeared that some secreted proteins could be translocated via the Sec translocon in an SRP- and SecBindependent manner, which would involve either the requirement of other unidentified chaperone(s), targeting factor(s), or no accessory factor at all [87].

Concerning protein display on the bacterial cell surface, one of the most unexpected findings from genome analysis of non-cellulolytic *C. acetobutylicum* was the presence of a cluster of cellulosomal genes closely related to *C. cellulolyticum* [9,160,161]. While these genes were originally described as cryptic, i.e. possessing frameshifts and/or disabled promoters [162], more recent investigation revealed that a >665 kDa cellulosome was expressed by *C. acetobutylicum* but was inactive against crystalline cellulose [105].

Altogether, four potential protein substrates for sortase were identified. In comparison to other bacterial genomes, the number of sortase-like proteins and LPXTG-proteins is quite low in *C. acetobutylicum*. Interestingly, in Grampositive bacteria, most of the surface proteins anchored by a sortase mechanism have a role in virulence, and the number of sortase substrates tend to be higher in pathogenic bacteria [110,163]. Two other speculative cell surface complexes have been proposed in *C. acetobutylicum*, i.e., ricin-B and ChW protein-based complexes [9]. Because of the presence of a highly conserved Gly-Trp dipeptide motif [9], it is tempting to speculate that ChW proteins could be GW-related proteins. However, while repeats similar to ChW proteins have been detected only in proteins from *S.*

coelicolor [9], the presence of GW modules have been reported only in proteins from *Listeria* and *Staphylococcus* spp. [95]. In *S. pneumoniae*, the choline-binding proteins LytA or PspA contain short repetitive modules with conserved GW peptides, which allow binding to lipoteichoic acids, but due to weak similarity are not currently considered to be GW proteins [95]. Additionally, GW domains of *L. monocytogenes* have been shown to be structurally and evolutionary related to SH3b domains, present in p60 for example, but are considered unlikely to be functionally similar [164]. Also, further investigations are necessary to (i) experimentally assay the binding of ChW proteins to lipoteichoic acids, and (ii) clarify the phylogenetic relationships between proteins containing repetitive GW modules involved in binding to lipoteichoic acids.

In Gram-negative bacteria, pili are secreted and assembled by different pathways, namely, (i) the Tfp assembly apparatus, (ii) the Type III protein secretion pathway for Hrp pili, (iii) the TFSS for the T and F pili, (iv) the chaperone/usher pathway for the Type 1 and P pili, and (v) the recently discovered Tad system for the Flp pili [135,165]. It should be stressed that in Gram-positive bacteria, the denominations of the Types II, III, and IV and chaperone/usher secretion pathways are irrelevant. To date, assembly mechanisms involving (i) the Sec-translocon and sortases [166] and (ii) the Tad system [135] seem the only ones potentially involved in pili formation in Grampositive bacteria. Since among the sortase-substrates identified in C. acetobutylicum, none share similarity with pilin proteins [166], only the Tad system may be involved in pili formation in this microorganism. The fact that C. acetobu*tylicum* is phylogenetically distant from γ - and α -proteobacteria, as well as Actinobacteria, which are the only bacterial classes where the tad loci have been so far reported, could explain the failure to identify Flp pilins in this microorganism. In B. subtilis, despite being related to the Tfp, the FPE is not involved in the formation of pili per se [167,168]. Besides, the involvement of FPE in the formation of proper pili in other Gram-positive bacterial species has never been investigated. Interestingly, in C. acetobutylicum, a protein annotated as a PilT ATPase, involved in pili biogenesis (GI: 15894967), shares 46% (over 158 out of 338 a.a.: 158/338) identity and 64% (222/ 338) similarity with PilT from Pseudomonas aeruginosa (GI: 77679). In Gram-negative bacteria, besides being involved in the twitching motility of Tfp [169], PilT has been demonstrated as essential to the DNA uptake phase of competence for natural transformation [170]. The involvement of this PilT homologue in the transformation competence development of C. acetobutylicum requires further investigation. Importantly, while the presence and the role of fimbriae have been reported to play a part in the virulence of some pathogenic clostridia [171], these aspects have never been investigated in C. acetobutylicum. Similarly, flagellar assembly has not been thoroughly investigated in Gram-positive bacteria, including clostridia [172],

and contrary to Gram-negative bacteria, secretion through this apparatus of proteins different from those involved in flagellar assembly has been reported only once [122].

Such an in silico approach should encourage in vivo investigations of protein secretion in *Clostridia* as well as in other Gram-positive bacteria; this should reveal further information and permit the use of organisms other than B. subtilis as models of Gram-positive bacterial protein secretion. Compared to pathogenic Gram-positive bacteria, especially within the genus Clostridium, Corynebacterium, or Mycobacterium, the investigation of protein secretion mechanisms, such as Tad, holins, and especially the speculative ESAT-6/WXG100 system, would be facilitated in this more tractable bacterium for which a large number of molecular biology tools are available [173,174]. Moreover, the understanding of protein secretion systems in C. acetobutylicum, which has been long used in industrial bioprocesses, could give rise to some interesting biotechnological and/or biomedical applications [1,2].

In industry, C. acetobutylicum has essentially been used for acetone-butanol production, but it also produces other metabolites of high industrial interest, notably ethanol, acetate, and hydrogen. Worldwide, several research teams currently focus on the production of these high-value products from inexpensive renewable resources, such as lignocellulosic biomass. While the metabolism of this bacterium has been thoroughly investigated at both biochemical and molecular levels, few investigations have been dedicated to protein secretion. Knowledge of prevalent protein secretion systems and signal sequence features, such as the length and/or preferred a.a. at certain positions, is of great value for any attempt to efficiently express heterologous proteins in C. acetobutylicum. Protein display on the bacterial cell surface or secretion into the extracellular medium is of key importance in the capacity of a bacterium to interact and adapt to its surroundings, either by sensing changes in environmental conditions, harbouring enzymatic activities, mediators of motility, adhesion factors, or virulence factors. Since the capacity of C. acetobutylicum to degrade biomass results primarily from its capacity to secrete degradative enzymes, knowledge of protein secretion should not be underestimated for such attempts. In this respect, the cellulosome is of great interest because of the synergistic effects of the cellulosomal enzymes [160,175]. Indeed, it may be possible to engineer cellulosomes containing defined, heterologous, or engineered proteins which could improve plant cell wall degradation. From such cellulosomes, artificial metabolic pathways could also be developed combining various catalytic activities; this opens the way to a wide range of biotechnological applications. Still, the mechanisms of surface display and assembly of the different cellulosome components have not been addressed yet in the literature and would require further research to reach such a goal. In this respect, investigations of other macromolecular structures potentially present on the bacterial cell surface, such as ricin-B or ChW protein-based complex, should be carried out. From an industrial point of view, it should also be mentioned that control of bacterial lysis is of key interest especially in processes involving the use of bioreactors. This necessitates a better understanding of secretion systems, i.e., Sec and holins secretion pathways, and the regulation mechanisms involved in cell death. It should be stressed that lytic transglucosylases are involved in the autolysis of bacteria but also in the assembly of macromolecular transport systems such as pili [176].

