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The concept of tight extensions of a metric space is introduced, the existence of
an essentially unique maximal tight extension T,—the “tight span,” being an
abstract analogon of the convex hull—is established for any given metric space X
and its properties are studied. Applications with respect to (1) the existence of
embeddings of a metric space into trees, (2) optimal graphs realizing a metric
space, and (3) the cohomological dimension of groups with specific length functions
are discussed.
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0. INTRODUCTION

Let X be a metric space with #X>2 and let D: XxXX-R:
(x, )= D(x, y) =: xy denote its distance map, so we have

(D1) xy=yx>0,
(D2) xy=0<x=y, and
D3) xy+yz2xz

for all x, y,z€ X. X is defined to be a (metric) tree, if it satisfies the
following two conditions:

(T1) For any x, y € X there exists a unique isometric embedding

9 =9, , of the closed interval [0,xy] SR into X such that ¢(0)=x and
o(xy)=y.

(T2) For any injective continuous map ¢: [0, 1] <= X: ¢+ x, of the

unit interval [0, 1] = R into X and any ¢ € [0, 1] one has x,x, + x,X; = X, X,.

Note that (T1) and (T2) together imply that for any two elements x, y € X

in a tree there is —up to parametrization—only one injective continuous
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map ¢: [0,1] - X: t+— x, with x, = x and x, = y, namely the map given by
xtz(px,y(t -xy) (1€ [0, 1]).

It has been shown (cf. [28, 3, 22, 16, 6]) that a metric space X can be
embedded isometrically into a tree if and only if X satisfies the following
condition:

(T) For any x, y,v, w € X the inequality xy + vw > xv + yw implies
Xy + 0w =Xxw+ yv

or, equivalently,

(T") For all x, y, v, w € X one has xy + vw  sup(xv + yw, xw + pv),
(in which case X will be called tree-like).

Moreover, if X is tree-like, then X determines a “smallest” tree 7% in
which it can be embedded uniquely up to isomorphism, i.e., for any tree-like
X there exists a tree T% and an isometric embedding ¢: X < T}, such that
for any other isometric embedding w: X < Y into a tree Y there exists a
unique isometric embedding p: T% — Y with p o ¢ = y:

T
=" i
N#

There are several interesting applications of the construction X ~ T§
which fall into the area of combinatorial group theory (cf. [15, 16, 2, 12]),
and—maybe even more importantly—there are quite a few papers trying to
approximate a given finite metric by tree-like metrics which fall into the area
of mathematical taxonomy, i.e., which are concerned with the reconstruction
of phylogenetic (or other) trees from distance matrices representing the
(weighted) dissimilarity of present species (cf. [2, 5-8, 18, 19, 23-25, 27, 29,
35, 36]). While trying to understand the significance of the construction
X ~ T from a purely mathematical point of view it turned out that it can
be extended to a construction, denoted by X ~ T, which is defined for
arbitrary metric spaces and, in a way, mimics the convex hull construction
defined for subsets of linear spaces. It is the purpose of this paper to
introduce this rather natural construction and the quite elementary concepts
related to it, as well as to discuss some of its properties and its applications.

To this end we define an extension Y of a metric space X to be a tight
extension, if for any map d: Y X Y- R satisfying the conditions (D1) and
(D3) above as well as the conditions d(x,, x,) = x, x, for all x,,x, € X and
d(y,, y,) <1, », for all y,, y, €Y one has necessarily d(y,, y,) = y, y, for
all y,, y, €Y; thus, for example, the completion X of X is necessarily a tight
extension of X for any metric space X. More generally, we have
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THEOREM 1. An extension Y of a metric space X is tight if and only if
V1Y =sup(X, X, — X, ¥, — y. %, | Xy, X, € X)
holds for all y,, y, € Y.

A metric space X is defined to be fully spread, if it has no proper tight
extension—so a fully spread metric space X is necessarily complete. Fully
spread spaces are characterized by

THEOREM 2. For a metric space X the following conditions are
equivalent:

(i) For any map f: X - R satisfying f(x) + f(y) > xy forall x, yE X
there exists some x € X with f(y) > xy for all y € X.

(i) For any subspace YSX and any map f: Y- R satisfying
S(x)+ f(x) > xy for all x, y €Y there exists some x € X with f(y) > xy for
allyey.

(iii) For any f: X - R satisfying f(x)=sup(xy — f(y)| y € X) for all
X € X there exists some x € X with f(x)=0.

(iv) For any subspace YS X and any f: Y- R satisfying f(y) =
sup(yz — f(2) |z € Y) for all y E Y there exists some x € X with f(y) = xy
forallyey,

(v) X is fully spread.

Moreover, if X is compact, then it is fully spread if and only if for any
finite subset Y <X and any map f: Y- R with f(y)+ f(z) > yz for all
¥, z € Y there exists some x'€ X with xy < f(») for all y € Y if and only if
for any finite subset Y X and any map f: Y- R with f(y)=
max(zy — f(z)| z € Y) for all y € Y there exists some x € X with xy = f(y)
for all y€ Y.

Finally, if X is fully spread, then it is contractible; more precisely, for any
X € X there exists a homotopy [0,1] X X— X: (¢, y)+— H,(p) satisfying
YH(y)=1t-xy and xH,(y)=(1—1) - xp for all y € X.

That for any metric space X there exists an essentially unique maximal
tight extension, the “tight span” of X, follows from

THEOREM 3. For a metric space X let Ty denote the set of all f: X > R
satisfying

S(x)=sup(xy — f(y)| y EX)

Jor all x€ X. For any x € X let h, denote the map h,: X > R: yr xy.
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For any two maps f, g X-R define ||f,gll by |f¢gl=:
sup(| f(x) — g(x)| | xE€X)ERU {o0}. Then the following hold:

(i) h,€Tyforall xeX.
Gi) |h,Sfll=fC)forallxEX and all fE Ty.

(i) &/l = sup(g(x)—Sfx)[x€X) = sup(xy— g(y)—Sx)|x,
yEX)K g+ fix) forall f, g€ Ty and x € X.

(iv) Forall f€T, and all x, y € X one has |f(x) — f(y) < xp.

(v) Forfig: X-R writef< giff(x)< g(x)forallxeX. Then T,
consists of the set of minimal elements in P, = {g: X > R | gx) + g(») > xp
for all x, y € X} (wr.t. ) and for any g € P, there exists some f € T, with
f<e

(vi) For any extension Y of X there exists an isometry ¢: T, — T,

with o(ly=Sforall fET,.
(vii) If'Y is a tight extension of X and f € Ty, then f|, is contained in
T, and the map

Ty-Ty:f— flx

is a bijectian, satisfving |\ f, gll = flx, glx|l for all £, g € T\, ie., Ty—=Ty:
[ [y is an isomorphism.

Altogether, it follows that T, is a metric space with respect to the map
T, XTe—R: (f,e)— |/ gll, that X< T,: xr>h, is an isometric
embedding, that T, considered as an extension of X is tight, that T is
compact if and only if the completion X of X is compact and that an
extension Y of X is tight, if and only if the map Y- Ty: y+— k| is an
isometric embedding, in which case it is the only isometric embedding y:
Y - T, satisfying w(x)=h, for all x € X and it extends to an isomorphism
Ty> Ty f = fly

In other words, T is the “universal tight extension” or the “tight span” of
X, T, is fully spread for all metric spaces X and a space X itself is fully
spread if and only if the embedding X < T,: x+ A, is surjective or,
equivalently, an isomorphism.

In case X is compact then—analogously to the theory of compact convex
spaces—one can always find a uniquely determined smallest compact subset
of X, the “frame of X’ denoted by F, such that X is a tight extension of F.
This is stated in detail in

THEOREM 4. Let X be a compact metric space and let Y be a closed
subspace of X. Then the following two conditions are equivalent:

(i) X is a tight extension of Y,
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(ii) Y contains the set Fy of all y € X for which there exists some
X € X with xy + yz > xz for all z € X\{y}.

In particular, for any x,, x, € X there exist y,, y, € F, such that

W= 0X XX+ X0,
and for any x € X and y € F, there is some z € Fy with zy = zx + xy.

If X is a finite metric space then T, is closely related to the problem of
constructing “optimal realizations of X by networks,” i.e., of constructing
systems I'=(V, &, 1) with V being a set containing X and representing the
vertices of I', & being a subset of .%5(V) = {e S V| #e = 2}, representing the
edges of I, with supp & =: (J,cse=Vand : &> R, = {rER|r> 0} being
a “length function” such that for any x, y € X with x# y one has xy=
inf(/({vg, v, }) + I({vy, ) + - + H{v,_ 1, VD [ RENS Dg=x, Vysy 0,y
V,=YEV; {vg 01}y {U,_1,0,} €E&) and such that ||| =:>,.5(e) is
minimal with respect to these properties (cf. [10, 22, 13, 31, 14]). If
I'=(V,&,]) satisfies all of the above conditions except perhaps the
minimality condition concerning || I']|, then I" will be called a realization of X.

Concerning optimal realizations of finite metric spaces by networks we
can show

THEOREM 5. If X is a finite metric space and if I'=(V,&,1) is an
optimal realization of X, then there exists a map y: V- Ty with w(x)=h,
Jor all x€X and |y, w,)|=I{v,,v,}) for all v,,v,EV with
(v, 0,} EEL.

In view of Theorem 5 the following simple observation can be considered
as a generalization of a result concerning optimal realizations which has
been proved by Imrich and Stotzkii (cf. [14}]).

THEOREM 6. If X is a metric space and if there exists a nontrivial
partition X =Y\ Z and a map f: X - R satisfying f(x) + f(y) > xy for all
x,yEX as well as f(y)+ f(z)=yz for all yE Y and zE€ Z, then fE Ty
and T,\{f} is the disjoint union of the two open subsets &, = {g € Ty | there
exists some y € Y with g(y) < f(»)} and &,={g € Ty| there exists some
z € Z with g(z) < f(z)}.

In particular, for any isometry ¢: [0, r] - Ty with g, = ¢(0) € &, and g, =
o(r) € @, one has necessarily f€ ¢([0,r]) and thus one has | g,, &l =
I &> Sl + I/ &l for any g, € &, and g, € 5.

It should be noted that so far no efficient construction of all or at least of

one optimal realization of a given finite metric space seems to be known and
that there are finite metric spaces X with #X = 5 which have two essentially
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nonisomorphic optimal realizations (see the Appendix). Thus the following
observation may be of interest: for a finite metric space X we define
hereditarily optimal realizations (¥, &, [) of X by induction with respect to
#X: if #X < 2, then any optimal realization of X is defined to be hereditarily
optimal. If #X = k and if hereditarily optimal realizations of Y have been
defined already for all metric space Y with #Y < k, then a realization I'=
(V,&,1) of X © V is defined to be hereditarily optimal if for any Y & X there
is some &' <& such that YS V' =:supp &’ and I'" =: (V', &', 1|,) is a
hereditarily optimal realization of Y, if ¥ =supp & and if ||I'|| is minimal
with respect to these properties.
Concerning hereditarily optimal realizations we can show

THEOREM 7. For a finite metric space X let V. denote the set of all
[ € Ty for which the symmetric relation

A= {(X%, V) EXXX| () + (M) =x} S XXX

is X-connected and nonbipartite (i.e., for which %, satisfies X X X =
Unen Z7" with & denoting the n-fold relational power of %), identify X
with {h, | x €V} Vy, let &, denote the set of all subsets {f, g} <V with
[ # g for which #;N\.%, is X-connected (i.e., X X X =U,en(ZNF)")
and let 1,,: &, — R be defined by I,({f, g}) =/, gl for all {f, g} € &,. Then
I'y=Vy, &, 1y) is a hereditarily optimal realization of X and any other
hereditarily optimal realization I' = (V, &, 1) is essentially isomorphic to Ty,
ie., it becomes isomorphic to I'y once vertices v E V\X with deg v =
#le€ & |v € el =2 have been deleted one by one and the corresponding
edges e, ={v,u,}, e,={v,u,} €& have been replaced by {u,,u,\—with
I{uy, uy}) =1I({u,, v}) + I({v, u,}), of course.

Remark. It was this generalization of the theorem of Simdes-Pereira
mentioned above which originally motivated the study of tight spans of
metric spaces.

Finally, we have to relate the T,-construction to the original problem of
embedding a tree-like metric space X into a tree. This is done in

THEOREM 8. Let X be a metric space. Then the following conditions are
equivalent:

(i) X is tree-like;

(i) Ty is a tree;
(iii) Ty={f€ Tx| X =suppH;=:Uix,pe; 1% ¥}} is a tree;
(iv) the small inductive dimension ind T, of Ty is 1;
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(iv’) any closed separable subspace of Ty has topological dimension
K1, in particular, dim Ty < 1 for any finite Y € X;

(v) For any Y < X with #Y =4 one has dim T, = 1;

(vi) %} is completely multipartite for any f € Ty, i.e., for any f € Ty is
X X X\%Z; an equivalence relation on its support;

(vii) X can be embedded isometrically into a tree.

Moreover, in this case, any isometric embedding of X into a tree T extends
uniquely to an isometric embedding of T% into T. And, finally, a metric space
X is a tree if and only if it is tree-like and connected, in which case its
completion X coincides with Ty.

Remark. 1 conjecture that even for nonseparable tree-like spaces X we
have dim T, = 1, so that X is tree-like if and only if dim T, = 1.

In this context we mention still another result which generalizes part of
Theorem 8 to higher dimensions.

THEOREM 9. Let X be a metric space. Then the topological dimension of
T, is smaller than some n € N for all finite subspaces Y < X if and only if
Jor all x,,x_,, X33 X_55s Xps X_, € X there exists some permutation a of
{21, £2,.., tn} =T with a#—Id, and Y ;. x;x_; < D ier XiX oy -

Remark. It seems reasonable to conjecture that the above conditions are
in turn equivalent to dim T, < n. This holds at least if xy € N = {0, 1....} for
all x, y € X which in turn implies the following generalization of a theorem
of Lyndon (cf. [17], see also [4, 11, 12, 15, 34, 37]):

THEOREM 10. Let G be a group and let I: G - Z be a “length function,”
i.e., a map satisfying

(L1) Kg)=Ug ")>0,

(L2) Ug)=0<=g=1,

(L3) U(gh)<!(g)+(h), and

(L4) #{g"|n€Z}< oo < sup(l(g")|n€Z)< .

If for any x,,X_ s Xps X_, € G one can find some permutation o of I =:
{£1,., £1} with a#—Id, and ¥, 106;x2)) < Xies XX o)), then any
torsion-free subgroup of G must have cohomological dimension smaller
than n.

More precisely, if G is torsion free, if #{, denotes the set of all

A& C G X G with G=supp % for which there exists some f: G- R with
A ={(x y)EGX G| f(x)+f(y)=Ux""y)} and f(x) + f(y) > I(x""y) for
all x,y€G and for which W,=:{v€R?|v(x)+v(y)=0 for all

607/53/3-5
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(x, ») €%} has dimension k, if for any such # € .#{¥ , one denotes
by G% the set of all sequences (x,,.,x,)EG for which the map
Pixyoixt W™ R*: v (0(x,)y, v(x,)) is an isomorphism, if for
(X1ses X))y (Fysees Vi) € G% one  defines  sgn((x, s X))y (¥y5eems Y1) =
sgn(det(9y,,....xp © @G .....v0)) and if one denotes by C, = C,(G, I) the free
abelian group, generated by all systems (7; x,,..., x;) with Z" € #Z (&, and
(X130 X, ) E G%  modulo the relations (75X, e, X;) — SEO((X] yoeer X1)s
(yl""’ yk)) : (j); Vi yk)’ then 07 ? CO(G’ l) < CI(G’ l) AR
C,_(G, )« 0 is a free resolution of the trivial G-module Z if G acts on
CuG, 1) by g (F3x,0s X;) = (87 Xy g%,) With g7 =: {(gx, gy)|
(x, VEZ}, d: Cy(G,1)> Z is defined by d(#)=1 and d: C,, (G, ])-
C(G,l) is defined in the following way: if ¥ € #", and
(Xy5es X4 1) € GEFY, then there are only finitely many 7" € #(, with
¥ < %, for each such %7 there exists a minimal i =i , € {1,.., k + 1} such
that  (Xyye,  Kjpee X4u1) EGY%, and some v=v,E W A\W, with
v(x)+v(y)>0 for all (x, y) €.#. Now define

L Xy seres Xy 1)

=: N sgn(v (X, )+ (1) - (T X ey By i Xpy 1)

g k 3
KeRk L X

Another free resolution 0« 7 «? By(G,1) «? B,(G,[)«--- « B,_,(G,])
« 0 of the trivial G-module Z is obtained if one defines B, (G, [) to be the free
abelian  group  generated by all  sequences  (Fy, H] s F)
with 0, s ME R o=t Uien#(G,y and H242 24,
d:By(G,)>7 by d(F)=1 and & Hgpr Fpr1) =2 i Fa (—1) (Hpser
Hyer B

Note that the second resolution has much “larger” chain groups B, (G, /)
though it has simpler boundary maps.

Remark. An example of a group with such a length function—though
one, for which the conclusion of Theorem 10 is trivial—is G = Z* with [:
7% > Z given by

(1 5eer 1)) = sUP( 72 [sress [ 74 ])-

In subsequent papers I will discuss some further minimality properties of
T, as well as some results concerning the existence and the homogeneity of
“universal k-trees” (k€ N), i.e., of trees T such that for any x € T the
complement T\{x} consists of precisely k connected components and which
are complete as metric spaces.

The organization of the paper is as follows: in Section 1 the general theory
of tight extensions is developed, in Section 2 the Theorems 1-4 are being
deduced, in Section3 the theory of optimal and hereditarily optimal
networks is developed (with some remarks banned into an Appendix to this
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paper) and Theorems 5—7 are proved, Section 4 deals with the theory of trees
(Theorem 8), Section 5 develops the concept of the combinatorial dimension
of metric spaces (Theorem 9), and Section 6 finally builds up the techniques
from which Theorem 10 is deduced.

Note added in proof. (1) As I learned in the meantime, the construction X ~ T, has
already been studied by J. R. Isbell (Comment. Math. Helv. 39 (1964-65), 65-74), where
results similar to those of Sections 1 and 2 are derived. (2) Results, which are closely
connected to the results derived in the Appendix, have also be obtained by Imrich and
Simoes—Pereira and will be published in Journal of Combinatorial Theory, Series B.

1. TaeE TiGHT SPAN OF A METRIC SPACE

In this section we collect a number of simple facts which will be useful for
the proofs of the above stated theorems later on.

(1.1) For a metric space X with its distance map D: X X X - R:
(x, ) D(x, y) = xy let

P,={ft1 X>R|fx)+f(y)>xpforallx, y € X}
and
Ty=:{f: X->R|f(x)=sup(xy— f(y)| yE€ X)forall x € X}.

Note that f(x) + f(x) > xx =0, i.e., f(x) >0 for all f € P, and x € X and
that a map f: X— R with f(x)=0 for some x € X is in P, if and only if
S =7 +/x) > yx for all y€ X.

(1.2) Note also that for any f € P, there exists a unique maximal
subset Y = X with f], € T, (which may be empty) since f € Py, f|, € Ty,
for a family {Y, S X|a € A} of subsets of X and Y= U),, Y, implies f()
> sup(yz—f(2)[z€X) > sup(yz—f(z)|z€Y) > sup(yz—f(2)|
z€Y)=f(y) for al a €4 and y€ Y, and thus f(y) =
sup(yz—f(z)|z€Y) forall y€ Y, ie., f|, € Ty.

For any Z © X let P =: {f € Py|flx\z € Ty\z} and let T =: Ty N P%. In
case Z = {x} write PL and T% instead of P{ and T, respectively.

(1.3) 1t follows also directly from the definitions that T, consists of
all /€ P, which are “minimal” in Py, i.e., for which no g€ P, with g 5 f
exists. Since on the one hand, g fE€ T, and g€ P, implies f(x)=
sup(xy — f(») |y EX) K sup(xy — g(») | yEX) < g(x) and thus f=g.
Whereas on the other hand, f(x) > sup(xy — f(»)| ¥ € X) for some f € P,
and some x € X allows us to introduce the map

pf): X-R:z> f(2) if z#x,
— sup(0, xy — f(¥)| yE X) if z=x,
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which is obviously also in P, and satisfies p.(f)(z) < f(z) for all z € X. But
p,(f)# f. since p. (f)(x) is either 0 (whereas f(x) > sup(xy — f(¥)| y € X)
implies f(x)>xx—f(x) and thus f(x)>0) or pJf) equals
sup(xy — f(») | y € X) which is also supposed to be smaller than f(x). Thus,
using Zorn’s lemma, one sees easily that for any f € P, there exists some
ge T, with g f-

Note for further use that the map p,: P,— P, satisfies p (f) < f by
its very construction and || p.(f), p.(@I<I|f gl for all f,gE€P,,
since p,(f)x) = sup(0,xy — f(»)| y € X) = sup(0, (xy — g(») + (g(y) —
Sy e X) < sup(0, xy— g(y)| y € X) +sup(0, g(y)—S(M)|yeX) <
p(8)x)+ 1/ gl and, just as well, p.(g)(x)< p(/)x)+]f gll which
implies [ p.(/). p(&)l = 5up(| () — ()N Y EX) < sup(lf: gll
S0 — g y€X\ix) =11, gl

(1.4) In particular, a map f € P, with f(x) =0 for some x € X and
thus f(y) 2 yx for all y € X is in T, if and only if f equals

h:X-R:y> px.