From a biomedical point of view, several clostridial hydrolytic enzymes and toxins of interest have already been discussed in the literature, such as collagenase, which could be used as an anchoring unit in engineered proteins, or botulinum toxin, which is already used in the treatment of a myriad human neuromuscular disorders [177-179]. A very remarkable feature of clostridia relies on the capacity of their spores to specifically and selectively target tumours [180,181]. The predilection of clostridial spores to germinate in hypoxic/necrotic regions of tumours is likely due to the poor vascularisation of solid tumours, which, in turn, creates favorable anaerobic conditions for the growth of clostridia, causing lysis and degradation of necrotic tissue [182]. Importantly, contrary to live bacteria that could be toxic when injected intravenously, bacterial spores are nontoxigenic to normal animals. However, the sole injection of clostridial spores from various species has had limited clinical success. Alternative strategies have been recently developed, namely (i) combination bacteriolytic therapy (COBALT), where clostridial spores are administrated together with conventional chemotherapeutic drugs [183], and (ii) clostridial-directed enzyme prodrug therapy (CDEPT), where clostridia are used as drug delivery systems [180]. One pledging approach in CDEPT is the antibody-directed enzyme prodrug therapy (ADEPT), where an enzyme is linked either chemically or genetically to tumour-targeting antibody [181]. A combination of these different strategies should bring new hope for future cancer treatment. The use of C. acetobutylicum in oncolysis and as a tumour-delivery system also seems a promising approach [184–186]. The advantages of C. acetobutylicum over other clostridial species are that (i) neither the live bacteria nor clostridial spores are toxigenic, (ii) it is the only nonpathogenic *Clostridium* sequenced so far, (iii) a large range of molecular biology tools are readily available to genetically manipulate this bacterium, and (iv) this bacterium expresses a cellulosome which could be engineered to express artificial metabolic pathways of interest in cancer treatment. While the aspects of alternative therapeutic strategies have been investigated, little is known about the mechanisms permitting the specific targeting of tumours by *Clostridia* [187]. In fact, it can be legitimately hypothesised that motility, adhesion factors, and/or secreted enzymes play an important role in the colonization and digestion of the tumours. Also, in order to develop efficient anti-cancer therapies based on the use of clostridia, knowledge of protein secretion systems, effector molecules, and regulatory

mechanisms involved during oncolysis is certainly as important as the development of new drugs and/or delivery systems. An intriguing observation is the presence of proteins possessing cell adhesion domains together with the presence of a Tad system in *C. acetobutylicum*. These could play essential roles in colonization and maybe pathogenesis [134].

While this investigation provides the first overview of protein secretion systems present in a Clostridium, it also raises a number of questions which would undoubtedly necessitate further investigations: How many proteins are really secreted by C. acetobutylicum? How is their secretion regulated? Are the FPE, Tad, holins, and ESAT-6/WXG100 pathways functional in C. acetobutylicum? What are their physiological roles and secretion mechanisms? Do extracellular macromolecular structures such as ricin-B and ChW proteins-based complexes exist? What are their functions? How do these macromolecular complexes, including the cellulosome, assemble on the bacterial cell surface? Are the potential virulence factors (i.e. pili, toxins, adhesins, mediators of motility) of C. acetobutylicum expressed and functional? How are they related to the pathogenicity of this microorganism towards plant and/or mammalian cells?

Acknowledgements

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC), in part, with the ViruloGenome projects to Prof. Mark J. Pallen, and grants 81/D14955 and 81/P14130 to Dr. Ian R. Henderson. Dr. Mickaël Desvaux is an Honorary Member of the University of Birmingham.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bbamcr. 2005.04.006.

References

- D.R. Woods, The Clostridia and Biotechnology, Butterworth-Heinemann, Boston, MA, 1993.
- [2] H. Bahl, P. Durre, Clostridia: Biotechnology and Medical Applications, Wiley-VHC, Weinheim, NY, 2001.
- [3] N.D. Collins, P.A. Lawson, A. Willems, J.J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, J.A.E. Farrow, The phylogeny of the genus *Clostridium*: proposal of five new genera and eleven new species combinations, Int. J. Syst. Bacteriol. 44 (1994) 812–826.
- [4] E.R. Weyer, L.F. Rettger, A comparative study of six different strains of the organism commonly concerned in large-scale production of butyl alcohol and acetone by the biological process, J. Bacteriol. 14 (1927) 399–424.
- [5] B. Dixon, Chaim Weizmann: from fermentation chemist to president of Israel, Anaerobe 2 (1996) 195–196.