Thus f € T, and x € X # {x} implies f(x)=sup(xy — f(») |y € X\{x}),
since otherwise f(x) =xx — f(x) > xy — f(») for all y € X\{x}, i.e, f(x)=0
and f(¥) > xy for all y € X\{x}+ &, in contradiction to the above remark.
In particular, f, g € T, and f(y) = g(p) for all y € X\{x} implies /= g.

(1.5) Next we show that for any f€&€ T, its distance ||A,, f}|=
sup(|7,(z) — f(2)| | z€EX) to h, equals f(x): from f(z)=sup(zy—
Sy €X)<supzx +xy — f(¥) |y € X) = zx + sup(xy — f(») [ yEX) =
h(z) + f(x) we get f(z) — h,(z) < f(x) with equality holding true for z = x,
whereas A,(z) = xz < f(x) + f(z) implies h,(z) — f(z) < f(x), so altogether
we have indeed sup(| A, (z) — f(z)| | zE€X) = f(x).

(1.6) This formula has some interesting applications: at first it
shows that the map X Ty: x+— h, is an isometry, since |h,,h, | =
h(x)=xy for all x, y € X, it shows also that f, g€ T, implies ||/, g|| <
I el + || Ay gl = S(x) + g(x) for all x € X and thus || £, g|| < o0 and that
each f € T, satisfies | /(x) = f(») = I/ ol = £ Nl [ < 1Ay, By |l = xp for
all x, yE X.

(1.7) From the continuity condition |f(x)— f(y)<xy for all
fE Ty and x, y € X it follows easily that Ty can be identified with T, if X
denotes the completion of X, and that T,—being obviously complete as a
metric space—is a compact space if and only if X is precompact, i.e., X is
compact.
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(1.8) Next we observe that for f, g€ T, we have sup(f(x)—
g(x)|x € X) = sup(sup(xy — f(y) — g(x)| y € X) | x € X) = sup(sup(xy —
f(y)—gx)|x€X)|y € X) = sup(g(y) —f(y)| y EX) and thus ||/, g]| =
sup(f(x) — g(x)[x€EX) = sup(g(x)—flx)[xEX) = sup(xy—f(y)—
()| %, y € X) = sup(||y, k)| |, byl = Il & k|l ), » € X), which in turn
implies that T,, considered as an extension of X via the canonical
embedding X - Ty: x+— h,, is indeed a tight extension since, more
generally, and extension Y of X with y, y, =sup(x,x, —x, ¥, — ,x, € X)
for all y,, y, € Y is necessarily tight: if d: Y X Y > R satisfies the conditions
(D1) and (D3) from the Introduction as well as d(y,, y,) < y,», for all
Yi» ¥, € Y and d(x,, x,) = x, x, for all x,,x, € X, then for all y,, y,EY we
have  y,y,=sup(x;x, — X, ¥, — »yX, [ X, %, €X) < sup(d(xy, x,) —
d(x;, y1) —d(py, X,) | %15 X, € X) < d(py, y,) and thus y, y, =d(p,, y,)-

Another consequence of our formula || £, g|| = sup(f(x) - g(x) | x € X) =
sup(g(x) — f(x)|x € X) is that for xEX+#{x} and Y=2X\{x} the
restriction map Ty — P,: f— f*=: f|, satisfies ||/, g| =]/ g"|l for all
/L g€ Ty, ie., it is an isometry and so, in particular, we see once again that
it is injective (cf. (1.4)).

(1.9) To show that, moreover, T, is the “universal” tight extension
of X and that is contractible as well, we have to show that there exists
always a “retraction map” p: P, — Ty, i.e., a map satisfying the conditions

@) lp(f), P& < IS gl for all f; g € Py and
(b)Y p(f) < ffor all f € P, (and thus p(f) = ffor all f € T).

The existence of such a map p follows from Zorn’s lemma from which we
can conclude that the set % of all maps p: P, — P, satisfying the above
conditions (a) and (b) contains minimal elements with respect to the
ordering “p, < p, <> py(f) < po(f) and || p,(f), p1(&I <l P2(f), Po(&)] for
all f; g€ P,” together with the fact that the various maps p,.: Py~ P,:
S pf) (xE€X) (cf. (1.3)) are in .# and thus satisfy p, - p= p for any
minimal p € . which in turn implies p(Py) S T by (1.3) for any such
PE.Z.

Note that for any such p: P, —» T, and any f € P, with f|, € T, for some
Y< X one has necessarily f|, = p(f)y by (1.3), since p(f)|y € P, and
PNy < fly € Ty.

In particular for x€ X, Y=X\{x} and f € Py={h € P, |h|, € T} one
has p(f) = p,(f) for any such p, since p(f)ly =S|, = p.(/)ly by the above
remark and thus by (1.4): p(f)(x)=sup(xy—p(f/)(y)|yEY) =
sup(xy —f(») | yEY) = sup(0,xy—f(¥)|yEX) = p(f)x) in case
Y # @, whereas the remark is trivial in case Y = @. Hence, though there are
many possible choices for p, their images coincide on any f € Py for any
xeX.
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Remark. It seems worthwile to remark that one can circumvent the use
of Zorn’s lemma in this context. In fact, one can construct a “canonical”
retraction p: P, — T, in the following way:

For each f: X->R let f* denote the map f*: X->RU{0}:
x = sup(xy — f(¥)| y € X) so that f € P, if and only if f*  fand f € T, if
and only if f*=f. Now define q: Py~ Py by d(f)=3(f+/*). Since
()X +a()y) = @)+ A+ +/*0) = W)+
F*() + 3(F*(x) + £(»)) > 1xy + 1xy = xp for all x, y € X one has indeed
q(f)E Py for all f € P,. Since f*  f for f € P, one has also g(f) < f for
all f€ Py and, finally, one has [lg(f), q(g)l = sup(|3f(x)+3/*(x)—
be) -3l x€X) < 3 S gl + 3% ¥l < | gl since f*(x)=
sup(xy — f(»)| y € X) = sup(xy — g(¥) + g(») — f(¥)| yE€X) < g*(x) +
|l & fIl together with g*(x) </*(x)+ [ & fI| implies | /*, g*|| <|I/ gll for
all f, g € P,. Thus g satisfies the conditions (a) and (b) and, so, ¢" satisfies
the same conditions for all # € N. It follows that p=1lim,_ . q": Py— Py
defined by p(f)(x)=1im,_ ¢"(f)(x) is well defined and satisfies (a) and
(b) as well. Moreover, one has p(f) € Ty for all f € P, since g(f) € P, and
F*<q(f)=1(f*+ 1)< S together imply f*<q(f)*<q(f) and thus
a()(x) — g(f)*(x) < 3(f(x) — f*(x)) which in turn implies ¢"(f)(x)—
q"(f)* ) < (1/2")(f(x) —f*(x)) and hence p(f)(x)= p(f)*(x) for all
x € X, i.e., one has indeed p(f)= p(f)* or, equivalently, p(f) € T,. Note
that the same construction can also be used to circumvent the use of Zorn’s
lemma in (1.3).

(1.10) Using p we can define for any f€ T, a homotopy
[0, JX Ty~ Ty: (L g plg=:p(t-f+(1—1)-g) from py, the
identity on 7y, to p,, the constant map T, — {f} < Ty, hence T, is contrac-
tible. Note that, moreover, for any s, ¢ €& [0, 1] with s <t one has || p(g),
PRI LI — (1 —s)g ¢f — (1 — 1) gl = (¢ —5) - |Lf; gl which together with
I/ gll < IS = pi(g) P&l + 1 pdg): P&l +1ps(8), &= Po(g)| implies
Ip(8), P&l =(t~s)-|f gl for all g€ Ty and 0L s<r< 1. Thus [0,

If5 glll = Ty: £ p((/NS gIDS + (1S gll = D/f; gll) g) is an isometry of
the interval [0, || £, g]|] into T, connecting g and f.

(1.11) Another application of (1.9) is the observation that for any
extension Y of X there exists an isometry 7: T, < T, with 7(f)|, = ffor all
S € Ty: to construct 7 choose some fixed x € X and some retraction p:
P, — T, satisfying the conditions (a) and (b) in (1.9) and define t: T, > T,
as the composition of Ty — P, : f+— f' defined by

S Y->Riye f(p) if yEX,
— yx + f(x) if y& X,



COHOMOLOGICAL DIMENSION 333

and of p: Py— T,. Since 7(f)y= p(f')lx € Py and p(f’)|x =S we have
(y=f for all f €T, according to (1.3) and, since ||/, gl =z(/)x>
(@l < 201 (@ = | 2(f"), p(g'W < IS 8’| = ||/, &ll for all f; g € Ty,
it follows that t: Ty < Ty is an isometry. -

Note that in the particular case where—interchanging the role of X and
Y—we have Y =X\{x} for some x € X there is only one map r=r1,:
Ty - Ty with t(f)|y=f for all f € T, since the restriction map T, — P,:
f= f*=:f]|y is an isometry by (1.8). Hence—in view of the existence of at
least one isometry 7: T, - T, with 7(f)* = f for all f € T,—the restriction
map defines a bijective isometry between Ty =:{fET,|f*€T,} =
TyN Py and T, whose unique inverse is then our map t=r1,: T, - Ty,
constructed above.

Note also that for f € P5 one has necessarily p, (f)=r1,(f*) as well as
7. (f*) = p(f) for all retraction maps p: Py— Ty.

More generally, let Y € X denote an arbitrary subspace of X and consider
for some g € T, the map g*: X> R: x+ sup(xy — g(»)| y € Y). One has
obviously g*|, =g and it follows from the above considerations that
g*x)=inf(f(x)| fE€ Ty, fly=g =inf(f(x)|SE Py, fly=¢) In par-
ticular, the following statements are equivalent:

(i) g*EPX;
(i) g*€Ty;
(ili) for any f € T, with f|, = g one has /= g*;
(iv) for any f,, f, € T, with f|, = /3|, = g one has f, = f,.
Finally assume YCS X, f€ Ty, g€ Ty, and || fly, gl < ¢ for some ¢ > 0.

Then there exists some f’ € T, with /' |, = g and | f; f'|| < ¢&; consider at
first the map

T XoR:x— glx) if xey,
> fx)+e if x€X\Y.

Since g(x)> f(x)—¢ for x €Y one has f” € P,. Thus we may choose a
retraction p: Py — T, according to (1.9) and define f// =: p(f"). Since f'|, <
f"ly=g€Ty and f'|y € P, we have indeed f'|, = g. Moreover, we have
L)< S"(x) < f(x) + ¢ for all x € X and thus || f7, f]| < & by (1.8).

(1.12) Next we observe that for any tight extension Y = X and any
extension T2 X a given contracting map y: Y — T satisfying w(x) =x for
all x € X is necessarily an isometry since otherwise the map d: Y X Y- R:
(x, y) = w(x) w(y) would contradict the tightness of Y.
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(1.13) Now for a tight extension Y of X consider the restriction
map T, - Py: fi— f|y. Choose a retraction p: P,— T, satisfying the
conditions (a) and (b) in (1.9) and let y: T, — Ty: f— p(f|y) denote the
composition of p with this restriction map. According to (1.12), w must be
an isometry. As above let r: T,,— T, be an isometric embedding satisfying
2(f)x =/ for all f€ Ty. Then we have y(:(f)) = p(x(/)x) = p(f) = f for
all f € T, and thus, y is necessarily surjective. But a surjective isometry is
necessarily an isomorphism. So 7: T,— T, has to be the inverse
isomorphism and thus we have necessarily for any f € T, the formula f|, =
tw(MN)y = w(f) € Ty, i.e., the restriction map Ty — Py: [+ f|y maps T,
already into as well as onto T, without having to be composed with the
retraction map p. Thus, altogether we have proved that for any tight
extension Y of X the restriction Ty — Ty: f1> f|; induces a canonical
isomorphism between T, and T.

(1.14) As a first consequence we mention: if Y is a tight extension
of X, then A, is in Ty for any y € Y and the thus well-defined map Y - T :
Yy hy|y is an isometric embedding. Moreover, it is easily seen that it is the
only isometric embedding y: Y - T, satisfying w(x)= h, for all x € X since
for any such embedding w: Y- T,, any y€ Y and any x € X one has
necessarily h,|y (x) = xy = |ly(x), w(P)| = ||, w(¥)Il = w(y)(x) and thus one
has y(y)=hy|y-

(1.15) Another consequence is that T, is fully spread for any metric
space X, since Y =T, is a tight extension of X, and, hence, the restriction
map y: TyxTy: f> fly is a well-defined isomorphism satisfying
w(h,)x)=h,(x)=|y hJ|= y(x) for all yE Y=T, and x € X, i.e., y is the
inverse of Y=T,— Ty: y+>h,. This in turn implies that ¥Y=T,- Ty:
y+> hy is an isomorphism and thus Y =T, has no proper tight extension,
since any such extension embeds isometrically into Ty by (1.14), i.e., Y =T,
is indeed fully spread.

In particular, a space X is fully spread if and only if the embedding
X - Ty: x> h, is surjective and thus an isomorphism.

(1.16) Some examples: If #X = 2, say X = {a, b}, then T, ~ |0, ab]:
f > f(a) is easily seen to be a bijective isometry:

a b
T(a,bl e —

ab

In particular, one has T, = [h,, h,] =: {(1 — )k, + th, |t € [0, 1]}.



COHOMOLOGICAL DIMENSION 335

If #X =3, say X = {a, b, c}, then f;: X - R, defined by

ab+ac—cb )
fo(x)_—:+—2— if x=a,
b _
_betba—ca o,
2
ca+chb—ab .
=——7—— if x=g¢,

is the only element f if T, with f(x)+ f(y)=xy for all x, y € X, T, \{fy} is
the disjoint union of the open sets H,=:{f € Ty |f(x) < fy(x)}, (x € X);
H W {f,} WH,— [0,xy]: f+— f(x) is a bijective isometry for all x, yE X
with x # y and H, U {f} = [A,, f,] for all x € X:

If #X =4, say X = {a, b, ¢, d}, and if, say, ac + bd > ab + cd and ac + bd >
ad +bc, then Ty=:{fETy|f(@)+Sf(c)=ac, f(b)+fd)=bd} =
{fETy|f(@)+ f(])+ f(c)+f(d)=ac+ bd} is a closed subset of Ty, the
map T,~ R X R: fi ((f(a) + f(b) — ab)/2, (f(a) + f(d) — ad)/2) defines
a bijective isometry between T, and the subset [0, (ac + bd — ab — cd)/2] X
[0, (ac + bd —ad — be)/2] of R X R, if R X R is metricized by the “city
block metric” D((5;, 5,) (1 82)) =8, — ;| + |5, — £;)s Ty\T, is the disjoint
union of the open subsets H, =: {f € Ty| f(x) < k(x)} (x € X) with

_ad +ab—db

k(x) = 5 if x=a,
=.m lf x=b,

2

ch + cd — bd

= if x=¢

2
=-.‘1c__{_ia_—_ca_ lf x=d,

2

with

[ X-o Ry k(x) if y=x

> xy — k(x) if y#x



336 ANDREAS W. M. DRESS

S b
k(a)\ o d

a fb
k(b)
ac+bd-ab-cd
- T ==
4
k(/d)/ £, 5 fc\~<(°)

c

d

ac+bd-ad-bd
2

FIGURE Al

one has f, € Ty and H, U {f,} = [A,, f,|- Moreover, H, U {f,} - [0, k(x)]:
[ f(x) is a bijective isometry for each x € X, see Fig. Al. In other words,
for any distance map D: X X X —» R with ac + bd > ab + c¢d and ac + bd >
ad + bc, there exist 6 uniquely determined nonnegative numbers a, §, v, 4, 7,
¢ such that the distance matrix is given by

D a b c d

a 0 at+n+p at+tn+l+y a+{+4
b a+n+p 0 B+Cl+y Btn+{+4
c a+n+l+y B+C+y 0 y+n+06
d a+{+4 Btn+l+4 y+n+d 0

in which case Ty is of the form shown in Fig. A2. In particular, T, is one
dimensional if and only if ab+ cd=ac+ bd or ad+ bc=ac + bd, and
otherwise it is two dimensional. The easy verification of these statements is
left to the reader.

If X ={a, b, ¢, d, e} has cardinality 5, there are essentially three “generic”
types of metrics, defined on X examples of which are given by the three
distance functions

D, a b c d e
a 0 9 13 16 10
b 9 0 12 21 17
c 13 12 0 13 17
d 16 21 13 0 10
e 10 17 17 10 0

SN n g _ab

4 13
n Y
(] c

FIGURE A2
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D, a b c d e
a 0 13 21 14 13
b 13 0 10 22 10
c 21 10 0 15 12
d 14 22 15 0 17
e 13 10 12 17 0
D, a b c d e
a 0 14 16 17 21
b 14 0 28 11 19
¢ 16 28 0 21 15
d 17 11 21 0 19
e 21 19 15 19 0

The corresponding spaces T, are shown in Fig. A3. The reader is urged to
identify the image(s) of T in T, for all Y & X, in particular for ¥ = X\{x},
xeX).

In general, in the first case we have 10 nonnegative numbers a, 8, 7, J, &,
n, & B, 1, k such that the distance matrix is given by

a b ¢ d e
a 0 atn+i+f  atnptl+dtity atntBtite+d a+dtrte
b at+n+l+f 0 BH0+i+y  BHHB+1+4d fn+{+Ptrte
¢ atnHl+d+ity Bty 0 K40 prn+{tiate
d atntitite+d fH{+H+H4K+6 yHCHK+S 0 S+n+ite
e atttrte  fAn+l+Ptate pHp+ltitate d+ntite 0

and similar descriptions can be given in the other two cases.
If X=\{a,,a_,,a,,a_,,.,a,, a_,} and

a,a,=2 for i+j#0,

J

=4 for i+j=0,

then ¢: T, > R": f— (f(a) -2, f(a,) —2,., f(a,)—2) is an injective
isometry if R" is metricized by D((X, s X,), (¥yseees V) = Max(lx, — y,| |
i= l,...,n) and maps Ty onto {(X,,..,x,) € R"||x,| + [x;]<2foralll1<i<
J € n}, the convex hull of the points (0,..., 0, +2, 0,...,0) and (+1, +1...., £1).
This follows easily from the fact that f € T, implies f(a,) + f(a_;) =4 for
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FIGURE A4

all i=1,.,n since f(a;) + fla_;) >4, fla) + f(a) =2, fla_;)+ fla) =2,
f(a;) 20, and f(a,) > 0 implies indeed f(a;) + f(a_,) = 4.

As a final example let us consider the space X={a, b, ¢, d,, d,,
e, e,, e;}, where the distance xy is given in terms of Fig. A4. If x and y are
connected by an edge in this graph, then we put xy = 2, otherwise we put
xy=1.

Then the space T is the union of the 5 subspaces shown in Fig. A5 which
are pasted together along the indicated lines. The straight lines £, £, , /o /s »

fofs» gd,, and gd, have to be identified. Note that in a natural way 7, has
the structure of a 2-dimensional cell complex.

FIGURE AS
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2. PROOFS OF THEOREMS 14

We are now ready to prove the above stated Theorems 1-4.

(2.1) Proof of Theorem 1. It was shown in (1.8) that an extension Y of
X is indeed tight if for all y,, y, € Y one has

V1Y =8up(X;X; — X, p; — Y%, | Xy, %, € X).

Vice versa, if Y is a tight extension of X, then it follows from (1.14) that
there exists an isometric embedding w: Y — T given by w(y)(x) = yx for all
YE Y and x € X and thus one has

V1Y =Wy Wl = sup(x, x, — w(y,)(x,) — w(3,)(x,) | X1, X, € X)
= sup(x; X, — ¥ X; — VX, | X;, %, € X) forall y,,y, €Y.

(2.2) Proof of Theorem 2. The implications (ii)= (i) and (iv) = (iii) are
trivial. The implication (i) = (iii) is also trivial since f(y) > yxforall yE X
and some x € X together with f(y)=sup(yz — f(z)|z € X) implies f(») <
sup(yz —zx |z € X) < yx and thus f(y) = yx for all y € X. Part (iii) <> (v)
follows from (1.4) and the last remark in (1.5). Part (iv) = (ii) follows also
from (1.3) since, by (1.3), there exists for any f € P, some g € T, with g < f
and if g(y)= yx for some x € X and all y € Y, then one has of course
f(¥)> yx for all yE Y and this x € X. Thus it remains to show that (v)
implies (iv). But, using (1.11), there exists for any /' € T, some g =¢(f) € X
with g|, = f and, using the last remark in (1.15), there exists some x € T
with g = A,. So we have indeed f(y)= g(y)=h,(y)=xy for all y&€ Y and
some x € X.

Now assume X to be compact. If X is fully spread, then the conditions (ii)
and (iv) are fulfilled for any subset Y < X, so, in particular, they are fulfilled
for any finite subset Y < X. Vice versa, if (ii) or (iv) is fulfilled for any finite
subset Y<SX and if for some f€P, and any YS X we put
Y= {x€ X|fly)> yx for all y € Y}, then Y, is a closed subset of X and we
have YN NYf=X'U..- UY"),#@ for all finite families
Y',., Y*< X of finite subsets of X which implies X;= Nycx.yanice Y7 #
i.e., (i) is fulfilled and, thus, X is fully spread. Finally, it follows from (1.10)
that Ty is contractible for any X and, thus, X is contractible whenever X is
fully spread. Moreover, also according to (1.10), the explicit homotopy given
there satisfies the special conditions stated in Theorem 2.

(2.3) Proof of Theorem 3. (i) follows from (1.4), (ii) from (1.5), and
(iii) from (1.8) and (1.6); (iv) follows also from (1.6), (v) from (1.3), (vi)
from (1.11), and (vii) from (1.13). The following statements in Theorem 3
are by now also obvious or follow from (1.14) and (1.15), except the fact
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that T, is compact if and only if X is precompact, i.e., the completion X of X
is compact. But this follows from (1.7).

(2.4) Proof of Theorem4. Let X be a compact metric space and let F,
denote the set of all y€ X for which there exists some x &€ X with
xy+ yz > xz for all z€ X\{y}. If Y< X is a closed subset such that X is a
tight extension of Y, then X — Ty: x+ h,|, is an isometry and, thus for
Y€ Fy and x € X with xy + yz > xz for all z € X\{y}, we have xy = h,],,
hylyll=sup(xz — yz|z € Y)=max(xz — yz |z € Y) = xz,— yz, for some
z, € Y which has to coincide with y since otherwise xy + yz, > xz,. Thus
y=z,€Y,ie, FycY.

Vice versa, if F, € Y < X, then X is a tight extension of ¥ by Theorem 1
since if for x,,x, € X one chooses y,, y, € X such that y,y,=yx, +
x,x,+ x,y, and such that y, y, is maximal with respect to this property,
then one has necessarily y,, y, € Fy € Y. Otherwise there exists some z € X
with v, y,+y,z=y,z and z+# y,, or with y,y,+ y,z=p,z and z+ y,,
respectively, which implies y, y, < ¥,z =y, X, + XX, + X, ¥, + Y22 2 v X, +
X X, +X,z2 y,z and thus y, y, <y 2=y, X, + XX, + X,z 01y, y, <2y, =
zx, + x; X, + X, y,, in contradiction to the maximality of y, y,. Thus, x,x, =
sup(y, ¥, — V1X, — Y2 X, | 1, ¥, €Y) for all x,,x, € X and, so, X is a tight
extension of ¥ by Theorem 1. The remaining statements of Theorem 4 follow
also from this argument.

(2.5) Let us consider, finally, another remarkable property of the
spaces T,. We define a subset K © X of a metric space X to be convex, if
X, yEK, z€EX, and xy=xz+zy implies z€ K. Then we have: if
K,,K,,.,K,< Ty are convex subsets of Ty such that K,NK;# @ for all
ij=1l,.,n then NI, K, # @.

Proof. Induction with respect to n reduces the proof immediately to the
case n=3. Now assume f, EK,NK,, LEK,NK;, and f;€K,NK,. In
T\f,.1,.5, there is some g with g(f) + g(f)) =|/;, f;|| for all 1<i<j<3,

namely g(f;) = (15, fill + lfi> il — ll/},ka) whenever {1, 2, 3} = {i, j, k}.

Now choose some isometry Ty , )~ T(r,,=Tx which maps f,=
h, € T4, 1,7, ONto f; and let g’ denote the image of g with respect to this
150metry Then we bave | g’, fl|+l|g Lll=8() + g(f) =1/, £ for all
1<i<j<3 and thus we have g’ € X, for all k=1,2,3, i, we have
K NK,NK;+@.
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3. OPTIMAL NETWORKS

(3.1) Proof of Theorem 5. Let I'=(V,&, ) be an optimal realization of
the finite metric space X < V'. For any two vertices u, v € V let 4o denote
the infimum of all sums I({vy, v,}) + -+ + I({v,_,, v,}), where (vy, ¥}y, U,)
runs through all finite sequences in V with vg=u, v,=v and {v,_,,v,}) €&
for all i=1,..,n. Then VX V> R: (4, v)t— uv defines a metric on V which
extends the metric defined on X. Now choose some retraction p: Py— T
according to (1.9) and define y: V- Ty by w(v) = p(h,|;). Then we have
w(x) = p(h.ly) = h, for all x € X and [|y(v,), w(v )l <770, < ({vy, ,}) for
all v,,v, €V with {v,,v,} € &. Thus we have for all x, y € X the relation
=), vl < inflly@), wEI+ - + 1w, i) @l | ves
Ve U, €V vo=x, v,=¥y; {v,_,0,}€E for al i=1l..n) <
inf(l({UO’ vl})+ +l({vn~1’vn})|l}0’ Uy seens vne Vi X =1y, Y=10,5
fo,_,v}e&fori=1.,n)y=xy,so =V, & )withI': &£->R, U {0):
{u, v} — || w(u), w(v)| is also a realization of X with I'({u, v}) < I({u, v}) for
all {u,v}€ &. Thus, the optimality of I" and / implies /=10, ie., | w(u),
w()| = I({u, v}) for all u, v € V with {u, v} € &.

(3.2) Remarks. (1) Note that for any such y: V- T, with |y(u),
w()ll = I({u, v}) for all u, v € V with {u, v} €& one necessarily has || y(u),
y()| <@ for all u,v € V.

(2) It seems reasonable to conjecture that any such y: V- T,
necessarily is injective. To support this conjecture let us observe that we
have at least y~'(h,) = {x} for all x € X: if one chooses for each yE X a
finite sequence vy,0,,.,0,EV with v,=y, v,=x, {v,_,0,}EE
(i=1l,,n), and yx=3"7_I({v;_,,v;}), and for each pair (y,,y,) € X*
with y,y, < y;x 4+ xy, a finite sequence w,, w,.., w, €V with w,=y,,
Wn=Yy (Wi, W} €E (i=1Ll..,m), and 37 I({w,_ . w)}) =y, »,, if
V' < V denotes the set of vertices and &’ = & the set of edges occurring in
these sequences, then it is easy to see that I'" = (V’,&",1|,) is a realization
of X, too, and so one has I'=TI"’ because of the optimality of I. Whereas V"’
cannot contain any vertex v # x with w(v) = h,, since for any v € V'\{x},
there is either some y € X with [[A,, w(v)|| < 0 < yx=||h,, h,| or there is a
pair  (y,y;) EX® with p,p,< 2y, w@I + lw(v), hy | <10 + 05, <
yl.Vz < ylx + xy2 = “hyl’ hx“ + ”hx! hy2||'

(3.3) Proof of Theorem 6. Let X=Y\WZ and f: X—> R, satisfy the
conditions of Theorem 6 (i.e, YXZ <. %) and put % = {g€ Ty |there
exists some y € Y with g(y) < f(»)} and &, = {g &€ T, | there exists some
z € Z with g(z) < f(z)}.

' Concerning the existence and finiteness of optimal realizations see the Appendix.
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It is clear that 7, and (7, are open subsets of T,. Since Y+ @+ Z we
have f € T,. Since g€ T, and g+ f implies the existence of at least one
x € X with g(x) < f(x) by (1.3) and since X = YU Z, we necessarily have
T\{f}=6,U,. Finally we have &,NG, =@, since g(y) < f(y) and
g(z)<f(z) for some g€T,, y€Y, and z€Z implies yzg
g(») + g(z) < f(¥) + f(2) = yz, a contradiction.

Note that the argument even implies g(z) > f(z) for all g€ 7, and z € Z,
as well as g(y) > f(y)forall g€, and y€ Y.

(3.4) We now want to indicate how Theorem 5 and Theorem 6
together can be used to derive a result of Imrich and Stotskii (cf. [14]), i.e.,
we want to prove that for any finite metric space X which admits a
nontrivial partition X =YW Z such that there exists some f € P, with
(W +f(z)=yz for all yEY and z€Z and any optimal realization
I'=(V,&,1) of X<V there is either a vertex v € ¥ with xv = f(x) for all
x € X which occurs in any finite sequence vy, v,,..,0,E V with v, €Y,
v,€Z, and {v,_,,v;} €& (i=l,..,n), or there are two vertices v, WE V
with 30 < f(y) < yw and zv > f(z) > zw for all y € Y and z € Z, such that
v, w must occur in direct succession in any finite sequence vy, v;,..., U, EV
with v, € Y, v, €Z, and {v,_,,v;} €& (i=1,..., n).

So let I'=(V, &, 1) be an optimal realization of X and let w: V> T, be
chosen according to Theorem 5. Put V¥ =y~ (&,), V* =y~ '(&,), and V' =
w~'(f). Since for any v € V¥ and w € V% with {v, w} € &, one necessarily
has I({v, w}) = |lw(), y(w)|| = ||w(®), f|| + ./ w(w)ll, we may introduce for
each such pair (v, w) € ¥¥ X VZ an additional vertex u, ,,, which we use to
replace the edge {v, w} by the two edges {v,u,, ,,} and {«,,,,, w}, putting
e({v, ugy ) =t lw®), fll, l({up,w. wh=:|1£, w(W), and y(u,,,)) =/ this
way replacing the original network I' and the original map y by another
optimal network and another map into 7, which—by abuse of
notation—may also be denoted by I' and by y, and which has the additional
property that there is no edge {v, w} € & with v € V¥ and w € V2,

We claim that for any such optimal network we necessarily have #V”/ = 1.
This will indeed imply our original claim since it implies that in the original
network I' there is either precisely one u € V with w(u)= f and no edge
{v,w} € & with v € V¥ and w € V%, in which case u occurs necessarily in
any finite sequence vy, U s.,0,€EV with v, €V, v,€V? and
{v,_, v €& (i=1,2,.,n). In particular, since for any y€E Y and z€ Z
there are such sequences with v, =y, v, =2z, and yz=>"7_, I({v;_,, v;}), one
necessarily has yz<yu +uz <7 l({v,_,, v}) = yz, i, yz=u +uz
for all yE Y and z € Z, and thus h,|, € T, which implies &,|, = p(h,|y) =
y(u)=/, ie, ux=f(x) for all x€X. Or there is precisely one edge
{v,w} €& with v € V¥ and wE VZ and no vertex u € V with y(u)=f in
which case v, w must occur in direct succession in any finite sequence

607/53/3-6
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Vos Vysey U, EV with 0, €Y, v, €EZ, and {v,_,,v,} €& (i=1,..,n). So, in
particular, one has a above, yz=7v + [({v, w})+ Wz =30 + 0Z =Iw + wz
for all y€ Y and z € Z which implies &,|, = p(h,|y) = w(v) € &, and thus
P, < f(yy) for at least one p,€Y which in turn implies
V2 = yoz — o0 = f(¥y) + f(2) = 7,0 > f(z) for all z€ Z, and thus vy =
yvz—=2o=f())+f(z)—Zv < f(y) for all y€Y. The same argument,
applied with respect to w, yields yw > f(¥) and zw < f(z) for all y € Y and
zEZ

So let us now assume that I'= (¥, &, [) is an optimal realization of X € ¥,
that y: V- T is a map which is chosen according to Theorem 5 and that I
and y satisfy in addition the condition & N {{v,w}|vEV =y (&),
w€E VZ =y~ (%)} =@. To prove that this 1mplles #v/ 'Ny=#V'=1let
us proceed in several steps:

#w ' (f)=#V' =1 let us proceed in several steps:

(a) At first we observe that using (3.2) we may assume f & w(X)=
{h,|x € X}
(b) Second, we associate with I" and y the network " = (V',&",1l')
defined by V' = W(V) fy@)ve V), & =y(@)={{y(), y©)} | {u,v} €
&Yy and I': &' >R, {y(u), y(v)} — ||w(u), y(v)l| and observe that—after
identification of X and w(X), as usual—7"’ is a realization of X, too, and that
one has ||I’|| < ||'||. Thus the optimality of I" implies the optimality of I'’ as
well as (||| =T, ie, {uj,v}, {u,v,} €&, and {y(w,), w(v,)}=
(w(iy), w(v,)} implies {u,, v,) = {uty, v,).

(c) Next we observe that for any finite sequence vy, v,..., v, € V with
vo=y€Y, v,=z€Z, and {v,_,,v,}€E (i=1,.,n) there is some
J € 1{0,..., n} with v, € ¥/, so, in particular, we have V/ = @.

Moreover, if we have yz=>'7 ,I({v;,_,,v;}), then we have yz=
FO) + 1) = y@)() + W)@ <7 + 5,2 < X7y Ko,y v}) = 2 and,
therefore, we have yv; = f(y) and 7,z = f(z).

(d) This implies: if for some u € ¥/ and some y €Y (or z € Z) we
have yii = f(y) < yv (or Zu = f(z) < zv, respectively) for all v € V/\{u}
then we have uz = f(z) for all zE€ Z (or uy = f(y) for all y € Y, respec-
tively), since for any sequence y =v,, ;5,2 =0, E V with {v;,_,,0,} €&
and Y7, ({v;_,0;})=yz the v;€EV/ with ;= f(y) and zv;= f(z)
necessarily must coincide with .

(e) Next we observe that for any u € V7 there exists some w € V" (or
w € V%) with {u, w} € & once there exists some y € Y with #y = f(y) (or
some z € Z with uz = f(z), respectively), since, by (a), we necessarily have
ux > 0 for all x € X.

(f) Now we prove: if {u,w} €&, u€V’, and we V" (or we V%),
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then there exists some y €Y with @y =f(y) <7y (or some z € Z with
Uz = f(z) < Uz, respectively) for all v € V/\{u}.

It is enough to consider the case w € V*. Since I'"’ is optimal, there must
exist some x,,x, € X such that w(w), w(u) occurs in direct succession in
any finite sequence Xx,=v,, UV y.,X,=0,EV’' with {v,_,,v,} €&’
(i=1,2,.,n)and x,x,=>"7_, I'({v;_,, v;}), since otherwise we could delete
{w(w), w(u)} in I'"’. This implies in particular x, x, =X, w + I({w, u}) + ux, =
X W+ WX, = XU +ux; 2 p)x,) + y)ix,) = f(x,) + f(x;) = x,x, and
thus it implies w(w)(x,) < f(x,) and therefore x,= y € Y since we V*. It
implies also yu = w(u)(y) = f(») and it implies that there is no v € V/\{u}
with yo=|w(y), w@)=Sf(»), since otherwise we could find
a finite sequence y=v;, v{,..,.0;=v€V with {v/_,,v]}EE and
¢ I(fvl_,,v}})=Po=f(y) and thus in any sequence Xx,= Uy, U,y
via=ww), vi=w)=f, v m.0,=X,E€V" with {v,_,v}€&’
(i=1,.,n),and x,x,=X7_, I'({v;_,, v;}) we could replace the section x, =
Vgs Uy U= f by X, = p =05 =w(vg), (1) w(vi) = w(v) = /£, this way
avoiding the edge {w(w), w(u)}, in contradiction to our assumption
concerning the choice of x, and x,. Thus we necessarily have yv > ||w(y),
w()l = f(») for all v € ¥\ {u}.

(g) It is now obvious how to finish the proof: For any u € ¥/ there
must exist some w€E VYU VZ with {u, w} € &. W.lLo.g. we may assume
w € VY. Then it follows from (f) that there exist some y = y, € Y with you =
S(»o) < Fyv for all v € Vé\{u}, which is turn implies, using (d), that we
have zii = f(z) for all z € Z. Combining this with (e), (f), and (d) we finally
get that yu = f(») holds for all y € Y as well, i.e., one has X = f(x) for all
x € X. If there would exist another element v € V7 with v # u, we would also
have vx = f(x) for all x € X, contradicting y,v > f(y,). Thus we have
indeed #V7 = 1.

Remark. The length of this proof makes it even more desirable to prove,
in general, that for any optimal realization I'= (V, &, ) of a finite metric
space X  V the associated maps w: V' — T, are necessarily injective, but it
shows also that such a proof may be quite complicated.

(3.5) Let us now begin with the proof of Theorem 7. We start by
analyzing in some detail the network I'y = (Vy, &, Iy). Recall that for each
S € Py we have put #;=: {(x, y) EX X X|f(x) + f(y)=xy}, so that for
finite (or compact) X we have fE€ T, if and only if X =supp.Z;=:
Ux.yer, {x y}. For each pair f, g€ Py let X{ denote the set X,=:
xeXx f S(x)—gx)=|/; gll}- The following facts are almost obvious:

(a) For x, y € X and f, g € P, one has (x, y) €.%; and x € X7 if and
only if one has (x,y)€.%, and y € X, because f(x)+ f(y)=xy and
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f(x) = g(x)=|f. gl =sup(f(z) ~ g(z)| |2 € X) together with g(x)+
g(y) > xy implies [, gl > &(»)—f(») > (v~ gx))~ (- f(x)) =
Sx)—gx) = [fgll and thus [fgll=g(y)—f(y) as well as
glx) + g(y) = xy.

(b) This implies: if f, g€ Py and if f# g then X, , =:XJ X}
satisfies %fmfgg)(ng;’UngXfu (XX (50 X X\(5,,))- In partlcular
if Lg€EVy=t{hET | XX X=U),nF}"} and if f# g, then 7,#.7,,
since Xfo;’C_;XXX Unen 27" but X/ x XEN Unew(iﬂ%)z” =@
Thus ¥V, is finite whenever X is finite, since V » PXXX): fro 2 s
injective, and {f, gl € & =: {{h, I} S Vy|h #h, and 7, NT,, is X-
connected, i.e, XXX=U,en(FyNA)" implies X=X, ie,
I/ gll=1/(x)— g(x)| for any x € X as well as

U ! = X{x XF U XEX X!

neN

and

U (N7, = X{ X XTO XE X X,

nelN

(c) Forf,g€Pyonehas|f, gl=:{(1—-1)f+1g|0Kt< 1} <SPy, for
each h € [f. g] one has || f gl =/ hll +||h, gl as well as FN.7, .7,
and for each A € (f; g)=: {(1 —¢)f + tg|0 <t < 1} one has %, =7, N7,

(3.6) For {f, g} €&, one has [f, g]={h€ Py|| /Al + |k, gl =
I/ 8llt = (RE Py | TN A o 7} and (f, @)= (RE Py | ZN F,=7,). In
particular, for {/,, &}, 1/, £2} € & one has %, N7, =7, 0.7, if and
only if (f}, g,)"N (/3. 82) # @ if and only if {f;, g,} = { /3, &,}. Moreover, if
{f, g} € & and k: X > R is defined by

kl(x)=—1 for x € X7,

=+1 otherwise,
then g=f+|f gll- k; and [f, gl ={f + 7 - k[|0<e<| /s g}

Proof. From X7 U X§ = X it follows that g—f =1/ gl k] and
thus [/, g] = (1-—t)f+tglt€[0 1} = {(f+¢- | gl k) e o, 11 =
{f+1¢- kf10<t<uf The inclusions [f glc hepxljrmfcf}
and |[f, glc{heP fﬂf, Rl +1h gll =1/ gll} follow from (3.5(c)).
Moreover, g= f +1/ gl - &7 and |If, 4l + |4, gll = f; gl| together imply
I/ gll = Lf(x)— gx) < lf(x)—h(x)l+|h(x)— g <A R+ 1A, gl =
Il/; gll and thus [f(x)—A(x)|+|h(x) — g(x)|=|f(x)— g(x)| as well as
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|f(x)—h(x)| =|f, k|| and |A(x)— g(x)| =] h, g| for all x € X which in turn
easily implies 2 =1+ ||/, k|| k] € (£, g).

So we have indeed [f;g]={f +k!|0<¢<|/ gl}={hEP|If I+
|4, gll=]/ gll}. Now assume #;N.%,<. %, for some h€Py. W.lo.g.
assume f # b # g, 50 F, NS X5 X XF WX X X5\ (X\X 5y X X\X /).
But N7, HNZ, and U, FNFp)" = X X XU XE X X§. Thus
X=X} or X§=X and hence kj = +kf as well as h=f+||f, k| k}. But
in case kf=—k/ we get h#g and f= (I, gl/(Ls; gl +I5RI) - h+
(4RI gl + 16 RID) - g€ (h, g), so we have F=%;N.7,S X! X
X;OXEX XM (X\X ;) X X\X|, ), in contradiction to (J,nA7"=
X X X. Thus we have k =k}, and, similarly, we have —k/= kf =k} which
together implies indeed 4 € (f, g). In particular, our result and (3.5c)
together imply #;N.%,=.%, for each h€ Py, with Z;N.%Z, S %, and
f#h#g

(3.7) If X is finite (or compact), then for any & € P, for which .7,
is X-connected and bipartite (i.e., %, satisfies [, nFp=XXX#
Unen-#2") there is precisely one edge {f, g}E€ &, with hE (f, g)=
[/, g1\, g} and for this edge one has, of course, %), =.%;M.%, as well as

[/ gl =1{d € Py |, = A2},
\f 8} = {d € Py| B, & A}
and

(f; 8) = {d € Py | A = A5}
So altogether one has

E%=: {h € P,|.%, is connected and bipartite} = ) (£, &)
lfag’egx

and

E,=:{h€ P, | %, isconnected} =V, & () (f, g).