- [6] E. Cornillot, P. Soucaille, Solvent forming genes in *Clostridia*, Nature 380 (1996) 489.
- [7] E. Cornillot, R.V. Nair, E.T. Papoutsakis, P. Soucaille, The genes for butanol and acetone formation in *Clostridium acetobutylicum* ATCC 824 reside on a large plasmid whose loss leads to degenaration of the strain, J. Bacteriol. 179 (1997) 5442–5447.
- [8] E. Cornillot, C. Croux, P. Soucaille, Physical and genetic map of the *Clostridium acetobutylicum* ATCC 824 chromosome, J. Bacteriol. 179 (1997) 5442–5447.
- [9] J. Nölling, G. Breton, M.V. Omelchenko, K.S. Makarova, Q. Zeng, R. Gibson, H.M. Lee, J. Dubois, D. Qiu, J. Hitti, Y.I. Wolf, R.L. Tatusov, F. Sabathé, L. Doucette-Stamm, P. Soucaille, M.J. Daly, G.N. Bennett, E.V. Koonin, D.R. Smith, Genome sequence and comparative analysis of the solvent-producing bacterium *Clostridium acetobutylicum*, J. Bacteriol. 183 (2001) 4823–4838.
- [10] H. Brüggemann, S. Bäumer, W.F. Fricke, A. Wiezer, H. Liesegang, I. Decker, C. Herzberg, R. Martinez-Arias, R. Merkl, A. Henne, G. Gottschalk, The genome sequence of *Clostridium tetani*, the causative agent of tetanus disease, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 1316–1321.
- [11] T. Shimizu, K. Ohtani, H. Hirakawa, K. Ohshima, A. Yamashita, T. Shiba, N. Ogasawara, M. Hattori, S. Kuhara, H. Hayashi, Complete genome sequence of *Clostridium perfringens*, an anaerobic flesheater, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 996–1001.
- [12] P. Durre, M. Bohringer, S. Nakotte, S. Schaffer, K. Thormann, B. Zickner, Transcriptional regulation of solventogenesis in *Clostridium* acetobutylicum, J. Mol. Microbiol. Biotechnol. 4 (2002) 295–300.
- [13] W.J. Mitchell, Physiology of carbohydrate to solvent conversion by clostridia, Adv. Microb. Physiol. 39 (1998) 31–130.
- [14] E.T. Papoutsakis, G.N. Bennett, Molecular regulation and metabolic engineering of solvent production by *Clostridium acetobutylicum*, Bioprocess. Technol. 24 (1999) 253–279.
- [15] L. Girbal, P. Soucaille, Regulation of solvent production in *Clostridium acetobutylicum*, Trends Biotechnol. 16 (1998) 11–16.
- [16] D. Greenbaum, N.M. Luscombe, R. Jansen, J. Qian, M. Gerstein, Interrelating different types of genomic data: from proteome to secretome: Oming in on function, Genome Res. 11 (2001) 1463–1468.
- [17] H. Tjalsma, A. Bolhuis, J.D. Jongbloed, S. Bron, J.M. van Dijl, Signal peptide-dependent protein transport in *Bacillus subtilis*: a genome-based survey of the secretome, Microbiol. Mol. Biol. Rev. 64 (2000) 515–547.
- [18] K.H.M. van Wely, J. Swaving, R. Freudl, A.J.M. Driessen, Translocation of proteins across the cell envelope of Gram-positive bacteria, FEMS Microbiol. Rev. 25 (2001) 437–454.
- [19] M. Simonen, I. Palva, Protein secretion in *Bacillus* species, Microbiol. Rev. 57 (1993) 109–137.
- [20] H. Tjalsma, H. Antelmann, J.D. Jongbloed, P.G. Braun, E. Darmon, R. Dorenbos, J.Y. Dubois, H. Westers, G. Zanen, W.J. Quax, O.P. Kuipers, S. Bron, M. Hecker, J.M. Van Dijl, Proteomics of protein secretion by *Bacillus subtilis*: separating the "secrets" of the secretome, Microbiol. Mol. Biol. Rev. 68 (2004) 207–233.
- [21] M. Hecker, A proteomic view of cell physiology of *Bacillus subtilis*—Bringing the genome sequence to life, Adv. Biochem. Eng. Biotechnol. 83 (2003) 57–92.
- [22] M.R. Sharipova, Late stages of protein secretion in bacilli, Biochemistry (Mosc) 67 (2002) 1207–1216.
- [23] M.J. Pallen, R.R. Chaudhuri, I.R. Henderson, Genomic analysis of secretion systems, Curr. Opin. Microbiol. 6 (2003) 519–527.
- [24] H. Brüggemann, G. Gottschalk, Insights in metabolism and toxin production from the complete genome sequence of *Clostridium tetani*, Anaerobe 10 (2004) 53–68.
- [25] G.P. Salmond, P.J. Reeves, Membrane traffic wardens and protein secretion in Gram-negative bacteria, Trends Biochem. Sci. 18 (1993) 7–12.
- [26] D.G. Thanassi, Ushers and secretins: channels for the secretion of folded proteins across the bacterial outer membrane, J. Mol. Microbiol. Biotechnol. 4 (2002) 11–20.

- M. Desvaux et al. / Biochimica et Biophysica Acta 1745 (2005) 223-253
- [27] I.R. Henderson, J.P. Nataro, J.B. Kaper, T.F. Meyer, S.K. Farrand, D.L. Burns, B.B. Finlay, J.W. St Geme III, Renaming protein secretion in the Gram-negative bacteria, Trends Microbiol. 8 (2000) 352.
- [28] M. Desvaux, N.J. Parham, I.R. Henderson, Le système de sécrétion de Type V chez les bactéries Gram-négatives, Biofutur 237 (2003) 34–37.
- [29] I.R. Henderson, F. Navarro-Garcia, J.P. Nataro, The great escape: structure and function of the autotransporter proteins, Trends Microbiol. 6 (1998) 370–378.
- [30] A. Blocker, K. Komoriya, S. Aizawa, Type III secretion systems and bacterial flagella: insights into their function from structural similarities, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 3027–3030.
- [31] J.A. Sexton, J.P. Vogel, Type IVb secretion by intracellular pathogens, Traffic 3 (2002) 178–185.
- [32] C. Andersen, Channel-tunnels: outer membrane components of Type I secretion systems and multidrug efflux pumps of Gram-negative bacteria, Rev. Physiol. Biochem. Pharmacol. 147 (2003) 122–165.
- [33] D. Buttner, U. Bonas, Port of entry-the Type III secretion translocon, Trends Microbiol. 10 (2002) 186–192.
- [34] M. Sandkvist, Type II secretion and pathogenesis, Infect. Immun. 69 (2001) 3523–3535.
- [35] P.J. Christie, Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines, Mol. Microbiol. 40 (2001) 294–305.
- [36] C. Stathopoulos, D.R. Hendrixson, D.G. Thanassi, S.J. Hultgren, J.W. St Geme III, R. Curtiss III, Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens: an evolving story, Microbes Infect. 2 (2000) 1061–1072.
- [37] D.G. Thanassi, S.J. Hultgren, Multiple pathways allow protein secretion across the bacterial outer membrane, Curr. Opin. Cell. Biol. 12 (2000) 420–430.
- [38] M. Desvaux, N.J. Parham, I.R. Henderson, The autotransporter secretion system, Res. Microbiol. 155 (2004) 53–60.
- [39] P. Fekkes, A.J. Driessen, Protein targeting to the bacterial cytoplasmic membrane, Microbiol. Mol. Biol. Rev. 63 (1999) 161–173.
- [40] B.C. Berks, F. Sargent, T. Palmer, The Tat protein export pathway, Mol. Microbiol. 35 (2000) 260–274.
- [41] M.J. Pallen, The ESAT-6/WXG100 superfamily—And a new Grampositive secretion system? Trends Microbiol. 10 (2002) 209–212.
- [42] K.M. Guinn, M.J. Hickey, S.K. Mathur, K.L. Zakel, J.E. Grotzke, D.M. Lewinsohn, S. Smith, D.R. Sherman, Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of *Mycobacterium tuberculosis*, Mol. Microbiol. 51 (2004) 359–370.
- [43] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215 (1990) 403–410.
- [44] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res. 25 (1997) 3389–3402.
- [45] R.R. Chaudhuri, A.M. Khan, M.J. Pallen, coliBASE: an online database for *Escherichia coli*, *Shigella* and *Salmonella* comparative genomics, Nucleic Acids Res. 32 (2004) D296–D299.
- [46] E.L. Soohammer, S.R. Eddy, R. Durbin, Pfam: a comprehensive database of protein domain families based on seed alignments, Proteins 28 (1997) 405–420.
- [47] A. Marchler-Bauer, J.B. Anderson, C. DeWeese-Scott, N.D. Fedorova, L.Y. Geer, S. He, D.I. Hurwitz, J.D. Jackson, A.R. Jacobs, C.J. Lanczycki, C.A. Liebert, C. Liu, T. Madej, G.H. Marchler, R. Mazumder, A.N. Nikolskaya, A.R. Panchenko, B.S. Rao, B.A. Shoemaker, V. Simonyan, J.S. Song, R.A. Thiessen, S. Vasudevan, Y. Wang, R.A. Yamashita, J.J. Yin, S.H. Bryant, CDD: a curated Entrez database of conserved domain alignments, Nucl. Acids Res. 31 (2003) 383–387.
- [48] A. Gattiker, E. Gasteiger, A. Bairoch, ScanProsite: a reference implementation of a PROSITE scanning tool, Appl. Bioinformatics 1 (2002) 107–108.