(f.e)edy

Proof. Let X=YUZ be the unique “bipartition” of X with %, <
YXZWUZXY and let k: X > R denote the map defined by

k(x)=-—1 for x€Y,
=+1 for xeZz,

let
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h h — )
4 = min ( )+ (2yz) Ml e Y),
b =min (h(zl)+h(222)_zlzz Zl,ZZEZ),

and put f=h+ ak, g=h— bk. Then one easily verifies f, g € Py, %, <
HNHy, ZEN(Y X Y)# @, and thus f € Vy, F,N(Z X Z)# @, and thus
EEVy, {f. g} €&, k=kJ, and h € (f, g). Thus our claim follows easily
from (3.6).

(3.8) Now we want to study for any f&€V, the set
N,={g€Vy|{f. gt €&}). For this purpose we consider symmetric
relations 7 < X X X and subsets Y € X and define Y to be #-admissible, if
YXNNZ =@ and 7, = NXXYUYXX)is X-connected, so 75
is X-connected and bipartite and X = YU (X\Y) is the unique bipartition of
X with respect to .%5.

Now we claim: if X is finite and if {f, g} € &, then X/ is % admissible
and the map

N,» P(X): g+— X}

defines a bijection between N, and the set % of .Z-admissible subsets of X.
Moreover, if g € N, corresponds to Y =X}, then .#;N.%, coincides with

(Zp)y-

Proof. Since {f, g} € &, implies that X = X/ W X % is the unique bipar-
tition of X with respect to #;M %, we necessarily have

F N S (HDxy s0 %) x/ is X-connected.

Moreover, we necessarily have (X7 X X7) M .#;= @, since by (3.5a) we know
that (x, y) € %; and x € X/ implies y € X§, and thus y € X7. Hence X7 is %
admissible. It follows also from (3.5a) that (x, y) € %; and x € X% implies
(x, y) €A, thus N F, = (J/f’)ng.

So it remains to show that for any _#-admissible ¥ = X there is a unique
g € N, with X! =Y.

Let k: X > % denote the map defined by

k(x)=—1 if xey,

=+1 otherwise,
let

f(yl)'*'f(yl)'“ylyz
2

a=min< Y€ Y),
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so a > 0 since X is finite and (¥ X Y)ﬂj”,= @, and let g = f + ak. Then we
have g € Py, (#))y S %;, and Z,N (Y X Y)#@, so Z,NF;2(F))y is X-
connected and %; is X-connected and nonbipartite, i.e., one has g € V, and
{f, g} € & and one obviously has X/ = {x € X|k(x)=—~1} = Y. Finally, if
{f,8), {ffh} €&, and X/ =X} =Y, then one necessarily has k= k] = k!
and thus g=f+ £, gl - k and h=f + || f, & - k. So one has either g=h or
gE (f, h) or K€ (f, g). But the last two possibilities are ruled out by (3.5b),
and (3.5c) since they would imply that either #, or %, is bipartite in
contradiction to g, A € Vy. Thus g, h € N, and X] = X} =Y implies indeed
g=nh

(3.9) Concerning the existence of #-admissible subsets ¥ < X we
claim:

For any X-connected symmetric relation %" € X X X with “(x, x) € % <
(x,z)e .7 for all z&€ X” and any pair of subsets Y, < X, <X such that
Hy=:(Xy X Xy)N.Z is X,connected and Y, is .#Z;admissible and
nonempty there exists some .#-admissible subset ¥ € X with YN X, =Y,.

Proof. Let X; X be a maximal subset of X containing X, such that
A =1 (X, X X;)N.Z is X,-connected and there exists some .%|-admissible
subset ¥, € X, with X, Y, = Y,. We have to show that X, = X. Otherwise
there is some x € X\X, and with Z=:{y€ X, |(x, ) EX}#@. Put X,=
X,V {x} and put

Y,= Y, if ZNY, #g,
=Y,Ulx} if ZNY,=@.

Then it is easy to see that 7, =: (X, X X;)N.% is X,-connected and Y, is
an %j-admissible subset of X, (here we need our special assumption
“(x,x) €L = (x,z) €.F for all z€ X which implies (x, x) €% in case
ZNY,=¢g) with Y,N X, =Y,, contradicting the maximality of X,. Hence
our claim is proved.

(3.10) It follows easily that for any f € ¥V, and any x € X with
S(x) # 0 there is some g € V,, with {f; g} € &, and || £, gl + g(x) =f(x), i.e.,
with x € X7, since (z,z) € %; for some z € X implies f =4, by (1.4), and
thus (z, w) € % for all w € X. So starting with X, =Y, = {x} we can find
some .#admissible ¥ <X with x €Y which implies x € X] if g€ N, is
chosen according to (3.8) such that X7 =Y. It follows that the distance fh,
of f and A, in I',, defined by fh, =:inf(3 7, L({vi_,, 0;}) |[REN; f=1,,
Upyeees By =0, € V3 {Ugs Uy}seees (V15 Uy} € &) is smaller than or equal to
S(x)=|f. k], and since it cannot be smaller by the triangular inequality one
necessarily has f(x) = || £, k.|| =/h, .
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In particular, it follows that for a finite space X the network I, =
(Vy, &, ly) satisfies V', = supp &, and is indeed a realization of X (identified
with {h | x € X} as usual), since h, h, =h (y)=xy for all x, y € X.

From V, =supp & we also get that E, =V, W), , <5 (/; g) coincides
with U, »e# |5 g] and thus is coincides with the closure Ey of E}.

It also follows from (3.9) that #N,>3 for all f € V,\X, since for any
such f € V,\X one has (x,x)€&.%; for all x € X, so #—being nonbipar-
tite—contains a smallest odd cycle of length >3, i.e., there is a subset X, =
{Xgs Xgpp b With k> 1 and 7o = (X, X Xo) N A= {(x,Xx,), (x3,%)s
(X35 X3)s (X35 X9)seees (Xapi15X1)s (X145 X904 1)}, SO that g is X-connected and
any subset Yh = {X;, X;, 50 X; 252 = X;_3} (With the indices taken modulo
2k +1) is FZgadmissible for i=1,2,.,2k+ 1. Thus we have at least
2k + 1 > 3 different #-admissible subsets ¥ < X.

(3.11) Now let X be finite and let U < EY be a finite subset of E} =
{he Py|#, is connected and bipartite}. By (3.7) one has U=
Uir.ereq, UN(f 8) = Uysgres {RE U|H,=%;NA,). In particular, for
any {f, g} € &, there are finitely many real numbers ¢,,..., ¢, with ¢,=:
O0<ty < o<ty <ty =t|lf,gll such that UN|[f,gl=UN(f, g =
(heU|Z =N ={f +t;kl|i=1,.,n}. Note that one has
(hy, hy) N U =@ or, equivalently, (k,, h,) N (U V,) = for some h,, h, €
Upa=: 48O UN(f, g) =11 glN (U Vy) with h #h, if and only
if {(hy,h,}€{f+t_ kI, f+tkf}]i=1,n+ 1} Thus I, =: (U,
EV.ar ) defined by & ={h,h}SU;,lh+#h, and
(his k) N U=@) = {{hy. b} S Uy |y # by and (h,, ) N (U V) = )
and I, .t &g~ Ryt {hy, by ||k, byl is an optimal realization of the
space {f; g} < Ty, in particular, one has || I, | =/ gll. Now we associate
with each finite U< ES the network I'y = (Vy =: V, W U, &%, IY) defined by
Ey=:{{h, k) S VY| h #hy, K, NF,, is connected and (h, k)N
Vi=@}, and I¥: &R, : {h,, by} ||k}, h,]. Tt follows immediately from
the above considerations that || I'y|| = ||I'Y|], that I'Y realizes X the same way
as Iy realized X, i.e., that the distance h,h,—as measured in I'y for
hy, h, € Vi—satisfies hh, = h(x) for all € VY and that the standard
construction of eliminating step by step vertices v € Vy\X of degree 2 in
I'/—which are just the vertices v € U—and replacing the corresponding
edges {v,u}, {v,w} by the edge {u,w} of length I({u, w})=:I({v,u})+
I({v, w}) leads back to I'y from I'y for each U< EY: actually, eliminating
just one u € U and replacing the corresponding edges leads to I'{ ) Note
that in generalization of (3.7) one has

E,?rUVX=Ex= U [/ g,
tre1eey

Vi=supp &y
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and

EA\Vi=E\U= U (f9),

(f.eledy

and for Uc W EY, #W < o,
e={f,geé&y, and EV = ({u,v} €EF |u,vE [, gl}

one has
U [wol=(fegl
(u,vye 2%
U @o)=[fgl\W,
tu,0je8¥
and

Y Hlwop= Y luol=Ifell=LA{ g}

fu,v)ed? fu,v)e 8y

(3.12) It is now possible to state Theorem 7 in a more precise form
which is well adapted for a proof by induction with respect to #X:

THEOREM 7'. If X is a finite metric space and U S E* is a finite subset,
then I'Y is a hereditarily optimal realization of X and any hereditarily
optimal realization I' = (V, &,1) of X is canonically isomorphic to one such
T'Y. More precisely, if '=(V,&,1) is a hereditarily optimal realization of
X<V, then V is finite and, if VXV-oR: (40) uv =
min(} 7 I({v;_, v, )| EN; vo=u, V1, V=0, E V; {vg, 0}, {U15 V3}ses
{va_1,V,} € &) is defined as usual, then the map ¢p: V- Py: vi— ¢p(v)
defined by ¢ (v)(x) = vx maps V injectively into Ey =V, E}, contains Vy
in its image, and defines an isomorphism between I and I'y with
U= (V)\Vy. That is, for the bijection p = ¢,: Vx Vy one has {u,v} €&
if and only if {p(u), p(v)} € &Y in which case one has I({u, v}) = I5({o(u),
o)} =llo), o@).

(3.13) As a first step in the proof of Theorem 7' let us remark that
if '=(V,&,]) is a realization of X < V, if U< EY is a finite subset, and if
9: VxV,0U=VY is a bijection with ¢(x)=h, which induces an
isomorphism between I and I'y, then we necessarily have ¢ =g, ie.,
o(v)(x)=7x = pp(v)(x) for all vEV and x€E X, since we have 0x =
o) o(x) = o)k, =|o(v), i, || = @()(x). Thus for any realization I'=
(V, &, 1) of XV there is at most one finite subset U< Ey with ', I'y,
where 2, means the existence of an isomorphism I'~ I'}, given by some ¢:
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V ~ VY which respect X, i.e., which satisfies ¢(x) = &,. If such an US E}
exists, then there exists precisely one isomorphism ¢: I'~ I'f, which respects
X, namely ¢ = ¢,.

(3.14) Next let us study the relation between I'y and I', with
Y=X\{x} for some x€ X. From (1.8) and (1.11) we know that the
restriction map Ty — Py: f1— f*=: f|; is an isometry and defines a bijective
isometry between T5 = {f € Ty | f* € Ty} = Ty Py and T, whose inverse
is denoted by r=1,: T, x Ty < T, and satisfies 7(f*) = p(f) = p(f) for
any f € Py ={f € P, | f*€ Ty} and any retraction p: Py — Ty.

Note that z(V,)c ¥V, and ©(E,)<S E,, since a symmetric relation
A XXX with Z7E€Y X YU {(x, x)} for which #* =: (Y X Y)N.%"is Y-
connected (and nonbipartite) is necessarily X-connected (and nonbipartite).
Put E* =1 1(E,) = {f E Ty | fFEEy} = {f € T, | ¥} =%, is Y-connected},

V= V,NE*={fEV,|f"EE,}

Visie ()= {fF I fEVT =" |fE€EVyINEy,
U*=:V}\Vy=ViNEj},

ry=:TYy,

EX={{f, g} E&|FTNES is Y-connected}
= {{£ gt €&I S/ &'l SEv)
lx =: legX,

and
I* = (V*, &~ ).
So we have, for example,
E*CE,, supp &£~ < V¥, V,eVi=V,OU*=VY,
and
(hlyEYiSoVy) sV =1(V3) =t(Vy) =o(Vy) U t(U") C Vy.

We claim that I'* is a realization of Y (identified with {4 | y € Y} as usual)
and that the restriction map ¢: V*~x Vi: f+— f* defines an isomorphism
I'* ~ I'y which of course satisfies ¢(y) =o@(h,)=h;=h,€ T, foreachye Y
and thus, using (3.13), it coincides with the map ¢, .: V* — P, defined by
erlSNy)=fh,.

Since ¢: V*x V}: fi—> f* is injective by (1.4) or (1.8) and hence a
bijection by definition, and since it satisfies ||/, gl| =[le(/), e(g)| for all
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/. g € V* by (1.8), it is enough to show that {f;, g} € & if and only if {¢(f),
o(g)=1{S" g} E &5
To this end we use (3.7) and compare the partition

E,=Vyu () (o),

{u,v}e&y

with the partition

E*=FE*"NE,=E*N (VxU U (f,g)) =V U f; &),
(f.gleky (f,e)e &%

where the last equality follows from
E*N(f, 8)={hEEy| X, =F;NA, and Z7; Y-connected }
=(fg) if {fgle&s
=0 if {fgt€&”,

for each {f, g} €&, which partition of E*—applying the restriction
map—yields

E,=;u U (8.
lf.8)e&x

Since ¥, < V7 it follows that the connected set (f*, g*) is a subset of the
disjoint union of open sets Ey = (J;, ,es, (1, v) for each {f, g} € &*, so for
each such {f, g} € &* there is precisely one {u, v} € &, which (f*, g )N
(u, v) # @ and in this case one has (f*, g*) < (¥, v).

Moreover it follows that for each {u,v}€ &, one has (u,v)=
((u, )N UNYY Uys, grea, s ennmn 2o 5 8

It is now easy to show that for f, g€ V* we have {f, g} €&, ie,
{f. g} €& and 7 FN.E7; Y-connected, if and only if {f7, g*} € &7, ie,
S # & 7N A7 Y-connected and (f*, g* )NV =@: for {f, g} €& we
surely have f # g. Hence, f* # g* as well as (f*, g5)NV} =@, in view of
the above partition E, = V3 U ;. 41eax (f, 7). Vice versa, [ # g*, the Y-
connectedness of ZFN.Z7%, and (f*, g*)NVi=g implies (f*, g*)<
ENVY =U.5eox (@, b). Hence, (f*, g*) < (a%, b*) for some {a, b} € &~
which in turn implies {f*, g*}=[f* &' |NV} S [a%, b* | NV = {a*, b*}
and thus {f, g} = {a, b} € &*.

(3.15) For the sake of completeness let us observe that for any
lu,v} €&, with t(u)=/f and 1(v)=g the following statements are
equivalent:

() {(fgeé
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(ili) ;M .%, is X-connected,
(i) HNA,LYXY,
(ili") FOT = T,NT,,
(iv) [fs g]<Ey,
(v') (f 8)<SEx.
(iv") (S 8)NEx+@,
v) [fs g]<E",
vi) s gl =7([u, v)),
(vi)) @, v)NVy=g,
(vii') {u,v} € &3,
(viii) | f(x)— g =|/ gl =llu, vl
Moreover, if none of these statements holds true then there is a unique
wE (u, v) N Vi = (4, v) N U* which is given explicitly by
w=u+3(lu vl + gkx) — f(x)) - k3
=u+3(/ gl +11g Al = 14 Aell) - k5
=0+ 3w, | + f(x) — gx))ki-

For this w and its image & = 7(w) € V* < V', one has

h(x)=3(f(x) + g(x) —llu, vl)
= %(Hf; hx” + ”hxs g“ - “f’ g”)9

{£ ), {h, 8} € &, {u, W}, (w0} € &7,
1A Al + 1Ay gl =11, wil + llw, ol =1/, gl = llu, v,
hé [f gl #o([u,v]) = [/, h] U [h, g] S E

and

AN X)) = (7, NI U (FAL(N) U (F\A(Y))
= (TN F) U AT (F\F(Y)),
with (x, x) € %, i.e., h=h, if and only if | u, v|| =]/, gl = f(x) + g(x).

In particular, an edge {u, v} € &, is split in at most two edges in &7. The
verification of these statements is rather easy and is left to the reader.

(3.16) Now let I'= (¥, &, ) be a realization of X < V" such that for
any x € X there exists a subset & < & such that I', =: (V,=:supp &,, &,,
I,=1|g ) is a realization of Y =: X \{x} = V', which is isomorphic to some I'y
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via the canonical map ¢, =¢,: V,— P, defined by ¢,(v)(y) =0y (y € Y),
where the distance vy is measured with respect to I',. Thus ¢, defines a
bijection between V, and ¥, U, for some finite subset U, < E$ and we
have {u,v} €&, if and only if {p.(u), 0, (v)} € &Y= for any two elements
u, v € V, in which case one has I({u, v}) =| o (u), ¢, ()|

Let ¢ = ¢: V> P, denote the canonical map associated with I, choose a
retraction p: Py,—» T, and let w: V> T, denote the composition po¢:
V> P, — Ty. Note that w(v)(y) Lo} (») <o, (0)(y) foral xEX,vEV
and y € Y = X\{x}, i.e., the functions y(v)* and ¢(v)* in P, satisfy w(v)* <
o) < @, (v)E Ty, so (1.3) implies w(v)* =¢(v)* =9p,(v) which in turn
implies w(v) =17,(p.(v)) by (1.11) for all xEX and v E V,.

We claim ||T)| > ||I'y|. W.l.o.g. we may assume that ¢ (V,) =V, U,
contains V3 =V, W U” (as defined above), i.e., that U, contains U™ since we
have E, =V, W U, W Uy, es, (9:(#), 9,(v)) and thus in case there is some
we& V=V, U* which is not contained in V,\ U, there is a unique
{u,v} € &, with w € (¢,(1), 9,(v)). So by introducing an additional vertex
w’ and replacing the edge {u, v} by the two edges {u, w'} and {w’, v} with
I({u, w'}) =@ (u), w|| and I({w’, v})=]|w, ¢.(v)| we have transformed our
network I' into a new network of the same total length for which w is
contained in ¢, (V,)="V,WU,. Note that using this procedure we have
added vertices of degree 2 to I, only.

Now let e={f, g} be an edge in &, and let &°= {{u,v} € & |yw(u),
w(v) € [f; g] and w(u) # w(v)}, so FENE = for e,e’ €&, and e+ ¢'.

To prove our claim |[I'|| > || I'yl| it is obviously enough to prove that
1820 =2 Tiypese i, 0}) 2 115 gll = le) for each e={f, g} € &. But the
X-connectedness of #;M.%, implies that X, =: {x€ X|e€ &*} = {x€ X|
AFNAET is X\{x}-connected} is nonempty (actually, one has #X,>2
since X, contains the tips of any maximal tree in #;N.%;), so we have
&r=U,ex &, and for any x € X and e={f, g} € &* we have {f*, g*} €
&r=&7" So, using U* < U, and the last remark in (3.11), we have with
Ei={{u v} €&, |0, ), 9, (v)€ [/ ¢g*]} and Vi=:U,,, weag (4,0} the
relations ug’en—z(u were oD =175 &1 = 1 gl [F &5 = 0. W
Utn,oreze (0(w), q)x(v)) and thus—by applying 17, and using

v =1.0,~f, 8] = w(V) YU U neee (wu), w(v)), which implies &5 < &*.
Thus 15 gl =€ H<Ilg"’ll

Let us note that our assumptions imply also Vi={vEV,|p,.(v)E
[f*, g*]} for each e = {f, g} € &7, since ¢, (v) € [f*, g*] holds by definition
for vE VS and e={f, g} € &*, whereas vEV, and o (v)E [f* g*]=
(ox(Vi) = (J[u.uleé’fc ((px(u)a (px(v)) lmphes (ax(v) € (ax(V.et) in view of the
partition Ey\,) = ¢, (V)W Uy pyes, @(4), 0,(0)). Thus v € V5 because of
the injectivity of ¢,.

(3.17) Now, continuing with the notations and assumptions of
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(3.6)—including the assumption ¢,(V,)2Vyy, or, equivalently, U*c
U, —let us further assume that ||I'|| = || I'y].

It follows from the proof given in (3.16) that in this case one has & =
Uees, & and &€ =&, for each x € X and e = {f, g} € €. So, in particular,
with V¢ = U, ,1cse {u, } (=V%if x € X,) one has

fgl=v)w U (W) yw)
(u,v)e&e
andone has & = U,y &, as well as V= U, ex V= U,eg V*
Note also that & =),y &* implies V. =Ueeg e=Uyex(Ueceare)

Usex V¥ = Vy and Ey = Usper [ 8l = Urex Uipges S 8 S
Usex EXCEy ie, Vy=U,ex Vand Ey = J, .  E™

We claim that our assumptions imply that ¢: V' - P, maps V injectively
into E, C Ty, < Py and induces an isomorphism I~ I'! with U=: p(V)\V,
i.e., we claim that the following statements hold true:

(i) ¢ coincides with y, i.e., o(V) < Ty.
(i) Vy<So(V)<SEy,
(iii) for {u, v} € & one has I({u, v}) =| @), p(v)|,
(iv) o is injective,
(v) for u,v € V one has {u,v} € & if and only if {p(u), ¢(v)} € &Y.

Proof of (i). Since x,yEX, x# y, and vEV, NV, implies ¢(v)* =
0,(v) € Ty, and ()’ =, (v) € Ty, and thus, using (1.2) and X =
X\{x} U X\{y}, it implies p(v) € T, as well as ¢(v) = y(v), it is enough to
show that #{xE€ X|vE V,}>2 holds for any v€ V. But for any vE V
there is some u €V and some e€ &, with {u,v} € &° which implies
{u,v}) €& and thus v € V, for each x € X, and we know already that
#X, > 2.

Proof of (ii). We have Vy=U.x V" V=U;er Vs and V=
T(Vinm) S 10 (V) = w(V,) = 0(V) S T(Ex ) = E* S Ex and thus

V= U vre U =0 (U ¥.)=e0ncEy.

XEX xeX XeX

Proof of (iii). This follows from &= &, and I({u,v})=|0.(u),
00 = ll70(1)), Tl I =lo(u), o) for {u,v} € &,.

Proof of (iv). Since (p|,, =1, o ¢, is necessarily injective on ¥, and since
oM CE,=U,x E% it is obv1ously enough to show that (p“(E*)— s
ie., p Y (EX) = V,, since p(V,) = 1(0,(V,)) S 1(Ex ) = E* holds anyway.

So assume v €V and put A=9@), X,={x€X|veEV,}, and X, =
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{xeEX|h€E*}, so we have hEE,, @+X, and X,CX, since
o(V,) < E*. We have to show that X, =X,,.

For technical reasons let us first consider the special case o(v)=h=4h,
for some y € X. Since x € X\{y} implies y € X\{x} =V, we have X, =
{xEX|y€V,}2X\{y} and thus X, N X, + @ since #X, > 2 by the proof
of (i) for each vE V. But x€X,NX,, ie, y,vEV, and ¢o(y)=9¢(v)
implies y=v and thus X\{y} < X,=X,c X, < X. If y& X, we are done.
Otherwise, we have h=h,€V,NE’=V>=1,Vz\,) S1,0,V,) =
o(V,), ie, h=op(w) for some weE V,, so—applying the above argument
with respect to w instead of v—we get v=y=w€V,, ie, y€E X, and
hence X, =X =X,. So in any case we have X, =X, if h=h, for some
ye X

From now on let us assume h#h,, ie, (», y)&€ %, for al y€EX.
Consider the relation ¥ € X, X X, defined by

g=lwnexire U [fel

Lf,g) e XN &Y

Since x€ X, = X, and h=9(v) € [f, g] for some e={f, g} € &™ implies
0,(v) € [f* g*] and thus v € V% by the last remark in (3.16), whereas
e€EE*NEY implies &, =&°=¢& and thus V=V, <V, it is clear that
x€ X, and (x, y) € ¥ implies y € X, i.e., X, is a nonempty disjoint union
of full connected components of &, so we get X, = X, once we know that &
is X,-connected which in turn follows from the following two observations:

(vi) for h€& {h,|x € X} one has
L 2L = {(x, ) S X3| #5N.Z}is X\{x, y}-connected}, and

(vii) &’ is X,-connected.

Proof of (vi). If .%, is bipartite, there is only one {f, g} € &, with
h € [f, g| and for this {f, g} € & one has h € (f, g) and thus #;, = ;N .7,
so we have

x € X, < X} is X\{x}-connected <> .#F MN.#7} is X\{x}-connected
< {f,g €& and therefore ¥ =X, X X, 2 <.

Otherwise, one has h € V, and thus h € [f, g] for some {f, g} € &, if and
only if & € {f, g}, so the set {e={f; g} €& | h € |f, g]} corresponds to the
set 7, of %;-admissible subsets of X. Let #"=_%,. To prove &’ S & it is
enough to show that for (x, y) € ¥’ there is some #-admissible subset
Z © X—corresponding to an edge e = {h, g} € &, with 7" N.%, =_%,—such
that e € £*N &7, i.e., such that Z% is X\{x}-connected and %} is X\{y}-
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connected or, still equivalently, such that Z\{x} is #*-admissible (relative to
X\{x}) and Z\{y} is #"’-admissible (relative to X\{y}). But if (x, y) € &,
i.e, if #* is X\{x}-connected, .#”* is X\{y}-connected and Z* N7 is
X\{x, y}-connected, then we can find some z € X\|x, y} with (z, y) € 7~
and, since (z, z) € %}, we can find some .#™~ M %" -admissible subset Z, =
X\{x, y} with z € Z, which we can extend to a .#"*-admissible subset Z, <
X\{y} with Z;=Z, N (X\|x, ¥}) = Z,\{x} which in turn can be extended to
a % -admissible subset Z < X.

In view of the construction of Z it remains to show that Z\{x} is #™-
admissible, which would imply (x, y)€ <. But this follows from the
X\{x, y}-connectivity of (¥ N.7""), together with (#*N.F7), S 7\
and (z, y) € 7\, i€, 2 € Z\{x}) and (z, y) € Z™.

Proof of (vii). By induction with respct to #X we prove the purely
graphtheoretic fact that for any connected symmetric relation .7 € X X X
the relation . < X X X, defined by X =: {x € X|.#* is X\{x}-connected},
and 7 = {(x, y) € X, | #* N2 is X\{x, y}-connected}, is itself connected.

Since an element x € X is in X if and only if it is a tip of a maximal tree
in % and since any maximal tree has at least two tips, we see that X =
supp.7". Thus it is enough to show that for any x € X the relation ¥~ is
X\{x}-connected. But this follows directly from our induction hypothesis
since .7~ is easily seen to coincide with .7, € X, X X, if X, =: X\{x} and
=201 2) XL (1), (x,2) €X',

Proof of (v). Let us first observe that for each {f, g} € &, one has
(£ eNU=(£,8)No()=(f, 8) N Ueces, 0(V°) = (£, g) Np(V'/'#)), since
for e={f", g'} # {/, g} one has (f, g)No(V)<= (£, )N [f", g'| =@. The
rest follows now from the injectivity of ¢ and the comparison of the two par-
titions

ENvy= U (L9

(fe1esy

and

ENVi=EVIN=( U ¢ g))\U

(f.8)e&,

U (s a\NUN( )

(f.8le&y

U (s 9\ (7))

(frg)edy

U U (o), o))

e=(f,gle&y (u,v)c&e

U (o), o)),

{u,vle&
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since these two partitions of E,\Vy into disjoint open connected subsets
must necessarily coincide, so for u,v € V we have “{u,v} € & = (p(u),
0(v))=(/; g) for some (£, g} € &Y= (p(u), 0(v)} = {/, &) € F%.” as well
as “lo(), o)} EEY> (o), o) =(e@'), ') for some
{u', v’} €& = {p(u), p(v)} = {p(u’), ¢(v’)} for some {u’, v’} €& = {u, v} =
W, v'e&”

(3.18) Finally assume I'=(V,&,[) to fulfil all of the above
conditions except perhaps ¢.(V,) 2 V- By (3.16) we know that we can
construct a new network I''=(V', &', ') with V< V', |I|=|I"|, and
e (V=2 Vj{,\m such that V'\V consists of vertxces of degree 2 only and
such that o (V/\V) € V-

We may apply our results with respect to I"’ to conclude that ¢’: V' - E,
is injective, contains ¥, in its image, induces an isomorphism I - I'y'
with U’ = ¢'(V')\Vy, and satisfiess ¢ (V'\V) = U,x @' (V\V) =
Uxex Tx0x(Vi\P) S Uxex Te(Vx\x)) € Vx- So for each v’ € V'\V the degree
of ¢'(v') € V must be 2 which implies ¢'(v') € {h,| x € X}, since #N,> 3
for each f€ V,\X. But ¢'(v')=h,=¢'(x) for some x € X implies v’ =
x€XcV. So we have V'=V' and thus I'=1TI" already satisfies ¢ (V,) 2
Viix for any x € X.

(3.19) It is now easy to prove Theorem 7' by induction with respect
to #X: in case #X = 2 the verification of Theorem 7’ is trivial. So consider
the case #X > 2, assume Theorem 7’ to be true for all spaces X\{x} (x € X),
and let I' be a realization of X which like I', “contains” a hereditarily
optimal realization of each X\{x} (x € X). From (3.16) we conclude ||| >
ITkll, so Iy is a least necessarily a hereditarily optimal realization of X.
Moreover if I' is hereditarily optimal, too, we get || I'|| = ||I'y| and thus, using
(3.17) and (3.18) we conclude that I is canonically isomorphic to some I'y.
So altogether we have proved Theorem 7’ for X.

(3.20) I conjecture that for any finite metric space X there is a
subset &, =&, with X<V =:supp &, such that I'y=(V,, &, Ix|s) is an
optimal realization of X and that any optimal realization of X is essentially
isomorphic to some such I'j. Moreover, I conjecture that for an open dense
subset of the set of all metrics on X there is only one possible choice of &;.

4. TREES
(4.1) To prepare the proof of Theorem 8 let us note at first that a

metric space X is tree-like if and only if Ty is tree-like: since subspaces of
tree like spaces are obviously tree-like and since for f,, f3, f3, f4 € Ty and

607/53/3-7
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X=XV {fi»nfi_y} (=1,2,3,4) we have natural identifications
Ty=Ty,=Ty,=Ty,=Ty, and thus f,E€ Ty, as well as X, , =X, U {f}
(i=1,2,3)it will be enough to show that XU {f'} is tree-like whenever X is
tree-like and f € Ty.

But for x, y,v € X and f € T, the tree-likeness of X (in form of the
condition (T’)) implies xy+ ||k, fll=xy + f(v) = sup(xy +vw— f(w)|
wE X) < sup(xv + yw ~ f(w), xw+ yv — f(w)|wE X) = sup(xv + f(»),
yo+ f(¥)) = sup(xv + ||y, fIl, yv +||h,, f||) and thus the tree-likeness of
XU (S},

Note also that a space X is tree-like if and only if the conditions (T) or
(T") are fulfilled for all x, y, v, w € X with #{x, y, v, w} = 4, since they hold
for #{x, y, v, w} < 4 quite trivially in any metric space. Thus, using (1.16), a
space X is tree-like if and only if 7', is one dimensional for all ¥ € X with
#Y =4,

(4.2) Next let us define for a metric space X and two elements
X, y € X the subset

Xy =X y)=1{Z€X|xz +zy=xp}

which is always a closed subset containing x and y.
The following statements are more or less obvious:

(a) z€{x, y)implies {x,z) M (z, yy={z} and {x,z)U {z, y) S {x, p).
(b) For any isometry ¢: [0, ] <> X with (p(O)l=x and ¢(t)= y one
has o([0, t]) & (x, y) and k.- 9 =Ryl - 0 =1dg 4

(c) For x, y, v, w € X the following conditions are equivalent:

i) xv+ow4 wy=uxy,

(i) vel{x,wyandw€E{x, y),

(iii) v € {x, yyand w € (v, »),

(iv) (o, w) = {x, w) M (v, p) SLx, Y).

(d)  Axlex, = 0, xp]: 2+ zx is an isometric embedding if and only if
for all v, w € (x, y) one has xv + vw + wy = xpy or xw + wv + vy = xy.

If this holds for all x, y € X, the space X will be called thready.
(4.3) A space X satisfies the condition (T1), considered in the
introduction, if and only if the map

Belieyy i <6 3= [0, xp] 1 2> zx
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is a bijective isometry for all x, y € X or, equivalently, if and only if X is
thready and (x, y) is connected for all x, y € X.

So, in particular, for any three elements x, y, z in such a space X there is a
unique u = u; , € X with

{x, yYN (x, z) = {x, u),

namely the unique element u € (x, y)N(x,z) with wx>vx for all
v € {x, y) M {x, z) or, equivalently, with (u, ¥)M{u, z)= {u}.

Proof. Assume X to satisfy (T1). It is enough to show that
z€(x, y)S X implies ¢, (xz)=2z, ie., that ¢, —being a right inverse of
fylix,yy in view of (4.2b)—is also a left inverse of &,|, ,,. But if z € (x, y)
and if y: [0, xy] > {x,2) U (z, y) < (x, y) is defined by

v(t)=0,.() for 0Kt xz,
=9, (t—xz) for xz<<t<xy,

then y satisfies w(0) = x, w(xz) =1, w(xy) =y, and w(t,) w(t,) =t — t,] for
4,4, €10,xz] or ¢,t, € [xz,xy], as well as w(t,) w(t,) < w(t) wixz)+
vixz)y(t) = (z—t)+ (G —xz) = -t = |-y for 0K <
xz <t, < xy, which together with xy < xy(t)+ w(t,) w(t,)+ w(t)y - <
o+ () w(t) + (xy — 1), that is, £, — 1, <y(t; ) w(t,) implies w(r)) y(1;) =
[t,—¢,| for all ¢,,¢,€ [0,xy] and thus y=g¢,  which in turn implies
0,.,(x2) = w(xz) = z.

Vice versa, if h,|, ,,: (6 ¥)~[0,xp] is a bijective isometry, then its
inverse ¢ =9, ,: [0,xy] 5 (x, ¥) S X is an isometry ¢ with ¢(0)=x and
o(xy)=yp and it is the only such isometry in view of (4.2b): if ¢’:
[0,xy] > X is another isometry with ¢'(0)=x and ¢’(xy)=p, then
By © @ =Hhlix.yy 0 @' together with the injectivity of A, , implies
p=9"

(44) If X is a tree (as defined in the introduction), then X is
“median” (cf. [20]), ie., one has {(x, )N (¥, z)N{z,x)# @ for all
x, y,z€X.

Progf. Assume X to be a tree and x, y, z € X. W.l.o.g. we may assume
Y& (x,z) and z € (x, y). Consider the element u = u} , with (x, y) N (x, z) =
{x,u) and the map ¢: [0, 1] - X defined by

o() = @,,,(xy — 2t - yu) for 0<¢

= (ox.z(xu + (2t - 1) . llZ) for %

N N

NN
8D

t

Since ¢, ,(xy — yu) =9, ,(xu)=u=g, (xu), the map ¢ is well defined and
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continuous. Since y#u+#z and ¢([0,3])Ne([3,1]) = ¢, (Ixu, xy])N
0, ([xu, x2]) = (u, y) N (u, z) = {u}, it is injective. Thus, using (T2), we
have u=0(3) € (p(0), ¢(1))=(y,z) and therefore u € (x, y)N{x,z)N
(y2)#@.

(4.5) If a metric space X is tree-like, then it is thready. Vice versa,
if X is thready and median, then it is tree-like and one has (x, z} < (x, y)U
(y,z) for all x, y,z € X.

Proof. Assume X to be tree-like, x, y€ X, and v, w € {x, y). W.lo.g.
assume xv < xw. This implies xv + yw < xw + wy = xy < xy + vw as well as
xv + yw < xw+ yv and so, in view of (T), it implies xw + yv =xy + vw=
xv+uvy+ow, ie, xw=xv+ovw and therefore xv+ow+ wy=
xw + wy =xy. So X is thready.

Now assume X to be thready and median and assume x, y,v, w € X,
Choose some a € {x,v)MN {v, w)M {w,x) and some b€ (p,v)N {v, w)N
{w, y). Since a,b€ (v,w) and X is supposed to be thready we have
ab+bw=aw or ba+aw=>bw and therefore xy+ vw < (xa + ab + by) +
(wb+bw)y = (xa+(ab+bw))+(yb+bv) = xw+yv or xy+ow <
(xa+ab+by)+ (va+aw) = (xa+av)+ ((yb+ (ba+aw)) = xv+ yw,
i.e., xy 4+ vwsup(xw + yv, xv + yw), so X is tree-like.

The last remark follows from the fact that after choosing some
a€ (x, yyN{y,z)yM{z,x)one has {x,z) = (x,a) U {a, z) S {x, y)U (y, z).

(4.6) Let us now consider for a metric space X and two elements
x,yEX the map h, ,: X— [0,xy] S R: v 3(xy + xv — yv). We claim,
that for a tree-like metric space X, any two elements x, y€ X and any
r€ [0, xy| the set hy [ (r)M (x, )= h;'(r)M (x, y) consists of at most one
element and that 4 }(r)\(x, y) is an open subset of X.

Proof. The first statement follows from h, |, ., = A/, and (4.5). To
prove the second statement assume v € h;)(r)\(x,») and put e¢=
3(xv 4+ vy — xp). Since v & (x, y) we have ¢ > 0. Now assume w€E€ X and
vw<e. We claim that w&h; (r)\(x, y): wé& (x,y) follows from
XW+ Wy > xv —ow + yv — vw =xy + 26 — 20w > xp, and w € h L(r), being
equivalent to xw — yw = xv — yv, i.e., xw + yv = xv + yw, follows from the
tree-likeness of X and xy+ovw=xv+uvy—2e+ovw<xv+ vy—owg
XU + yw.

Note that the openness of h,'(r)\(x, y) implies that the small inductive
dimension ind X of any tree-like space X (see [21] for the definition of it) is
smaller than or equal to 1, because for &, 7 > 0 and x, y € X with xy = € one
has 2, '(e) N R () =, '(8) O (A Y(m/2)\(x, ¥)), so for any x € h; '(¢) the
canonical neighbourhood system U,(n, h;'(€)) = {z € h; '(e)| xz < n}
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(n > 0) of x in h; '(¢) consists of subsets of &, '(¢) which are simultaneously
closed and open in h;'(¢). So in particular, dim X < 1 for any separable
tree-like space.

(4.7) It is now easy to prove that a metric space X is a tree if and
only if it is tree-like and connected if and only if it is thready, median, and
connected.

Proof. If X is a tree, then X is obviously connected, thready, and median
by (4.3) and (4.4). If X is thready and median, then it is tree-like by (4.5).
Finally, if X is tree-like and connected, then it is thready by (4.5) and the
map A, . (X, ¥)— [0, xy] must be surjective, since otherwise there would
exist some r€ [0,xy] with A7'(r)M (x, yy=h; (r)N(x, y)=@ which
implies r € (0, xy) and therefore x€E U, = {z€ X | h, ,(2)<r} and yE U, =
{z€X|h, (z)>r}. Thus X=U,WU,Uh\(r)=U\9U, h; N\
(x, y)) would be a partition of X into three disjoint open sets, two of which
are nonempty (at least), contradicting the connectedness of X. So a tree-like
connected space X necessarily satisfies (T1) by (4.3). It satisfies also (T2),
since for any continuous map ¢: [0, 1] - X with ¢(0)=x and ¢(1) = y and
for any connected component (¢,,t,) of the open subset ¢~ '(X\{x, y)) S
(0,1) one has ¢(t;)=¢(¢,)}—so, for an injective continuous map ¢:
[0, 1] > X one has necessarily ¢([0, 1]) < {(¢(0), ¢(1))—because X\(x, y) is
a disjoint union of the open sets & L(r)\(x, ¥) (r € [0, xp]) by (4.6). So the
connected set ¢((¢,, £,)) € X\(x, ¥) must necessarily be contained in one
such open set, i.e., there is some r € [0, xy] with &, ,(p(¢)) = 3(xy + xp(t) —
yo(t))=r for all ¢ € (¢, t,) which implies &, (o(¢,)) = A, ,(¢(t,)) = r. Since
(é’(tl)), o(t,) € X\(x, y), ie., o(1,), p(t,) € (x, y), this implies ¢(f,) = p(t,) by
4.6).

(4.8) We are now ready to prove Theorem 8. Since T is connected
for any X, the implication (i)= (ii) follows from (4.1) and (4.7). The
implication  (ii)= (vi) follows from the fact that x, y,z€JX,
S+ £(») > xy, and f(y) + f(z) > yz implies £ & (x, y)'U (, z) and thus
SE&{x,z)S (x y)U{p, z), ie, f(x)+ f(z)>xz. In particular, one has
Ty={f € Ty|supp #;=X}=U, yex (% ¥)r,, 50 we see that T3S Ty is
tree-like and connected and thus a tree, whenever T is a tree, i.e.,, we have
(ii) = (iii). The implications (iii) = (vii) and (iv)= (iv’)= (v) are trivial;
(vii)=> (i) follows from (4.7), (v)= (i) follows from (1.16), and (i) = (iv)
follows from the last remark in (4.6). The remaining implication (vi)= (i)
can also be deduced from (1.16), but it follows also from the proof of the
following description of finite tree-like spaces.

(4.9) If X is finite, then the following conditions are equivalent:

(i) Xis tree-like;
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(vi) #;is completely multipartite for any f € T;
(vii) Ty=Ey;
(ix) the graph (Vy, &) is a tree (in the usual sense of graph theory).