- [49] I. Letunic, R.R. Copley, S. Schmidt, F.D. Ciccarelli, T. Doerks, J. Schultz, C.P. Ponting, P. Bork, SMART 4.0: towards genomic data integration, Nucleic Acids Res. 32 (2004) D142–D144.
- [50] N.J. Mulder, R. Apweiler, T.K. Attwood, A. Bairoch, D. Barrell, A. Bateman, D. Binns, M. Biswas, P. Bradley, P. Bork, P. Bucher, R.R. Copley, E. Courcelle, U. Das, R. Durbin, L. Falquet, W. Fleischmann, S. Griffiths-Jones, D. Haft, N. Harte, N. Hulo, D. Kahn, A. Kanapin, M. Krestyaninova, R. Lopez, I. Letunic, D. Lonsdale, V. Silventoinen, S.E. Orchard, M. Pagni, D. Peyruc, C.P. Ponting, J.D. Selengut, F. Servant, C.J.A. Sigrist, R. Vaughan, E.M. Zdobnov, The InterPro Database, 2003 brings increased coverage and new features, Nucleic Acids Res. 31 (2003) 315–318.
- [51] T.A. Tatusova, T.L. Madden, Blast 2 sequences—A new tool for comparing protein and nucleotide sequences, FEMS Microbiol. Lett. 174 (1999) 247–250.
- [52] D. Higgins, J. Thompson, T. Gibson, J.D. Thompson, D.G. Higgins, T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673–4680.
- [53] Q. Ma, Y. Zhai, J.C. Schneider, T.M. Ramseir, M.H. Saier Jr., Protein secretion systems of *Pseudomonas aeruginosa* and *P. fluorescens*, Biochim. Biophys. Acta, Biomembr. 1611 (2003) 223–233.
- [54] W. Busch, M.H. Saier Jr., The transporter classification (TC) system, Crit. Rev. Biochem. Mol. Biol. 37 (2002) 287–337.
- [55] Q. Ren, K.H. Kang, I.T. Paulsen, TransportDB: a relational database of cellular membrane transport systems, Nucleic Acids Res. 32 (2004) D284–D288.
- [56] M.J. Pallen, The ESAT-6/WXG100 superfamily—And a new Grampositive secretion system? Trends Microbiol. 10 (2002) 209–212.
- [57] M.L. Burts, W.A. Williams, K. DeBord, D.M. Missiakas, EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of *Staphylococcus aureus* infections, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 1169–1174.
- [58] H. Nielsen, S. Brunak, G. von Heijne, Machine learning approaches for the prediction of signal peptides and other protein sorting signals, Protein Eng. 12 (1999) 3–9.
- [59] K. Nakai, P. Horton, PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization, Trends Biochem. Sci. 24 (1999) 34–36.
- [60] H. Bannai, Y. Tamada, O. Maruyama, K. Nakai, S. Miyano, Extensive feature detection of N-terminal protein sorting signals, Bioinformatics 18 (2002) 298–305.
- [61] I. Sutcliffe, D.J. Harrington, Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes, Microbiology 148 (2002) 2065–2077.
- [62] M.M. Babu, K. Sankaran, DOLOP—Database of bacterial lipoproteins, Bioinformatics 18 (2002) 641–643.
- [63] A.S. Juncker, H. Willenbrock, G. Von Heijne, S. Brunak, H. Nielsen, A. Krogh, Prediction of lipoprotein signal peptides in Gram-negative bacteria, Protein Sci. 12 (2003) 1652–1662.
- [64] K. Hofmann, W. Stoffel, TMbase—A database of membrane spanning protein segments, Biol. Chem. Hoppe-Seyler 374 (1993) 166.
- [65] M. Cserzo, E. Wallin, I. Simon, G. von Heijne, A. Elofsson, Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method, Protein Eng. 10 (1997) 673–676.
- [66] M.G. Claros, G. von Heijne, TopPred II: an improved software for membrane protein structure predictions, Comput. Appl. Biosci. 10 (1994) 685–686.
- [67] D. Dubnau, Binding and transport of transforming DNA by *Bacillus subtilis*: the role of type 4 pilin-like proteins—A review, Gene 192 (1997) 191–198.
- [68] S.V. Albers, A.J. Driessen, Signal peptides of secreted proteins of the archaeon *Sulfolobus solfataricus*: a genomic survey, Arch. Microbiol. 177 (2002) 209–216.