Proof. (vi)= (viii). Since #X < oo implies .#;# @& (even supp.7;=X)
we see that #—being nonempty and multipartite—is necessarily connected
for any f € T, so we have f € E, if f€ Ty 2 E, i.e., we have E, =T,.

Note that Ty=E, and Ey=V,UUce (8= U(f,g)egx [/, &]
implies once again that dim T, = 1, so (viii) implies (i).

(viii) = (ix). Since E, =T, is a topological realization of (¥, &) and
since Ty is contractible, (V, &) must be a tree.

(ix) = (i). This holds at least for #X = 4 in view of (1.16), so it holds in
general since for any Y < X there exists a “subdivision” of (V,, &,) which is
isomorphic to a subgraph of (V, &) by (3.14).

(4.10) To conclude the proof of Theorem 8 let ¢: X—> T be an
isometric embedding of X into a tree T. By (1.11) we can extend it to an
isometric embedding y of Ty into T, which necessarily maps (f g)r,
bijectively onto (w(f), w(g)),, for all f, g€ T, and so it maps Ty =

Ux,yex <hx’ hy>Tx onto Ux,yex <hw(x)’ hw(y)>T7- < Uu,veT (hu’ hv>TT =
Uwer thylwE U, v);} < {h,|WET}=T. So we have at least one
isometric extension y/|T§ : Ty~ T of ¢: X - T. That this extension is unique,
is obvious in view of (4.3) since f € T% and, say, f(x) + f(») = xy for some
x,yE€X implies y'(f)€ (p(x), 9(¥)) N Ayl (f(x)) = {w(f)} for any
extension y': Ty — T of ¢.

Finally, we have seen already that a metric space is a tree if and only if it
is connected and tree-like, so it remains to show that the completion X of a
tree X coincides with T,. We have observed already in the Introduction, that
X is always contained in Ty. To show that X =T, assume /'€ T, and fix
some x € X. Then for each n € N there is some x, € X with f(x) + f(x,) <
xx,+ (1/n). Since Ty is a tree and thus it is median, there is some g, € T}
with g, € (x,%,)r, 0\ (%, )7, (f, X,z which implies || g, || = §(/(x) +
S(xp) — xx,) < 1/2n, as well as g, € {x, X,)r = (X, X, )y (since X is supposed
to be a tree). So we have g,=h, for some y, € X and f(y,)=| g, [l <
1/2n which implies f = lim,, y, € X.

(4.11) Remark. (a) It should be kept in mind that metric trees can be
considerably more complicated than graph theoretic trees, e.g., the space X =
{x=(x)wer | X, ER, 3, |x,] < 00} is tree-like if the metric on X is defined
in the following way: for x=(x,),cn> ¥ = (Vn)nen € X define m(x, y) =:
inf(n € N|x, # p,) and if m = m(x, y) put

Xy =: Ixm_ym|+ Z ([xnl + |yn|)

n>m
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Note that for x, y, z € X one has m(x, y) = max(m(x, y), m(x, z), m(y, z))
if and only if m(x, z) = m(y, z). Thus if x, y,v, w € X and #{x, y,v,w}=4
and if, say, m=max(m(a, b)|a, b € {x, y,v, w}, a+# b)=m(x, y) we have
either m(x, y) = m(a, b) for all a,b € {x, y, v, w} with a# b, in which case
we may assume w.lo.g. that x, <y, <v, <w, which implies easily
X0+ yw=xw+ yv > xy+vw, or we have, say, m=m(x, y)=m(x,v)=
m(y, v) > k=m(x, w)=m(y, w)=m(v, w) in which case we may assume
w.l.o.g. that either x,, < y,, < v, and y,, <0 or v, < y, < x,, and y,, > 0. So
in both cases we have |x,|+ |V, —Vn|=|Yul+|x,—v,| which implies
again xv + yw=xw+ yv > xy + vw, or we have, say, m=m(x, y) > Il=
m(x,v)=m(y,v) and m>k=m(x,w)=m(y,w) which again implies
XU+ yw=xw+ yv > xy + vw.

One verifies easily that X is complete with respect to this metric and that
it is the completition of X,={x€ X|x,=0 for almost all n€& N}.
Moreover, X, is obviously connected and, thus, it is a tree, too. We will
study these trees as well as the subtrees

XE = {(Xgy X1 yeees Xy ) E Xp | x; > 0f0ralli > 1,
x;=0ifx,_=-=x,_,=0foralliz>k+ 1}

(k€ N) specifically in a later paper, since they have rather interesting
universal properties and, in particular, they are highly homogeneous, so it
may be of interest to look at their automorphism groups.

(b) It follows easily from (4.9) and from Section 3 that for a finite
tree-like space X the network I'y = (Vy, &, ;) is not only an hereditarily
optimal, but is also an optimal realization of X and that any optimal
realization of X is essentially isomorphic to T, (cf. [28, 10, 22, 31].

(c) For reconstructing phylogenetic trees from data concerning present
species which data can be represented generally in form of a metric D
defined on the set X of those present species which are to be studied it seems
to be interesting to look for algorithms by which one can find for any metric
D defined on a finite set X a metric D’, also defined on X, such that (X, D’)
is tree-like, D'(x, y)>D(x, y) for all x,y€ X, and }, ,.x (D'(x, y)—
D(x, p)) or 3 ,ex (D'(x, ¥) — D(x, »))* is as small as possible.

First attempts in this direction have been made already and it is hoped
that this way one can replace the rather coarse-grained cluster analysis,
generally used for the mathematical reconstruction of phylogenetic trees, by
a much more refined method (cf. [1]).

(d) In this context it seems also worthwile to observe that for a
tree-like metric space X one has T, = Ty at least if X is compact or if the
set {xy+yz—xz|x,y,zEX} is a discrete subset of R, e.g., if
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{xyp|x,yEX}SN: if X is compact and xE€ X, one has f(x)=
max(xy — f(»)| y € X) for each f € T, and thus f(x) + f(y) = xy for some
yeX. If {xy+ yz—xz|x, y,z € X} is discrete, x € X, and f € T, then one
can find elements x; € X (i € N) such that ¢, =: f(x) + f(x,) — xx; converges
monotonically decreasing towards 0. We claim that ¢, =0 for some i€ N,
Otherwise we may assume 0 < ¢; <¢; for i <j which implies xx; + f(x;) =
SO+ fx) — &5+ f(x;) > f0x) + f(x;)) — &+ f(x;) = xx; + f(x;) and thus
xx;+ f(x)=x;x;+ f(x) by (4.1). But this in turn implies 2f(x)—¢; =
(ex; 4 f(x) — x;x;) + (ex; — f(x)) = xx; + xx; — x,x;, € {ab + bc —acla, b,
¢ € X}, contradicting the discreteness of this set.

The subset Z = {((1/),i,0,0,..)|i=1,2,..} S X, S X of the space X,
considered in (a) shows, that it is not enough to assume the set of distances
itself to be discrete since {xy|x, yEZ}={i+j+({1/D)—(1/)) | LJEN,
1<igj}is certainly discrete and f: Z > R: ((1/9),1,0,0,..)— i+ (1/i) is
in T,, but not in Ty: for 1<is/j and i, jEN one has f(x;)+
Slxp) = xix; = 2/j.

5. THE COMBINATORIAL DIMENSION OF METRIC SPACES

(5.1) Let us start with the following observation which is a simple
consequence of the Hahn-Banach theorem: if X and A4 are sets and if p:
A-R and 6: 4 X X> R are maps such that for each a € 4 the map o,:
X - R: x> o(a, x) has finite support (i.e., supp(c,) =: {x € X|o(a, x) # 0}
is finite for all a€A) then there exists a map f: X-R with
Y ex 0(a, x) f(x) < p(a) for all a € 4 if and only if for each A: X > R of
finite support one has —oo < i(h)=:inf(}_, (a) p(a) |t € R}) with Ry
denoting the set of all nonnegative maps 7: 4 —» R of finite support with
>, t(@)o(a, x)=h(x) for all x€ X. In particular, if R} +@ for all A:
X—-R of finite support, then there exists such a map f: X—- R with
> o(a, x) f(x) < p(a) for all @ € 4 if and only if i(0) =0, i.e., if and only if
Yo T(a) p(a@) > 0 for all nonnegative maps 7: A > R of finite support with
>, 1(a@)o(a,x)=0 for all x€ X.

Proof. If there exists a map f: X - R with 3, o(e, x) f(x) < p(a) for all
a € A, then for any h: X - R of finite support and any nonnegative map 7:
A—-R of finite support with >’ t(a)o(a, x)=h(x) for all xE X one
necessarily has

2 t@)p(@)> 3 1(@) X o(a, x) f(x)

a (21

=Y (3 #@) ot 1)) /) = £ 4 1) > —o0.
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Vice versa, if —oo < i(h)=inf(}, t(a) p(a)| 7 € R%) for all A: X > R of
finite support, then the map A+ i(h) from the linear space RY of all real
valued maps, defined on X, of finite support is convex and positively
homogeneous and so there exists a linear functional /: R¥— R with
I(h) < i(h) for all h € Ry. But any linear functional /: R¥ - R is of the form
I=1: hi> Y h(x)f (x) for some map f: X—> R (namely the map f defined
by f(x)=1(3,) with d,: X— R defined by &,(y)=46?) and for this f the
inequality I(h)i(h) for all hE€RY implies ),  7(a)o(a, x) f(x) <
2o T(@) p(a) for all nonnegative maps 7: 4 - R of finite support and thus
> a(a, x) f(x) < p(a) for all a € A.

In particular, if R} # @ and thus i(h) < +oo for all # € R¥, then i(0)=0
together with i(h) + i(—h) > i(h + (—h)) = i(0) = O implies i(h) > —oo for all
h€ Ry,

(5.2) Remark. Since any nonnegative map t: 4 - R of finite support
with 3’ ., 7(a) 6(a, x) =0 for all x € X can obviously be written as a finite
nonnegative linear combination of “minimal” such maps, ie., such
nonnegative maps 7: 4 - R of finite support with ) _, 7(a) o(a, x) = 0 for
all x € X for which supp(z’) < supp(z) for some nonnegative map 7’: 4 —» R
with 37, ., '(a)o(a, x) =0 for all x € X implies supp(z’) = supp(r) (and
thus 7’/ =c . 7 for some ¢ > 0!), it follows that there is some f: X - R with
2xex 0@, x) f(x)<pla) for all a€A4 if Rj#@ for all hERY and
2aea T(@)p(a) >0 for all minimal nonnegative maps 7: 4 » R of finite
support with )", 7(a) o(a, x) = 0 for all x € X.

(5.3) Now assume X to be a metric space. For any /€ P, and
€20 define Fi=:{(x,y))EXXX|f(X)+f(y)<xy+¢} and ¥L}i=
{n ) EXXX|f(x)+ f(¥) <xy+e}. Note that #7 is a symmetric
relation, defined on X, that f € T, if and only if supp(.#7) = X for all ¢ > 0,
that #5=Uy¢s.,- %72 and thatf—-fo

The following statements are simple consequences of (5.1) and (5.2):

Let #"< X X X be a symmetric relation, defined on X and let ¢, 7> 0 be
two nonnegative real numbers. Then there exists some /' € T, with 7 <. % 7
if and only if for all €N and all x,,X;,...; X5 P sees ¥, = Yo € X with
X5 o X} = H{ Y10y Yap=n and (x,,y,), (x;, .Vz)’---’ (xn’ yn) €% one
has X7 %y, <2F. i x;y;+n-¢ and there exists some f€ P, with
e s if and only if for all m,n€N and all x,,x,,.., X,, ¥,
Yases V= DYo E X with X grees Xpt =#{ Y1 s000s Yat=n, (xl’ yl)(x2’ yz)’""
(*psy)EX, and #{i€{l,.,n}|(x;, y;_ )€ F}=m one has
Dl Xy tmen <Yl 6y +n-e _

Thus, if 7 is finite, there exists some f € P, with .7~ =JY, if and only if
for all €N and all x,, X, ey X5 V15 Varers Yo = Yo € X with #{x, ..., X,} =
#{ Ve Yob=n and  (x;, ), (X35 Yol (X, ¥,) EX one has
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S X Yo € 2011 x; y; with the inequality holding unless (x;, y,_,)€.%
for all i=1,2,..,n

In particular, if n €N, x, € X for i € I =: {£1,..., £n}, and F" = {(x;, x_,) |
i€ 1} then #{x;,X_,,., X,, X_,} =2n and there exists some f € P, with
A =2 if and only if D, x;x0_; > 2 e, XX, for all permutations a of I
with a # —Id,.

Proof. Let us observe at first that in view of (1.3) there exists some
S € Ty with Z"< 777 if and only if there exists some f € Py with 7" <= 77},

Now let A4 =4, = {({y;, y:}), &) € Z(X) X {x1}|# = -1 or
(Y, ) EL ), let 0=04: A XX—> R be defined by o(({y,, y,},?), x)=
#(07,+ ;) and define p=p%: A-R and p'=p%: A-R by
p{Yi 20N =28- yy,+e- @+ 1)/2 and p'(({y, 2, 8N =3 yiyy +
e ((B+1)/2) + - (% — 1)/2) - x4(y1, y,) with

1y y)=1  for (y,, )&%,
=0 for (y,»y)EL.

Then we have 2 < . Z; for some f € P, if and only if
Seex ({71 121 9 %) - S0 <P(({31, 32h B)) for all ({3,, 7,),8) €4 and
we have f€ P, and ]S ¥ < 7% for some f€R* if and only if
2xex 0(({ Y1 12h B) x) - S <P ({315 32} D)) for all ({4, .}, B) € 4.

Now consider the set H_ = {h€ R¥| R} # @}. Obviously, H_ is the
convex cone in R§ which is spanned by the maps ¢, :X -+ R: x> o(a, x)
(a € 4) and so it contains —d, =30, ,, _,, for all yE€ X as well as 6, =
Oyxi+ny T 30y.y.—1, for all x € supp(#). Thus, if we assume for a
moment that X = supp(.#) then it follows immediately that R4 + @ for all
h € R and so each of our two systems of inequalities can be solved by some
S € R* if and only if for any minimal nonnegative map 7: 4 - R of finite
support with Y . 7(a) o(a, x) =0 for all x€ X one has > ., (@) p(a) >0
or 3,4 7(a) p’(a) > 0, respectively.

Thus for the proof of the first two statements it is enough to show that for
any such map r there exist elements 7 €N, X, X350 X5 Pis Vaseres Yy =
VoEX and ¢>0 with n=#{x, X, X, =#F{V i Vub X1, 21
(22 Voloor (s V) EF,

({21, 2o}, B =c if ({z,, 25} D) € {({x;, pi}, +1) [ i= L, m}
Y {({xi’ Yioh —-1) | i=1..,n}

and 1(({z,, z,}, #)) = O otherwise. But for any nonnegative map 7: 4 » R of
finite support with > ., 7(a) o(a, x) =0 for all x € X one has

{x€ X| (x, y) €% and =(({x, y}, +1)) > O for some y € X}
= {x € X|t(({x, y}, —1)) > O for some y € X}.
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Thus, if X, denotes this subset of X, there are maps a: X, — X, and b:
X, - X, with (x, a(x)) €7, t(({x, a(x)}, +1)) > 0, and 7(({x, b(x)},—1)) > 0
for all x € X. Since X, is finite, there is some x € X, and some n € N with
x = (ba)"(x) # (ba)'(x) for all i€ {1,.,n—1} unless X,=@ and r=0.
Thus with x;=(ba)'~'(x) and y,=a(x—and, hence, x;=b(y,_,)—for
i = 1,..., n one may define

t:A-R:({z,, z,}, 0)!—* +1 if ({z,,z,}, 19)6 {({x’., Yibs +1) | i=1,.,n}
U{x, v b 1) i= 1., n)
—0 otherwise

One checks easily that 7’ is a nonnegative map of finite support with
3. T'(a)o(a, x) =0 for all x € X and that supp(zr’) < supp(r). Thus we have
indeed T=c - 7’ for some ¢ > 0 in case 7 is supposed to be minimal.

If we do not suppose X = supp(.#") the above argument shows that at least
there is a map f’: Y =supp(#) - R with f'(x) + f'(y) > xyforall x, yEY
and f'(x)+ /' (»)<xy+e for all x,y€X with (x,y)EF (and
L)+ (»)2xy+nforall x,y € Y with (x, y) € 7, respectively), so we
may extend this map to a solution f: X— R of our original problem by
choosing some fixed y, € Y and defining

S@x)=f'(x) if xevy,
=xpo+ ' (po)+ 1 if xeX\Y.

Now assume .7 to be finite. As above we may assume w.l.o.g. that X =
supp(.#"). There exists some f € P, with #" =%} if and only if there is some
S € Py and some n > 0 with ] <. S % and, thus, there is some f € Py
with .#'=_%; if and only if there is some #>0 with }7_, x;y;_, <
Srxyi—m-n for all mn€N and X, X5, Xy Vi Va =V €EX
With  #{X, yees X} = #{ Vi Va} =8 (X5 Vidseos (%45 V) EF  and
#{i € {1,.., n}| (x;, ¥;_1) € X’} = m which in view of the finiteness of X is
obviously equivalent with

L.
i=1

n n
Ny <Y xy forallsuch x, e, X,y Yypey Vo= Yy € X,
i= i=1

n

Nxiyioa<Y x;y,  unless(x;, y,_,) € X foralli=1,.,n
i=1 i

=1

Now assume n€EN, x;€X for i€l, and 7 = {(x;,x_)|i€l}. If
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FE{X | yeves Xy X_y ey X_,,} = 21 and there exists some f € Py with 7, =% we
obviously have

Yoxx_ =3 (fe) + ()= (fx) +fFaw)) > 2 XiXaw
iel ier iel iel
for all permutations a of I with a # —Id,.

Now assume this condition to be fuifilled. Since this implies readily
F{X, s X_{sees Xy X_, =21, it is obviously enough to show that for all
MEN and z, ey Z,s Voo Yp= Vo EX With ={z ..., 2.} = #{ V|50, Y} =M
and (z;, y;) €.# for all i=1,..,m one has >'/_,z;y;> > z;y;_, unless
m= 1. So assume m > 1 and let §: {1,...,m} — I be the unique map with z; =
Xg for all i € {1,...,m} so B is necessarily injective since #{z,..., z,,} =m
and we have y; =x_,, for all i € {l,..., m}. Define a: I x 1 by

a(j)=—B3G—1) if j=p()forsomei€ {2,..,m},

=—f(m) if j=p(1),
=—j if jé& {B(1),...,B(m)};

a is obviously bijective and one has « # —Id, since m > 1 and so, for
instance, a{f(1))=—B(m)=—PB(1). Thus we get 3 ey . amXX_;>
D ietit.....em XiXa(; Which implies

.
Y x> S XXy

JjeB(l,..., m)) JjeB(1,..., mj)

ie.,

Nzyi> Nz, Q.E.D.
i=1 i=1
(5.4) Remark. Note that we used the triangular inequality only to
extend a solution f': Y=supp.# >R to a solution f: X— R. More
precisely, it follows from the above proof of (5.3) that its statement are
correct for any symmetric map XX X-R: (x,y)r>xy with s, ,=:
sup(xz — yz |z € X) < +oo for all x, y € X, since under such conditions one
can always extend a solution f': Y =supp.#Z — R to a solution f: X—> R
after choosing some fixed y, € Y by

Sx)=/1"(x) for x€Y,
=N+ S"(Fo) + 54y, for xe\Y,

since for this / one has for x € X\Y and z € Y the relation f(x) + f(z) =

N+ S (Vo) +Seyy+ /() 2 0+ (D) + S @) 455y, 2 n+roz+
(xz—yoz) > xz+n and for x,z€X\Y one has f(x)+f(z) =
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242" (Po) + S,y + 82y 2 N+ ' (po) + (X2 = yoz) + (Vo — Vo ¥o) =
n+xz+ (' (Po) + f'(¥o) — VoY) 2 1+ xz.

Note that s, ,=sup(xz — yz|z € X)=xp for all x, y€ X if and only if
the map X X X > R: (x, y) > xy is essentially a metric, i.e., it satisfies all
the conditions defining a metric except possibly the condition xy =0=x = y,
and thus one has s, , < 400 for all x, y € X whenever the map (x, y) — xy
is the sum of two maps (x, y)+— xy, and (x, y) — xy,, one of which is a
metric whereas the other one is bounded.

The example X = {a; b,, b, ,..s bpysenc}s

xy=0 if x=y,
=2 if x#yand x, y€ {b,,b,,..},

=n if x=a and y=5,,

and .% ={(b,,b,)|n#m} shows that without some extra conditions
concerning the map (x, y)— xy there may be no possibility to extend a
solution f’: Y=supp.# —» R to a solution f: X— R: there is only one
solution f': Y =supp.# = {b,,b,,..} = R with f'(b,)+ f'(b,)=2 for all
(b,,b,) €7, namely, f'(b,)=1 for all n=1,2,.., whereas the inequalities
Sfla)y+f'b,)=f(@)+1>n for all n=1,2,., do not admit a solution
Sfl@)eR.