- [69] K. Dilks, R.W. Rose, E. Hartmann, M. Pohlschröder, Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey, J. Bacteriol. 185 (2003) 1478–1483.
- [70] E. Dassa, P. Bouige, The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms, Res. Microbiol. 152 (2001) 211–229.
- [71] T. Yakushi, K. Masuda, S.I. Narita, S.I. Matsuyama, H. Tokuda, New ABC transporter mediating the detachment of lipid-modified proteins from membranes, Nat. Cell. Biol. 2 (2000) 212–218.
- [72] B. Ajouz, A. Berrier, A. Garrigues, M. Besnard, A. Ghazi, Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of *Escherichia coli* cells, J. Biol. Chem. 273 (1998) 26670–26674.
- [73] C.D. Pivetti, M.R. Yen, S. Miller, W. Busch, Y.H. Tseng, I.R. Booth, M.H. Saier Jr., Two families of mechanosensitive channel proteins, Microbiol. Mol. Biol. Rev. 67 (2003) 66–85.
- [74] M. Desvaux, N.J. Parham, A. Scott-Tucker, I.R. Henderson, The general secretory pathway: a general misnomer? Trends Microbiol. 12 (2004) 306–309.
- [75] A.J. Driessen, E.H. Manting, C. van der Does, The structural basis of protein targeting and translocation in bacteria, Nature 8 (2001) 492–498.
- [76] T.B. Cao, M.H. Saier Jr., The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions, Biochim. Biophys. Acta, Biomembr. 1609 (2003) 115–125.
- [77] B.A. Bensing, P.M. Sullam, An accessory sec locus of *Streptococcus gordonii* is required for export of the surface protein GspB and for normal levels of binding to human platelets, Mol. Microbiol. 44 (2002) 1081–1094.
- [78] J. De Keyzer, C. Van der Does, A.J. Driessen, The bacterial translocase: a dynamic protein channel complex, Cell. Mol. Life Sci. 60 (2003) 2034–2052.
- [79] A. Bolhuis, C.P. Broekhuizen, A. Sorokin, M. van Roosmalen, G. Venema, S. Bron, W.J. Quax, J.M. van Dijl, SecDF of *Bacillus subtilis*, a molecular Siamese twin required for the efficient secretion of proteins, J. Biol. Chem. 274 (1998) 21217–21224.
- [80] J.C. Samuelson, M. Chen, M. Jiang, I. Moller, M. Wiedmann, A. Kuhn, G.J. Phillips, R.E. Dalbey, YidC mediates membrane protein insertion in bacteria, Nature 406 (2000) 637–641.
- [81] M. Chen, K. Xie, F. Jiang, L. Yi, R.E. Dalbey, YidC, a newly defined evolutionarily conserved protein, mediates membrane protein assembly in bacteria, Biol. Chem. 383 (2002) 1565–1572.
- [82] M. van der Laan, P. Bechtluft, S. Kol, N. Nouwen, A.J. Driessen, F₁F₀ ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis, J. Cell. Biol. 165 (2004) 213–222.
- [83] M.R. Yen, C.R. Peabody, S.M. Partovi, Y. Zhai, Y.H. Tseng, M.H. Saier, Protein-translocating outer membrane porins of Gram-negative bacteria, Biochim. Biophys. Acta, Biomembr. 1562 (2002) 6–31.
- [84] L. Froderberg, E. Houben, J.C. Samuelson, M. Chen, S.K. Park, G.J. Phillips, R. Dalbey, J. Luirink, J.W. De Gier, Versatility of inner membrane protein biogenesis in *Escherichia coli*, Mol. Microbiol. 47 (2003) 1015–1027.
- [85] Q.A. Valent, P.A. Scotti, S. High, J.W. de Gier, G. von Heijne, G. Lentzen, W. Wintermeyer, B. Oudega, J. Luirink, The *Escherichia coli* SRP and SecB targeting pathways converge at the translocon, EMBO J. 17 (1998) 2504–2512.
- [86] A.P. Pugsley, The complete general secretory pathway in Gramnegative bacteria, Microbiol. Rev. 57 (1993) 50–108.
- [87] D. Beha, S. Deitermann, M. Muller, H.G. Koch, Export of βlactamase is independent of the signal recognition particle, J. Biol. Chem. 278 (2003) 22161–22167.
- [88] R. Sijbrandi, M.L. Urbanus, C.M. ten Hagen-Jongman, H.D. Bernstein, B. Oudega, B.R. Otto, J. Luirink, Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular *Escherichia coli* protein, J. Biol. Chem. 278 (2003) 4654–4659.

- [89] L.L. Randall, S.J. Hardy, SecB, one small chaperone in the complex milieu of the cell, Cell. Mol. Life Sci. 59 (2002) 1617–1623.
- [90] F. Kunst, N. Ogasawara, I. Moszer, A.M. Albertini, G. Alloni, V. Azevedo, M.G. Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S.C. Brignell, S. Bron, S. Brouillet, C.V. Bruschi, B. Caldwell, V. Capuano, N.M. Carter, S.K. Choi, J.J. Codani, I.F. Connerton, N.J. Cummings, R.A. Daniel, F. Denizot, K.M. Devine, A. Düsterhöft, S.D. Ehrlich, P.T. Emmerson, K.D. Entian, J. Errington, C. Fabret, E. Ferrari, D. Foulger, C. Fritz, M. Fujita, Y. Fujita, S. Fuma, A. Galizzi, N. Galleron, S.Y. Ghim, P. Glaser, A. Goffeau, E.J. Golightly, G. Grandi, G. Guiseppi, B.J. Guy, K. Haga, J. Haiech, C.R. Harwood, A. Hénaut, H. Hilbert, S. Holsappel, S. Hosono, M.F. Hullo, M. Itaya, L. Jones, B. Joris, D. Karamata, Y. Kasahara, M. Klaerr-Blanchard, C. Klein, Y. Kobayashi, P. Koetter, G. Koningstein, S. Krogh, M. Kumano, K. Kurita, A. Lapidus, S. Lardinois, J. Lauber, V. Lazarevic, S.M. Lee, A. Levine, H. Liu, S. Masuda, C. Mauël, C. Médigue, N. Medina, R.P. Mellado, M. Mizuno, D. Moestl, S. Nakai, M. Noback, D. Noone, M. O'Reilly, K. Ogawa, A. Ogiwara, B. Oudega, S.H. Park, V. Parro, T.M. Pohl, D. Portetelle, S. Porwollik, A.M. Prescott, E. Presecan, P. Pujic, B. Purnelle, et al., The complete genome sequence of the Gram-positive bacterium Bacillus subtilis, Nature 390 (1997) 249-256.
- [91] G.A. Barkocy-Gallagher, P.J. Bassford Jr., Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of *Escherichia coli* signal peptidase I in vivo, J. Biol. Chem. 267 (1992) 1231–1238.
- [92] I. Nilsson, G. von Heijne, A signal peptide with a proline next to the cleavage site inhibits leader peptidase when present in a secindependent protein, FEBS Lett. 299 (1992) 243-246.
- [93] M. Sara, U.B. Sleytr, S-layer proteins, J. Bacteriol. 182 (2000) 859-868.
- [94] O. Dussurget, J. Pizarro-Cerda, P. Cossart, Molecular determinants of *Listeria monocytogenes* virulence, Annu. Rev. Microbiol. 58 (2004) 587–610.
- [95] D. Cabanes, P. Dehoux, O. Dussurget, L. Frangeul, P. Cossart, Surface proteins and the pathogenic potential of *Listeria mono*cytogenes, Trends Microbiol. (2002) 238–245.
- [96] E. Garcia, J.L. Garcia, P. Garcia, A. Arraras, J.M. Sanchez-Puelles, R. Lopez, Molecular evolution of lytic enzymes of *Streptococcus pneumoniae* and its bacteriophages, Proc. Natl. Acad. Sci. U. S. A. 85 (1988) 914–918.
- [97] A.J. Waligora, C. Hennequin, P. Mullany, P. Bourlioux, A. Collignon, T. Karjalainen, Characterization of a cell surface protein of *Clostridium difficile* with adhesive properties, Infect. Immun. 69 (2001) 2144–2153.
- [98] M. Kuhn, W. Goebel, Identification of an extracellular protein of *Listeria monocytogenes* possibly involved in intracellular uptake by mammalian cells, Infect. Immun. 57 (1989) 55–61.
- [99] M.D. Wuenscher, S. Kohler, A. Bubert, U. Gerike, W. Goebel, The *iap* gene of *Listeria monocytogenes* is essential for cell viability, and its gene product, p60, has bacteriolytic activity, J. Bacteriol. 175 (1993) 3491–3501.
- [100] A.R. Sanchez-Beato, C. Ronda, J.L. Garcia, Tracking the evolution of the bacterial choline-binding domain: molecular characterization of the *Clostridium acetobutylicum* NCIB 8052 cspA gene, J. Bacteriol. 177 (1995) 1098–1103.
- [101] R.H. Doi, A. Kosugi, K. Murashima, Y. Tamaru, S.O. Han, Cellulosomes from mesophilic bacteria, J. Bacteriol. 185 (2003) 5907–5914.
- [102] Y. Shoham, R. Lamed, E.A. Bayer, The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides, Trends Microbiol. 7 (1999) 275–281.
- [103] A. Mechaly, S. Yaron, R. Lamed, H.P. Fierobe, A. Bélaïch, J.P. Bélaïch, Y. Shoham, E.A. Bayer, Cohesin–dockerin recognition in cellulosome assembly: experiment versus hypothesis, Proteins 39 (2000) 170–177.