(5.5) Another consequence of these results can be stated once we
define for any symmetric relation 27" < X X X and x, y € X the expression

n n
Xy g =: inf(E XY= D X Vi1 [ REN;X =Xy sy Xy Py Vo=V E X;

i=1 i=2

A1 Xy =P I = 13 (81 P (5 3) €5 ).

Note that xy , < xp for (x, y) €% since for n=1, x, =x, y, = », one has
Xy=21 1 x%Yi— Dl Xi¥i_. f S % for some f € Py, then one has
xyy2f(x)+ f(p) for all x,y€X since (x,, Y1) (X5 ¥,) €EZ implies
Vi yi—Liaxiyioy 2 2im (G +f(v)) — 2iea FOe) + f (32 1))
= flx) + f(3a)-

It follows directly from (5.3) that .#” < .#%; for some f € P, if and only if
xy > xy for all x, y € X. Moreover, in this case we have

() Z={(x Y) EX*| xyp=xp},

SePy, F'S.%;

since xy, = xy and ¥ C.%; implies xy < f(x) + f(¥) < xy»=xy and thus
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xy = f(x)+ f(y), ie, (x,y)E7Z;, whereas xy,>xy for some x,y€EX
implies (x, y) € % and so, using (5.4) with respect to the map

XXX->R:(a,b)r—ab if {a, b}+# {x, ¥},
> Min(xy 5, xy + 1) if {a,b}={x, yl,

one finds easily some f€P, with 2 c.% and f(x)+f(y)2
Min(xy,, xy + 1) > xp, ie., (x, y) €. 7.

Remark. Since [}, [;50s fyy5es € Pyimplies f=3"° | (1/2™)f, € P, and
K= (a1 A, it follows from (5.5) that for a symmetric relation
4 < X x X with countable support supp.# < X there exists some f &€ P,
with % =% if and only if >}, x;», 23/ x;y;,_, for all n€EN and
X geers Xy Visoos Vo = Yo € X With #{X 00, X, } S #{ V100 Yyl =1, (X1, Y )seees
Xp V) EZ, and F' 2 {(x, ) EX X X | xy 5= xp}.

I do not know whether the same holds without the countability condition,
but I doubt it.

(5.6) As above, let #'C X X X denote a symmetric relation defined
on X. If ¥ € X X X is another relation defined on X, we define a sequence
(15 P1s Xas Vareos Xps Vo) € X" to be F-L-sequence if (x;, ;) (X3, X;)5ees
(0 V) €L and (¥1,%,), (V2 X3)es (Puc1s Xu)s (Py> X,) €4, Then the
following three statements are equivalent:

(i) For any J-F-sequence (X, Vi, Xy Vo) With #{x ., Xx,} =
#{ P ses Vo) =1 we have (p,, X)) EZ.
(ii) For any Z-%¥-sequence (X, ¥,,..., X,, V,) We have (y,,x,) € Z.

(i) For any .#-%-sequence (X, ¥ ..., X,, V,) W€ have (¥, X;)...,
(yn-laxn), (y,,,xl)Ef.

Progof. Since (iii) = (ii) and (ii) = (i) are obvious, we only have to show
that (i) implies (iii). If not, let (x,, ¥;,.., X,, ¥,) be a #-¥-sequence with
(P15 X)peeer (V5 %)} € & of smallest length.

SINCe (X;5 Viseeos Xps Vs X1s Yisos Xi_15 Yi_1) 18 @ F-&-sequence for each
i € {l1,..,, n}, we may assume w.l.o.g. that (y,, x,) € & and so we necessarily
have #{x,,.., x,} <n or #{y,,., y,} <n But if x,=x; or y, =y, for some
L j€ {lu,n} with 1 i< j<n, then (xy, Vs Xi (s Vi 15X = X5 Vis Xjy 15
Vigtoes Xns V) O (X(s Py Xps Vi= Vjs Xjs1s Vig1ooes Xns V) A€ X -L-
sequence of length n — j 4+ i < n, respectively, and so we have (y,,x,) € &,
a contradiction.

We define a relation & < X X X to be #-closed, if it is symmetric and
satisfies the three equivalent conditions, stated above.
Thus a symmetric relation ¥ <X X X is #-closed, if and only if
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A NLAL)Y' =¥ for any n €N, where, as above, for two relations
S, FXXX we denote by % the relational product & % =:
{(x, y) € XX X|there is some z€ X with (x,z)€E and (z, y)E .Z},
or—still in other words—it is _#"-closed if and only if for all n, m # N with
n=m(2) one has

HLHLEY .. NLXLEL ... L
S N

n-factors m-factors

(5.7) The following observations are more or less obvious:

(a) f ¥ <X XX and if & is symmetric, then & is #-closed.

b) If # S #cSXXX are two symmetric relations and if
¥ € X X X is #,-closed, then it is #]-closed.

(c) F¥<=XXXis.Z-closed and if &' = & is &¥-closed, then &' is
A -closed, too.

(d) The intersection of .Z-closed relations is .#™-closed, in particular,
for any relation ¥ S XXX there exists a #'-closure &=L, =
ny”.f—closed,sf;iﬁ' g"

(¢) For any Y < X and any .#-closed relation & < X X X the relation
LN (YXY) is #closed, too, in particular, one has supp(<’) = supp(¥)
for any ¥ c X X X.

() If L<.% is #'closed, then we have ¥*"*' c L(#'¥)" and
LUyt c L( LYyt and  thus LPTINAF ¥ and
L gt N 7" c &, In particular, if (x, y) € #\¥ then (x, y) € £*
implies k= 0(2) and (x,x) € &*, (3, y) € &/ implies k- j=0(2), or, in
other words, if (x, y) € #\& and if x and y are in the same connected
component of &, then this component is necessarily bipartite and any path
from x to y in ¥ has even length. Whereas if x and y are in different
connected components of &, then at least one of these two components is
bipartite, or—still in other words—if ¥ & %" is #-closed and if supp & =
supp.%’, then the vectorspace W, =: {v € R*“"*¥|p(x) + v(y) =0 for all
(%, y) €27}, whose dimension measures the number of bipartite connected
components of %", is properly contained in the correspondingly defined
vectorspace W, =: {v € R®P"¥| v(x) + v(y) =0 for all (x, y) € ¥}.

(5.8) If v: X R satisfies v(x) + v(y) > 0 for all (x, y) € %, then
any symmetric relation ¥ € X X X with v(x) + v(y) <0 for all (x, y) €&
and ¥ 2 ¥T =1 {(x, y) € | v(x) + v(y) =0} is #-closed, since x,,..., X,,
Viwes In=Vo €EX, v(x)+v(»)<0, and ov(x)+v(y,_,)>0 for all
i=1,..,n, implies v(x;) + v(y,_,) =0 for all i=1,..,n So, in particular,
L is H -closed for any such v € R*.
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Vice versa, if ¥ < % is % -closed, then ¥ is the intersection of all & f ,
where v runs through the set W consisting of all maps in R* with v(x) +
v() >0 for all (x, y) €4 and v(x)+v(y)=0 for all (x,y)€ <. This
could be derived from (5.1) and (5.2), but a direct proof is more instructive.
Define a pair (Y, v) with Y < X and v € R" to be admissible if ¥ contains all
xEX with (6, x) € LV =,y &>, if (1,2)E(Y X Y)N L™ implies
v()=(=1)"v(z) and if (y2)EX X VNL"F (LX) implies
(=D)"v(y) + (1Y v(z) > 0 (n, m, k, j € N). Note that (¥, w|y) is admissible
for any we€ WZ.

It follows that for x€ X\Y and w& R"“'™ the pair (YU {x},w) is
admissible if and only if (Y, w|,) is admissible and w(x) satisfies the
following conditions: w(x)= (—1)"w(y) for all y€Y and n€N with
(x, ) EL", (~1)"w(x)+ (=1)’ w(z) >0 for all zE Y, and m, jEN with
(x,2) E L"H (LAY for some kEN and (—1)" w(x)>0 whenever
(x,x) € L"F (LA )L for some k, jE N with j= m(2).

But for any admissible pair (Y, v) and any x € X\Y one has the following
implications:

(i) »z€Y;nmeEN; (x, y) € ZL"; and (x,z) € L™ together imply
(3,2) € L™ ™ and thus (—1)" v(y) = (=1)" v(z);

i) yz€Y; n, m k JEN; (xy)€ZL" and (x z)€E
LrH(LA)L together imply (y,2) € LI (LAY and thus
ED™MED"v() + (1) v(z) 2 05

(i) yevy; n, m, k, JEN; k=j(2); (x, »)EZL" and (x,x)€E
L I(LI) - £ together imply (p, y) € L™ H (LA )L™ and thus
=D"({(-1)"v(»)) 2 05

(iv) y,zEY;m k j,a b, cEN; (x, ) EL"H (LI VL5 (x,2) €
L (LA L, and m+a=2n+1 for some nE€MN together imply
(3, 2) E LI I(LAVLm T (LHNLS © LA (LI g
and thus (=1 o(»)+(=1)°v(z)>0, so we have s,(x,Y)=:
sup((—1)Y* ' o(p)| yE Y, jEN, there exists m, k€N with (x, )€
LMLV L) € 5,(x, V) =:inf((=1) v(z) |z €Y, c EN, there exists
a,bE N with (x, z) € L2 F (L) ).

(v) yEY; m, k, j, a, b, cEN; a=c(2); m#a2);, (x,y)€
L (LX) L and (x, X) E LOH (LA L together imply (y, y) €
L)y (with n=k+((m+a+1)2)+b+(c+m+1)/2)+
kEN) and thus (—1)/ v(»)>0, so in case a=1(2) we have s,(x, Y) <0
and in case a = 0(2) we have s,(x, Y) > 0.

(vi) m, k,j,a, b, c€N;m=j(2); a=c(2); (x,x) € LA (LI YL,
and (x,x) € Lo (LAY L implies m=a(2), since otherwise we may
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assume m=2n and a=2d+ 1 (n,d€N) from which we get (x,x)€E
(ZL)yRUDZ a5 well as (x,x) € L(FL)I++E+DD which implies
(x, x) € £ for a . # -closed relation ¥ .7,

It now follows easily that any admissible pair (¥, v) with |o(y)| < 1 for all
YE Y can be extended to an admissible pair (YU {x}, w) with w|, =v and
|w(x)| < 1 for any x € X by putting w(x)= (—1)" v(p) if there exists some
YEY and n€N with (x, y)€¥" and by choosing w(x) arbitrarily in
[—1,+1] N [sy(x, Y), s,(x, Y)] if no such y exists and no m, k,jE N with
(x, x) € L™ (LA ) £/, whereas in the latter case we have to choose w(x)
in [-1,0]N[s,(x,Y), s5(x,Y)] if m=1(Q2) and in [0,+1]N [s,(x, Y),
§,(% Y)] if m= 0(2). Moreover, if v(¥)< {0, +1}, we may also choose
w(x) € {0, £1}.

Thus it follows from Zorn’s lemma, that a pair (¥, v) with v(Y) < [—1, +1]
(or with v(Y)< {0, £1}) is admissible if and only if v=w|, for some
w € W& with v(X) < [—1, +1] (or with v(X)< {0, +1}, respectively) and
Y2 {xeEX|(x,x)EZL V)

Now assume & .7 to be .#"closed and (x,, y,) € 7 \¥. We claim the
existence of w € W% with w(X) < {0, £1} and with w(x,) + w(p,) > 0. In
view of the above results it is enough to show the existence of an admissible
pair (Y, v) with x,, y, €Y, v(Y)< {0, £1}, and v(x,) + v(y,) > 0. So put
Y={xy Vol U{x€EX|(x, x) €LV}, put v(y)=0 if yEY and (y,y) €
(L)L for some k€N, in particular, if (y, y) € LY, otherwise put
v(y)=1. Then we have v(x,) + v(»,) > 0 since (x,,x,) € (X #)< and
(¥o» ¥o) € (LX) & implies (xg, y)) EFX N (LA LA (LHVL L, a
contradiction.

So it remains to show that (Y, v) is admissible: if (y,z)E (Y X Y)NL"
and (p, ) €LY or (z,z2) €LY, then (y,y), (z,z) €LY, and thus
v(p)=0=(—1)"v(z); otherwise we have {y, z} = {x,, y,} and so we have
(», z) € 2\& which together with (y, z) € " implies n= 0(2) (cf. (5.7f).
So we have to show v(x,) =v(y,). But either v(x,)=v(y,)=1 or there
exists k€N with, say, (x,,x,) € (£2) <, in which case (x,, yo) € £
for a=n/2 € N implies (x,, y,) € ¥ N (LX) **L < &, a contradiction.

Now assume (y,z) € (Y X NN L X (LX) ! for some m, k, jEN.
We have to show that (—1)™ v(y) + (—1) v(z) > 0. If v(») = v(z) =0, this
is clear. It is also clear, if y =2z, since v(y)>0 for all yE€ Y and since
m=j= 1 implies (y, y) € (L) M+ DD+k+=D/D | & gand thus v(y)=0.
So we may assume y # z, (, y) € LV, say y =x,, v(y)= 1, and m= 1(2).
If (z,z)E¥™, this implies (y,y)E LI (L)L Lyl
(LAY ™ c (LAY DD +htjtntltkt(m=D/D o in contradiction to
v(y)=1 So we have z=yp,#x,. If j=1(2) we get (xo,3)E
I N (L) mtDD+k+U=D/D o c £ 3 contradiction, so we have j= 0(2)
and we may assume (¥, Vo) € (£ for some a € N. But this implies

607/53/3-8
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now (x,, yo) € Z N (LA )M D/D+k+UD+a, & £ again a contra-
diction. So (Y, v) is indeed admissible.

Remark. In general, for a #-closed relation & ©.7" we cannot derive
¥ =) for some appropriate v € W from the representation & =
(vewZ 7. A counterexample is the following:

Let Z be a partially ordered set such that there is not strictly monotonous
map f: Z - R, e.g., because Z is linearly ordered and of a cardinality which
exceeds that of R. Put X={z%,z"|z€Z}, = {(z%,z7)|z€ Z}, and
X ={(z*,y7 )|z, yEZ, 2>y}, then v: X> R is in WZ if and only if
v(z*)=—v(z7) and v(z*) > v(y*) for z> y. Thus & = ﬂvew?ﬂf but
Y+ forallve Wk,

(59) As a first corollary we state: if ¥ <. % is % -closed and
supp ¥ = supp .# =X, then ¥ is a maximal .# -closed proper subrelation of
A if and only if dim W /W , = 1.

Proof. If dim W,/W =1 then & is maximal, since ¥ & ¥ & .7 for
some .#"-closed relation & implies W2 W2 W, by (5. 7f) Vice versa,
assume % to be maximal. It follows from (4. 8), that any v € W is either in
W, or satisfies v(x) + v(y) > O for all (x, y) € #\&. Thus (x, y) € #\¥
and (p, y) € (LA)YL for some kEN implies (y, y) € £V, since it
follows from the construction given in (5.8) that there exists some v € W7
with v(x)=1 and v(y)=0, so if y=X, Y1, X3, Vyseos Xpi1s Vks1 = VE X,
(x5 y1), (X Yo (i e ) €Y, and  (y1,x), (2 X
(y,(,x,(H)ef it follows from v(y)=0=3Y %! (v(x) +v(y))=v(y)+

L (@(y) +v(x,,)) +o(y) and v(y,) + v(x;,,) 20 for all i= 1,..., k that
v(y)+v(x,+1)—0 for all i=1,...,k and thus (y,,x,),..., (yk,x“,)es,ﬂ
and (p, y) € ¥+ c W,

Thus for any (x, y) € #\& with (x, x) &€ ¥‘" we can find some v € W7
with v(X) <= {0, 1}, v(x)=1, and v(y)>0. Note that v(x)+uv(y)>0
implies v(a) + v(b) >0 and thus v(a), v(b) >0 for any such v and any
(a,b) e Z\Z.

We claim that for any (x, y), (g, b) € #\¥ with (a,a) & ¥ we have
(@, x) €LV =1,en & or (a,y) € £V, choose v, w € WL with v(X),
w(X) < {0, £1}, v(x) + v(») > 0, w(a) = 1, and w(b) > 0 and consider

w:X-R:z—0 if (z,x)e U L"or(z,y)e U &7,
neN neN

= v(z) + w(z) otherwise.

One easily verifies that u(z) > 0 whenever (z,z') € #\& for some z’ € X
and that u € W, so u € WZ. Thus u(x) + u(y) = 0 implies u(a) + u(b) =0
which in turn implies u(a) = 0 # v(a) + w(a) and hence (a,x) E U, n&" =
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LOVLY or (a,)ELYULY. But (a,z)ELY implies w(z)=
—w(a) = —1, so we have (a,x) € £ or (a, y) € L.

It is now easy to see that dim W_/W ,=1 or, more precisely, that
vEW, and v(x)+v(y)=0 for some fixed (x, y)E€F\¥ implies
v(@) +v(b)=0 for all (a,b)€ X\, ie., vE W,, since (a,b) € F\¥
implies (a,a) € £ or (a,x) € L or (a, y) € L. So v(x)=v(y)=0
implies v(a)=0 for all (a,b) € Z\&, whereas v(x)=—v(y)+# 0 implies
(x, x), (3, ) & £V and thus it implies (x, a) € £© or (x, b) € L? as well
as (y,a) €L or (y,b)€ L. In case (x,a), (y,b)€ LY or (x,b),
(y,a) € ¥ we get indeed v(a) + v(b) = v(x) + v(y) = 0, whereas in case,
say, (x,a), (»,a)EZL® we get (x,y)€L® and thus v(x)=0v(p), in
contradiction to v(x)=—v(y)#0.

(5.10) From (5.9) one deduces easily: if ¥ <.7 is .Z-closed,
supp & = supp.%, and dim W _/W , = 2 then there exist precisely two .7~
closed relations &} and &, with ¥ & £ ¢ 7 (i=1,2).

Proof. 1t follows immediately from (5.9) that there exists some .#"-closed
relation & with ¥ & ¥ .7 and thus dim W /W, =dim W /W, = 1.
Thus & is a maximal %-closed proper subrelation of & and ¥ is a
maximal %-closed proper subrelation of .Z". It follows from the above
considerations that there exists some v € WZ\W . and some v, € W\W ,
with v(X), v,(X)<{0,+1}. Put c¢=min((v(a)+ v(b))/(v,(a)+ v,(b))|
(a, b) € #\¥) which exists and is nonnegative since v(a) + v(b) € {0, 1, 2}
and v,(a) +v,(0) € {1,2} for all (a,b) € #\¥—so c€ {0,4,1,2}—and
put v,=v—cv,. Then v, E W“;\Ws,l and v,(a)+ v,(b)=0 for some
(a,b) e ¥\Z,. Thus 4 = {(a, b) € 7" | v,(a) + v,(b) =0} is .#-closed and
satisfies 'S 4 G 2 and L NY =, in particular & # %4, So it
remains to show that there is no further .#-closed relation &, with
¥ G4 G H. Otherwise choose some vy, € WI\W,. Since W, =
Wa® (v,)® (v,) we have wE W, ¢, ¢, ER with v,=w + ¢c;v, + ¢,v,.
For (a,b) € A\L =A\L S H (i=1,2) we get

0 <vy(@) + v3(b) = wla) + w(b) + ¢,(v4(a) + v,(b)) + c2(v,(a) + v5(b))
= ¢(v/(a) + v,(8))
and thus ¢; > 0 if {1,2} = {i, j}. But this implies that for (a, b) € L\ =

LNAVL)S A we have O0=uvy(a) +0,0) = c,(vi(a)+0,(b))+
c,(v,(a) + v,(b)) > 0, a contradiction.

We will use this result in the next section to construct boundary maps
between cochaingroups defined on some set of relations ¥ € X X X with
supp & = X and W, of some fixed finite dimension.
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(5.11) Still another application of our analysis is the following
result. For a .#-closed relation & <.7" the following statements are
equivalent:

(i) for any Z-closed relation &' €. % with ¥ © &' and supp &' =
supp.# one has &' =%

(ii) for any .#"closed relation &’ =.% with ¥ < &’ one has &' =
A O (supp & X supp &)

(iii) for any .#’-closed relation ¥’ ©.%" with & € &’ the restriction
map W, — W1 v v, & is surjective.

In particular, if ¥ ©.% is an arbitrary .# -closed relation and if ¥, € %" is a
A -closed relation with ¥ < ¥, supp & =supp .7, and +o0 > dim W >
dim W, for all .#"-closed relations &’ €. %" with ¥ < &' and supp &' =
supp %, then the restriction map W, —» W, is surjective and &' =2 N
(supp ¥’ X supp &) for any .#-closed relation &’ with ¥ € ¥" € ¥4.

Proof. W.lo.g. assume X = supp.# and put ¥ = supp <.