- M. Desvaux et al. / Biochimica et Biophysica Acta 1745 (2005) 223-253
- [104] A.L. Carvalho, F.M.V. Dias, J.A.M. Prates, T. Nagy, H.J. Gilbert, G.J. Davies, L.M.A. Ferreira, M.J. Romao, C.M.G.A. Fontes, Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 13809–13814.
- [105] F. Sabathé, A. Bélaïch, P. Soucaille, Characterisation of the cellulolytic complex (cellulosome) of *Clostridium acetobutylicum*, FEMS Microbiol. Lett. 217 (2002) 15–22.
- [106] S. Pagès, A. Bélaïch, H.P. Fierobe, C. Tardif, C. Gaudin, J.P. Bélaïch, Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in *Clostridium cellulolyticum*: comparison of various cohesin domains and subcellular localization of ORFXp, J. Bacteriol. 181 (1999) 1801–1810.
- [107] Y. Tamaru, R.H. Doi, Three surface layer homology domains at the N-terminus of the *Clostridium cellulovorans* major cellulosomal subunit EngE, J. Bacteriol. 181 (1999) 3270–3276.
- [108] A. Kosugi, K. Murashima, Y. Tamaru, R.H. Doi, Cell-surfaceanchoring role of N-terminal surface layer homology domains of *Clostridium cellulovorans* EngE, J. Bacteriol. 184 (2002) 884–888.
- [109] W.W. Navarre, O. Schneewind, Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope, Microbiol. Mol. Biol. Rev. 63 (1999) 174–229.
- [110] M.J. Pallen, A.C. Lam, M. Antonio, K. Dunbar, An embarrassment of sortase—A richness of substrates? Trends Microbiol. 9 (2001) 97–101.
- [111] S.G. Lee, V. Pancholi, V.A. Fischetti, Characterization of unique glycosylated anchor endopeptidase that cleaves the LPXTG sequence motif of cell surface proteins of Gram-positive bacteria, J. Biol. Chem. 277 (2002) 46912–46922.
- [112] D. Comfort, R.T. Clubb, A comparative genome analysis identifies distinct sorting pathways in Gram-positive bacteria, Infect. Immun. 72 (2004) 2710–2722.
- [113] R.M. Macnab, How bacteria assemble flagella, Annu. Rev. Microbiol. 57 (2003) 77–100.
- [114] R. Macnab, Type III flagellar protein export and flagellar assembly, Biochim. Biophys. Acta, Mol. Cell Res. 1694 (2004) 207–217.
- [115] T. Iino, Y. Komeda, K. Kutsukake, R.M. Macnab, P. Matsumura, New unified nomenclature for the flagellar genes of *Escherichia coli* and *Salmonella typhimurium*, Microbiol. Rev. 52 (1988) 533–535.
- [116] S.L. Bardy, Y.M. Sandy, K.F. Jarrell, Prokaryotic motility structures, Microbiology 149 (2003) 295–304.
- [117] V.T. Lee, O.J. Schneewind, Yop fusions to tightly folded protein domains and their effects on *Yersinia enterocolitica* Type III secretion, J. Bacteriol. 184 (2002) 3740–3745.
- [118] Q. Jin, S.Y. He, Role of the Hrp pilus in Type III protein secretion in *Pseudomonas syringae*, Science 294 (2001) 2556–2558.
- [119] G.M. Young, D.H. Schmiel, V.L. Miller, A new pathway for the secretion of virulence factors by bacteria, the flagellar export apparatus functions as a protein-secretion system, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 6456–6461.
- [120] M.E. Konkel, J.D. Klena, V. Rivera-Amill, M.R. Monteville, D. Biswas, B. Raphael, J. Mickelson, Secretion of virulence proteins from *Campylobacter jejuni* is dependent on a functional flagellar export apparatus, J. Bacteriol. 186 (2004) 3296–3303.
- [121] D. Gygi, M.J. Bailey, C. Allison, C. Hughes, Requirement for FlhA in flagella assembly and swarm-cell differentiation by *Proteus mirabilis*, Mol. Microbiol. 15 (1995) 761–769.
- [122] E. Ghelardi, F. Celandroni, S. Salvetti, D.J. Beecher, M. Gominet, D. Lereclus, A.C. Wong, S. Senesi, Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in *Bacillus thuringiensis*, J. Bacteriol. 184 (2002) 6424–6433.
- [123] N.A. Gutierrez, I.S. Maddox, Role of chemotaxis in solvent production by *Clostridium acetobutylicum*, Appl. Environ. Microbiol. 53 (1987) 1924–1927.
- [124] M.J. Spivey, The acetone/butanol/ethanol fermentation, Proc. Biochem. 13 (1978) 2–5.

- [125] C.A. Tomas, N.E. Welker, E.T. Papoutsakis, Overexpression of groESL in *Clostridium acetobutylicum* results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program, Appl. Environ. Microbiol. 69 (2003) 4951–4965.
- [126] C.A. Tomas, K.V. Alsaker, H.P. Bonarius, W.T. Hendriksen, H. Yang, J.A. Beamish, C.J. Paredes, E.T. Papoutsakis, DNA array-based transcriptional analysis of asporogenous, nonsolventogenic *Clostridium acetobutylicum* strains SKO1 and M5, J. Bacteriol. 185 (2003) 4539–4547.
- [127] S.I. Aizawa, Bacterial flagella and Type III secretion systems, FEMS Microbiol. Lett. 202 (2001) 157–164.
- [128] D. Dubnau, DNA uptake in bacteria, Annu. Rev. Microbiol. 53 (1999) 217–244.
- [129] C.R. Peabody, Y.J. Chung, M.R. Yen, D. Vidal-Ingigliardi, A.P. Pugsley, M.H. Saier Jr., Type II protein secretion and its relationship to bacterial Type 4 pili and archaeal flagella, Microbiology 149 (2003) 3051–3072.
- [130] D. Dubnau, R. Provvedi, Internalizing DNA, Res. Microbiol. 151 (2000) 475–480.
- [131] Y.S. Chung, F. Breidt, D. Dubnau, Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of *Bacillus subtilis*, Mol. Microbiol. 29 (1998) 905–913.
- [132] M. Sandkvist, Biology of Type II secretion, Mol. Microbiol. 40 (2001) 271–283.
- [133] S.C. Kachlany, P.J. Planet, M.K. Bhattacharjee, E. Kollia, R. DeSalle, D.H. Fine, D.H. Figurski, Nonspecific adherence by *Actinobacillus actinomycetemcomitans* requires genes widespread in *Bacteria* and *Archaea*, J. Bacteriol. 182 (2000) 6169–6176.
- [134] H.C. Schreiner, K. Sinatra, J.B. Kaplan, D. Furgang, S.C. Kachlany, P.J. Planet, B.A. Perez, D.H. Figurski, D.H. Fine, Tight-adherence genes of *Actinobacillus actinomycetemcomitans* are required for virulence in a rat model, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 7295–7300.
- [135] P.J. Planet, S.C. Kachlany, D.H. Fine, R. DeSalle, D.H. Figurski, The widespread colonization island of *Actinobacillus actinomycetemcomitans*, Nat. Genet. 34 (2003) 193–198.
- [136] M.K. Bhattacharjee, S.C. Kachlany, D.H. Fine, D.H. Figurski, Nonspecific adherence and fibril biogenesis by *Actinobacillus actinomycetemcomitans*, J. Bacteriol. 183 (2001) 5927–5936.
- [137] J.M. Skerker, L. Shapiro, Identification and cell cycle control of a novel system in *Caulobacter cresentus*, EMBO J. 19 (2000) 3223–3234.
- [138] S.C. Kachlany, P.J. Planet, R. Desalle, D.H. Fine, D.H. Figurski, J.B. Kaplan, *flp-1*, the first representative of a new pilin gene subfamily, is required for non-specific adherence of *Actinobacillus actino-mycetemcomitans*, Mol. Microbiol. 40 (2001) 542–554.
- [139] S.C. Kachlany, P.J. Planet, R. DeSalle, D.H. Fine, D.H. Figurski, Genes for tight adherence of *Actinobacillus actinomycetemcomitans*: from plaque to plague to pond scum, Trends Microbiol. 9 (2001) 429–437.
- [140] I.N. Wang, D.L. Smith, R. Young, Holins: the protein clocks of bacteriophage infections, Annu. Rev. Microbiol. 54 (2000) 799–825.
- [141] K.W. Bayles, Are the molecular strategies that control apoptosis conserved in bacteria? Trends Microbiol. 11 (2003) 306–311.
- [142] K.H. Groicher, B.A. Firek, D.F. Fujimoto, K.W. Bayles, The *Staphylococcus aureus lrgAB* operon modulates murein hydrolase activity and penicillin tolerance, J. Bacteriol. 182 (2000) 1794–1801.
- [143] K.C. Rice, B.A. Firek, J.B. Nelson, S.J. Yang, T.G. Patton, K.W. Bayles, The *Staphylococcus aureus cidAB* operon: evaluation of its role in regulation of murein hydrolase activity and penicillin tolerance, J. Bacteriol. 185 (2003) 2635–2643.
- [144] C. Croux, B. Canard, G. Goma, P. Soucaille, Autolysis of *Clostridium acetobutylicum* ATCC824, J. Gen. Microbiol. 138 (1992) 861–869.

- [145] K.S. Tan, B.Y. Wee, K.P. Song, Evidence for holin function of *tcdE* gene in the pathogenicity of *Clostridium difficile*, J. Med. Microbiol. 50 (2001) 613–619.
- [146] N.C. Gey Van Pittius, J. Gamieldien, W. Hide, G.D. Brown, R.J. Siezen, A.D. Beyers, The ESAT-6 gene cluster of *Mycobacterium tuberculosis* and other high G+C Gram-positive bacteria, Genome Biol. 2 (2001) 0044.1–0044.18.
- [147] A.L. Sørensen, S. Nagai, G. Houen, P. Andersen, A.B. Andersen, Purification and characterization of a low-molecular-mass t-cell antigen secreted by *Mycobacterium tuberculosis*, Infect. Immun. 63 (1995) 1710–1717.
- [148] T. Hsu, S.M. Hingley-Wilson, B. Chen, M. Chen, A.Z. Dai, P.M. Morin, C.B. Marks, J. Padiyar, C. Goulding, M. Gingery, D. Eisenberg, R.G. Russell, S.C. Derrick, F.M. Collins, S.L. Morris, C.H. King, W.R. Jacobs Jr., The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 12420–12425.
- [149] D. Durocher, S.P. Jackson, The FHA domain, FEBS Lett. 513 (2002) 58-66.
- [150] D. Durocher, Bacterial signal transduction: a FHAscinating glimpse at the origins of phospho-dependent signal transduction, Trends Microbiol. 11 (2003) 67–68.
- [151] M. Pallen, R. Chaudhuri, A. Khan, Bacterial FHA domains: neglected players in the phospho-threonine signalling game? Trends Microbiol. 11 (2002) 556–563.
- [152] G. Schneider, How many potentially secreted proteins are contained in a bacterial genome? Gene 237 (1999) 113–121.
- [153] H. Antelmann, H. Tjalsma, B. Voigt, S. Ohlmeier, S. Bron, J.M. van Dijl, M. Hecker, A proteomic view on genome-based signal peptide predictions, Genome Res. 11 (2001) 1484–1502.
- [154] A. Danchin, Genomes and evolution, Curr. Issues Mol. Biol. 5 (2003) 37-42.
- [155] K. Mukherjee, S. Karlsson, L.G. Burman, T. Akerlund, Proteins released during high toxin production in *Clostridium difficile*, Microbiology 148 (2002) 2245–2253.
- [156] T. Shimizu, K. Shima, K.I. Yoshino, K. Yonezawa, T. Shimizu, H. Hayashi, Proteome and transciptome analysis of the virulence genes regulated by the VirR/VirS system in *Clostridium perfringens*, J. Bacteriol. 184 (2002) 2587–2594.
- [157] D.M. Downs, Genomics and bacterial metabolism, Curr. Issues Mol. Biol. 5 (2003) 17–25.
- [158] J. Rosch, M. Caparon, A microdomain for protein secretion in Grampositive bacteria, Science 304 (2004) 1513–1515.
- [159] H. Adams, P.A. Scotti, H. De Cock, J. Luirink, J. Tommassen, The presence of a helix breaker in the hydrophobic core of signal sequences of secretory proteins prevents recognition by the signalrecognition particle in *Escherichia coli*, Eur. J. Biochem. 269 (2002) 5564–5571.
- [160] M. Desvaux, The cellulosome of *Clostridium cellulolyticum*, Enzyme Microb. Technol. (2005), doi:10.1016/j.enzmictec.2004.04.025.
- [161] M. Desvaux, *Clostridium cellulolyticum*: model organism of mesophilic cellulolytic clostridia, FEMS Microbiol. Rev. (2005), doi:10.1016/j.femsre.2004.11.003.
- [162] W.H. Schwarz, The cellulosome and cellulose degradation by anaerobic bacteria, Appl. Microbiol. Biotechnol. 56 (2001) 634–649.
- [163] G.K. Paterson, T.J. Mitchell, The biology of Gram-positive sortase enzymes, Trends Microbiol. 12 (2004) 89–95.
- [164] M. Marino, M. Banerjee, R. Jonquieres, P. Cossart, P. Ghosh, GW domains of the *Listeria monocytogenes* invasion protein InIB are SH3-like and mediate binding to host ligands, EMBO J. 21 (2002) 5623-5634.
- [165] R. Koebnik, The role of bacterial pili in protein and DNA translocation, Trends Microbiol. 9 (2001) 586–590.

- [166] H. Ton-That, O. Schneewind, Assembly of pili in Gram-positive bacteria, Trends Microbiol. 12 (2004) 228–234.
- [167] I. Chen, D. Dubnau, DNA transport during transformation, Front. Biosci. 8 (2003) s544-s556.
- [168] I. Chen, D. Dubnau, DNA uptake during bacterial transformation, Nat. Rev., Microbiol. 2 (2004) 241–249.
- [169] J.S. Mattick, Type 4 pili and twitching motility, Annu. Rev. Microbiol. 56 (2002) 289–314.
- [170] M. Koomey, Competence for natural transformation in *Neisseria gonorrhoeae*: a model system for studies of horizontal gene transfer, APMIS 84 (1998) 56–61.
- [171] S.P. Borriello, Pathogenesis of *Clostridium difficile* infection, J. Antimicrob. Chemother. 41 (1998) 13–19.
- [172] M. Lyristis, Z.L. Boynton, D. Petersen, Z. Kan, G.N. Bennett, F.B. Rudolph, Cloning, sequencing, and characterization of the gene encoding flagellin, *flaC*, and the post-translational modification of flagellin, FlaC, from *Clostridium acetobutylicum* ATCC824, Anaerobe 6 (2000) 69–79.
- [173] M. Holden, L. Crossman, A. Cerdeno-Taraga, J. Parkhill, Pathogenomics of non-pathogens, Nat. Rev., Microbiol. 2 (2004) 91.
- [174] K.R. Sakharkar, M.K. Sakharkar, V.T. Chow, A novel genomics approach for the identification of drug targets in pathogens, with special reference to *Pseudomonas aeruginosa*, In Silico Biol. 4 (2004) 0028.
- [175] R.H. Doi, A. Kosugi, Cellulosomes: plant-cell-wall-degrading enzymes complexes, Nat. Rev., Microbiol. 2 (2004) 541–551.
- [176] G. Koraimann, Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria, Cell. Mol. Life Sci. 60 (2003) 2371–2388.
- [177] O. Matsushita, A. Okabe, Clostridial hydrolytic enzymes degrading extracellular components, Toxicon 39 (2001) 1769–1780.
- [178] E.A. Johnson, Clostridial toxins as therapeutic agents: benefits of nature's most toxic proteins, Annu. Rev. Microbiol. 53 (1999) 551–575.
- [179] K.R. Kessler, R. Benecke, Botulinum toxin: from poison to remedy, Neurotoxicology 18 (1997) 761–770.
- [180] N.P. Minton, M.L. Mauchline, M.J. Lemmon, J.K. Brehm, M. Fox, N.P. Michael, A. Giaccia, J.M. Brown, Chemotherapeutic tumor targeting using clostridial spores, FEMS Microbiol. Rev. 17 (1995) 357–364.
- [181] N.P. Minton, *Clostridia* in cancer therapy, Nat. Rev., Microbiol. 1 (2003) 237–242.
- [182] P. Lambina, J. Theysb, W. Landuyta, P. Rijkenc, A. Van der Kogelc, E. Van der Schuerena, R. Hodgkissd, J. Fowlera, S. Nuytsb, E. De Bruijna, L. Van Mellaertb, J. Anné, Colonisation of *Clostridium* in the body is restricted to hypoxic and necrotic areas of tumours, Anaerobe 4 (1998) 183–188.
- [183] L.H. Dang, C. Bettegowda, D.L. Huso, K.W. Kinzler, B. Vogelstein, Combination bacteriolytic therapy for the treatment of experimental tumors, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 15155–15160.
- [184] J. Theys, A.W. Landuyt, S. Nuyts, L. Van Mellaert, P. Lambin, J. Anne, W. Landuyt, *Clostridium* as a tumor-specific delivery system of therapeutic proteins, Cancer Detect. Prev. 25 (2001) 548–557.
- [185] S. Nuyts, L. Van Mellaert, J. Theys, W. Landuyt, P. Lambin, J. Anne, *Clostridium* spores for tumor-specific drug delivery, Anticancer Drugs 13 (2002) 115–125.
- [186] J. Theys, S. Nuyts, W. Landuyt, L. Van Mellaert, C. Dillen, M. Bohringer, P. Durre, P. Lambin, J. Anne, Stable *Escherichia coli– Clostridium acetobutylicum* shuttle vector for secretion of murine tumor necrosis factor alpha, Appl. Environ. Microbiol. 65 (1999) 4295–4300.
- [187] R.K. Jain, N.S. Forbes, Can engineered bacteria help control cancer? Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 14748–14780.