(i)= (ii). W.lo.g assume ¥ =<' 1f a,b€ Y and (a, b) € #\¥, then
we can find some v: Y — {0, +1} with v € W, v(x) +v(y)>0 for all
(x, ) EFX N (Y X Y) and v(a) + v(b) > 0. Now put

X, =: {x € X\Y | there is some y € Y with (x, y) € Z and v(y)=—1},
X, =: {x € X\(YU X)) | there is some y € Y with (x, y) € .% and
v(y)=0or some z € X\(Y U X,) with (x, z) € %7},

X_ = X\(YUX,UX),

and .
w:X—- {0, +1}: x> v(x) if xevy,

i if xeX,.

Using %" S X X X\(X, X X_, U X_, X X,) one easily verifies that w € W7,
so &' ={(x, ) EF|wkx)+w(y)=0} is F-closed and satisfies ¥ <
#'&< X and supp &’ =X, a contradiction. Thus our assumption implies
indeed ¥ =%7"N(Y X Y).

(ii) = (ili). W.lLo.g. we may assume ¥’ =% and X = YU {x}. Assume
(x, y) €. .7 for some y € Y which is contained in some bipartite component
of <. We have to show that (x, y') € # implies y’ € Y and (y, y') € L.
Consider

v:X->{0,+1}:z1—> +1 if z=x,
= —(=1)" if (y,2)e&”,

—0 otherwise.
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Using #\¥ S X X {x}U {x} XX one easily verifies that v € W% and
(x, y) €L = {(a,b)€F|v(a) +v(b)=0}. Thus supp ¥’ =X and hence
L'=%, 50 (x, y') €.F implies v(x) +v(y') =0, ie., (», ') € L.

(iii)= (i): This follows easily from (5.7f). Q.E.D.

(5.12) Let us now return to the consideration of a metric space X.
It follows from the trivial part of (5.8) that for f, g € Py the relation .7, is
Hclosed, since %, contains ¥7, and since (x,y)€E.%, implies
(gx)— S + (&) —f(¥) = xy— f(x) = f(¥)<0. Vice versa, if ¥ <
A =X} is symmetric and if & is finite or if there exists some ¢ > 0 with
xy 42 xy + ¢ for all (x, y) €% (in particular, if #;=_%7 for some ¢ > 0),
then & is #"closed if and only if & =(),cp,, oc 17, since xy,=xy for
some x, y € X implies the existence of some n € N and some x = x,, X;,...,
Xps Vigws Va=Yo=YEX with (x;, y ), (x,,,)EL <2 and with
DX Y= XXy =Xy or with 3, xy,— Y Xy <xp e
respectively, which implies x;y,_,,=x;y;i_; OF X;¥; 1, <X; Vi1 +6&
respectively, and thus (x;, y,_,) € % for all i= 1,..., n which in turn implies
(x15 ¥o) = (x, y) € & for a F~closed relation &
In particular, if ¥ <.% is symmetric and if & is finite or & is countable
and there exist some ¢ > 0 with xy , > xy + ¢ for all (x, y) € .7, then & is
A -closed if and only if it is of the form & =_%; for some g € P,.

(5.13) Now define for any symmetric relation 7" S X X X its rank,
denoted by rk.#€NU {0}, as the number of bipartite connected
components of .#” or, equivalently, as the dimension of the vector space W
and let dim.?7" denote the supremum of all numbers rk &, where & runs
through all Z-closed relations & <.7". Note that dim.#" can be defined
equivalently as the supremum of all numbers rk &, where & runs through
all #-closed relations ¥ .7 with supp ¥ =supp.Z” as well as the
supremum of the numbers of connected components of .#-closed relations
L X with N {(x, x)| x € X} =& as well as the supremum of all nE N
for which there exists some X,,..,X,, X_;,....X_,EX with #{x,..., x,,
X_ s X_,} =2n such that & = {(x;, x_;)| i € {£1,..., £n}} is #-closed.

In particular, if 2"=_%; for some f € Py and if dim Z;>n €N, then
there exists some g € Py with %, <. %; and rk %; = n: just pick some %"
closed & = {(x;, x_;)| i € {£]1,..., £n}} as above and pick some g € P with
K=

(5.14) Note that dim.# =0 if and only if (x, y) €7 implies
(x,x) €% and that dim 7" 1 if and only if x, y, z € supp #~ and (x, x),
(3 ») (x, y) € % implies (x,z) € X <« (y,z) €X". In particular, if (x, x),
(», y) € % implies x = y—as is the case for #" = _%; for some f € Py—then
dim #" < 1 if and only if .#” is completely multipartite on its support.
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Similarly, one has dim .#” 2 for some symmetric relation .#" < X X X for
which (x, x), (», y) €% implies x =y if and only if (x,,x_,), (x,,x_,),
(x5, x_3) €7 and #{x,,Xx_,, X;, X_,, X3, X_;} = 6 implies the existence of
a permutation o of I=:{+1, 2, +3} with a(—i) = —a(i) ({ € I) such that
for y;=x,u one has (y_,, 7)), (V-2 V)EF or (¥_1, ), (¥_2s ¥3),

(Vo3 V)EF o (¥15, ) (V=15 V2)s (P35 ¥_2)s (¥_3, Y1) EF. A global
characterization of 2-dimensional relations which corresponds to the global

characterization of the 1-dimensional ones as those which are essentially
multipartite does not seem to be that easy, though it is evident that
dim %" = n, (x, y) € %, and x # y implies dim #"*? L n— 1 for 7> =:
{(a, b)) e X" |7 M {(a, x), (b,x), (a, y), (b, )} =D}, whereas dim FZ"**¥
n— 1 for all (x, y) € % with x # y does not necessarily imply dim %" < n.

But at least we can state that we have dim #"=rk .#" = n < o if and only
if (x,x) € #" implies (x, x) €.% and any bipartite connected component
of % is completely bipartite if and only if rk #"=n < o and any .#"-closed
relation ¥ < % is of the form & =% M (Y X Y) for some Y S X (namely,
Y = supp &).

So we have dim .#"=n < oo if and only if any bipartite .#"-closed relation
¥ C . with rk & = n satisfies ¥ = ¥V and we have

dim 7" = sup(tk & | & = % is % -closed and satisfies & = &V
and ¥ N ¥? = g).

(5.14) Let us finally define the combinatorial dimension dim, g, X
of a metric space X to be the supremum of all the dimensions of all .%; with
S € Py. Since f; g € Py and f < g implies that %, is #closed and contained
in %, we also have

dim, o, X = sup(dim 77| f € Ty).

To simplify our notations let us also write dim f and rk f instead of dim .%;
and rk %}, respectively.

We are now ready to prove Theorem 9 in the following more complete
form:

THEOREM 9'. For a metric space X the following conditions are
equivalent:
(i) dim.,,, X <n;
(i") dimyp, Y<nforall Y<X;
(ii) dimf <nforall f€ Ty;
(ii") dim f<nforall fE Py,
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(iii) rkf<nforallf€P,;
(iii') rk f < n forall f € Py with#%;=2n;
(ivy for all x,x_|,X3,X_3ssX,, X_,EX there exists a
permutation a of {£l,.,+n}=1 with w+-Id, and
Drer XX < Dier XiXaq
(v) dim Ty < n forall finite Y € X,
(v') dim Ty < n forall Y < X with#Y = 2n;
(vi) dim,yp, Ty < 13
(vi') dim gmy Ty <R forallY € X.
Proof. The equivalence of (i), (ii), and (ii’) follows directly from the
definitions and the above considerations. The implication (i’) = (i) is trivial,

the implication (ii”)= (i’) follows from the fact that any g € T, can be
extended to some f € Ty and thus to some f' € Py with Z,=.%},, e.g,,

S1(x)=f(x) for xg€Y,
=flx)+1 for xeX\Y.

(ii") = (iii) and (iii) = (iii’) are trivial, (iii’)= (ii’) follows from the fact
that dim /' > n for some f € P, implies the existence of some g € P, with
#%,=2n and tk g =n by (5.13).

(iii") < (iv) follows from (5.3). To prove (i)=> (vi) assume f,,f_,,...,
S f_n€Ty and I={tl,., +n}. Wlo.g we may assume that for all
i € I\{—n} we have f; = h, for some x; € X. But this implies

S oo foill = sup (z X%y = 2f (%)

iel iel

x_,,EX)

< sup (Z XXy — 2 - nlX 1)

ier

X_,€EX,a# —-Id,)

= sup (z 1fis Fo
iel

a# —Id,).

The implications (i’) = (vi’) = (vi) = (i) are now trivial.

(iii) = (v) follows from the fact that for finite Y the space T, is the union
of the finitely many closed subsets & =: {f € Ty |.#" = %}, where Z” runs
through all relations #°< Y X Y for which there exist some f € T, with
X =%, and that for f € Ty and ¥ =%, the map Z' > W 4: g g — fis
injective and its image is a compact convex subset of W , which contains a
neighbourhood of 0 € W,. So we have dim.# =dim W =1k f <n and
thus we have dim T, < max(rk f| f€ Ty) < n.
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Since (v)= (v’) is trivial, it remains to show that (v’) implies (iv). So
assume Y= {X;,X_;,0, X, X_,} S X and D>, x,x_; > D, X%, for all
permutations a ¥ —Id, of I = {+1,..., +n}. By (5.3) this implies #Y = 2n and
the existence of some f€ T, with F/=%"=:{(x;,;x_;)|i€I} and thus
dim T, > dim #" =rk .# = n, a contradiction.

(5.15) Next we show: if X, and X, are metric spaces with
dim ., X, =n, (v=1,2), then dim,,,, X, X X, <n, + n,. Moreover, if X,
and X, are fully spread, then dim g, X, X X, =n, +n,.

Proof. Let n=n,+n,+ 1 and choose a pair (x},x}) € X, X X, for any
i€I={tl..,+n}. Let I,={i € I|sup(x]x",, x}x2)=x/x",} (v=1,2).
Then I,=-—1I, and I,UI,=1 Thus #I, >2n, or #I,>2n,. But if
#I, > 2n,, then there exists some permutation a, of I, with a,# —Id, and
Dier, Xi X2 < Vjey, X{ X4+ Extending a«, by —Id, on I\I, we get a
permutation @ of I with a#-—Id, and Y, sup(x/x',, xIx~})<
Y ier SUP(X{ X5 i)» Xi Xop)) Which proves dimgm, X, X X, <n=n,+n,+ L.

If X, and X, are fully spread then we may choose for given
XYy X gy X 5 X0, €X, (v=1,2) with 3, x7x%;> 3 ¢p x7x, ) for all
permutations a, of I,=: {+1,.., +n,} with a,# —Id, some x" € X, with
x"x] +x"xj=x]xj if and only if i+ j=0. Now put m=n, +n, and
consider the sequence (¥,,2,), (¥_152_ )seees (Vs Zm)s (V_pr Z_m) E X; X X,
defined by

yi=x} if |i|<n,, and z;=x’ if ig<n,,
=x' if |i| > n,, =x;, ifi>n,,
=X},, if i<—ny,

and the map f: {(¥;,z;)|i= £ L,..., tm} = R defined by

1 1 . -
Sy z)=x"x; if |i|<ny,
=x*X{_,, it i>n,,
=X X} n, if i<-—n,.

Then one has f(y;, z;) + f(;,2;) 2 ¥, yj» 2, 2; for all i, j € {+1,..., +m} and
one has f(y;, z;) + f(y;, z;) = sup(; y;, z;2;) if and only if i+ j=0. Thus
FE€ Py, 2pli=t1,..,2m @and 1k f=m which implies dim ,,,{(y;,z)]
i=tl,.,m}>m and thus dim ,, X, X X, 2 m=n,+n,.

(5.16) Next we want to show a rather technical lemma; so assume
YSX, fETy, g=fly €Ty, f# g* (with g*(x)=sup(xy — g(y)| yE Y),
cf. (1.11)), dim g < o0, and & > 0. We claim the existence of some /' € T,
with /|, =g, |/, f'll <&, and dim f* > dim g.
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Proof. By (1.11) there exists some x, € X\Y with f(x,)> g*(x,).
Choose some 1 > 0 with 37 < e and 37 < f(x,) — g*(x,) and choose some

€EX with f(x))+flx)<x; x4+ Since  f(x)>3n+ g*(x) >
3n+x,y—g(y) for all yE Y, we have x, &€ Y. Now put Z=YU {x;, x,}
and define

S Z-oRiz g(z) if z€Y,
— flx)+n for z=x,,

X%, — f(x)—1n for z=x,.

Then we have f”|, = g, f" € T,, and %, =%, U {(x,, x,), (x,,x,)} since
1)) + F"0) = X%y, f1(X5) + S (¥) = f(xz) ¥7()+1>x,p for yE Y,
and f"(x;) + f"(¥) = X0, —fx)—n+8(y) > fx)—n—n+g(y) >
3n+x,y—2n > x,y for ye Y. Thus dim f” =dim g+ 1. Now, using
177, flzll = sup(Lf" (xy) — SCels 1S (x2) — SO))) = sup(|x, x, — fx,) — 11 —
SOl = (flx) + fx)—x,x,)+1n £ 21 < ¢, and the last remark in
(1.11) there exists some f’' € T, with Hf’ fl<2n<eé and f'|, = f" which
implies in particular f’|, = g and dimf” > dim f” > dim g.

(5.17) Now remember that Ty = {f € Ty|supp.#;=X}. General-
izing the case dim gy, X <1 consndered in (4.8) we claim that T% is dense in
T, for any metric space X of finite dimension. More generally, we claim that
any f€ Ty for which there exists some ¢ >0 and some n€ N with
dim f' < n for all f' € T, with || f', fl| < & is contained in T%.

Proof. For each 17 > 0 with # < ¢ choose some f” € T, with || /', f]| <7
and dim /' = m =: max(dim f” | f” € Ty and || f*, f|| < n).

Then there exists a finite subset Y= X with g=f"|, € T, and dimg=
dim f’. Now it follows from (5.16) and the maximality of dim f’ that
S'=g* But g*E Ty if gE Ty, g*E Ty, and #Y < o0, so for each 7 >0
we have some [’ = g* € T% with || f, f| < #, i.e., we have f € Ty.

(5.18) Another consequence of the same argument is that for any
S € Ty with Z;=%7; for some ¢>0 (and thus surely /€ Ty) one has
S =(fly)* for any Y < X with f|, € Ty and dim f = dim f|, since &, =%}
and | g f|| <e/2 implies #, = #;=.%; and thus dim g<dim f for all
gE T, with || g, f|| < /2. So we may choose f = f’ in the above argument.

(5.19) Finally we define a space X to be strongly discrete if for any
S € Ty there is some ¢ > 0 with #;=_%";. Spaces with this property will be
studied extensively in the next section. Here we show: if dim y,, X =71 < c©
and xy € N for all x, y € X, then X is strongly discrete.
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Progf. Assume f€ T, and choose a sequence f,,f,,.. € TY with
I £l < 1/v. Since dim f, <n the relation #; has at most n connected
components. Since f,(x) + f,(») =0 mod 1 for all (x, ) € % it follows that
#{e?"% | x € X} < 2n. This in turn implies

#{e™ | x e Xy 2n.

So there exists some ¢ > O such that | f(x)+ f(y) —n| < ¢ for some n€ 7
implies f(x)+ f(y)=n. So, in particular, f(x)+ f(¥)< xy+ ¢ implies
fx)+1(y)=2xp. Q.E.D.

(5.20) I conjecture that dim g, X < 15 £, 81sess frs 8m € Ty and
ONies o> 807, # @ for all J € {1,..., m} with #J < n implies

O (fis &)1, * D

Since (f, g) is convex in case X is tree-like by (4.5), this conjecture is true
for n=2 in view of (2.5).

6. STRONGLY DISCRETE SPACES AND PSEUDO-CONVEX POLYTOPES

(6.1) Let W be a real vector space. For any subset TC W let
(T]={XF A0 |nEN; A, A, ER; v,y 0, €T Y A4=15 4,20
for all i=1,.,n} denote its convex hull and for v, we& W recall that
,w)={Av+ (1 —A)w|0 <1< 1}, so we have (v, w)= {w} if v =w and
(v, w) = [v, w\{v, w} otherwise. Now assume that ¥ is endowed with a map
[+<ll: W—RU {40} satisfying the usual conditions of a norm, i.e.,

Jlol=0<=v=0,
o)+ valt <loy )+ .,
and

4 vlf =14} o]

for all v,v,,v,€E W, we LER.

The example we have in mind is of course W = R¥ with || f|| = sup(| f(x)| l
xEX).

A subset PS W is defined to be pseudo-convex polytope (in W with
respect to ||---||) if it is a closed subset, satisfying the following conditions:
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(PO) S gE€EP=>|Sf— gl <+oo;

(P1) for each f€ P there is some &> 0 such that g€ P\{f} and
I/ — gll <& implies [£,./+ (¢/I.f — gl)(g - f)] < P;

(P2) ifgE€(g,,8)<Pand (g f]<P, then g, f]SP;

(P3) if f € P, then the vector space W, spanned by all v € W with
[f — v, f + v] € P has finite dimension;

(P4) for each f€P and v € W\{0} there is some A >0 with
f+AvéP.

Note that (P2) is equivalent to
(P2) g€ (g1, 8,)SPand g, f]< P implies [g,, 8, /]S P.

(6.2) If X is a strongly discrete metric space and if rk f < co for all
S €Ty, then P=T, < W=R* is a pseudo-convex polytope.

Proof. (PO) follows from (1.6).

(P1) Assume f€ T, and choose some & >0 with Z;=.%}" Now
assume g € T, \(f'} and | f — g|| < &. It follows that %, = #}°=_%; and thus
S+AMg—Sf)ETy, for all A€ER with 0<A<L¢e/||f— gll, since (f(x)+
Agx)— SN+ (S + A —f(3) = xy+A(g(x)+ g(y)—x) +
(1 =A)(f(x) + f(¥) + xy) equals xp for (x, y) €%, and is larger than xy for
(x, y) EZ\Z,, whereas for (x,y)&€.%; it equals f(x)+/(y)+
Agx)—f(x)+Ag(»)—f(»)) and so it is larger than xy +2¢—
2 |I.f — gl > xy.

(P2) If g€ (g, 8) S Ty and [g, f] < Ty, then F, N7, =%, and
supp(-Z; N.%;) = X. Thus supp(.#;N %, ) = X and therefore [f, g,] S T}.

(P3) If fE Ty, vERX and f + v € Ty, then v(x) + v(y) =0 for all
(x, y) €7}, ie, we have W, W , and thus we have dim W, dim W, =
rk f < 0. More precisely, we have W,= W, since rk f < oo implies
lvll < oo for all v € ¥4 and since #; =77 implies [f + v, f —v] S T for
all v € Wz with ||v]| <.

P4) If f€T,, vER*, and f+AWET, for all 1>0, then
[(f+v)—v, (f+v)+v]=Ty and thus v €.%;,,. In particular, v %0
implies v(x) <0 for some x€ X and so it implies f+Av & T, for A=
1+ f(x)/—v(x) > 0, a contradiction.

(6.3) From now on assume PS W to be an arbitrary pseudo-
convex polytope with respect to some map |---||: W->RU {+00}. We
define the relation < on PX P by g<f< [g f+&(f — g)] = P for some
€>0. Note that f=(e/(1+¢&)g+1/A+e)f+e(f—g)€E (s f+
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e(f— g)) (cf. Fig. 1a). The following properties of this relation are more or
less obvious:

(RO) f< fforall f€P;

(R1) g<fimplies f— g€ W;

(R2) g<fimplies W, W, (cf. Fig. 1b);

(R3) g€ (g, &) S P and g< f implies [g,, g,] </, in particular,
h< g and g< f implies h< f and, so, the relation % defined by fX g <«
Sf< g and g < fis an equivalence relation on P (cf. Figs. lc, d);

(R4) g, < fand g,< fimplies [g,, g,] < f (cf. Fig. le);

(R5) for each f € P there exists some ¢ > 0 (namely, the ¢ from (P1))
such that g€ P and || f — g|| < ¢ implies f < g, in particular, the set f=:
{ge P| g<f}is closed.

g f f+e(f-g)

_ _E 1
= T+c8 *‘1+—€(f+€(f—g))

(a)

f+e(f-g)

&

g f+e(f-g)

8] £y

(e) ()

FIGURE 1
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(6.4) Next we claim: for each f € P there is some ¢ > O such that
v € Wyand |v| < ¢ implies f + v € P and thus f + v 3 f.

Progf. Let v,,...,v, € W, be a basis of W, such that [f—v;, f+v,]SP
for all i = 1,..., n. It follows that f + v, < f for all i = 1,..., n and thus, using
R4), f+X7 A, <f for all i,.,4,€ER with >, [4]<1. But
{32140 Ay 4, ER, 3271 ]4;] < 1} contains a full e-neighbourhood of
0in W, Q.E.D.

(6.5) As a corollary we derive:
If [f, g] =P then g<fif and only if f — g € W; in particular, if g<f
then g fif and only if g— f € W, if and only if W,= W, if and only if
W,cWw,.

Progf. We know from (R1) that g < fimplies f — g € W,. Vice versa, if
f—gE W, then | f, f+¢&(f— g)] € P for some ¢ > 0, so g, /] < P implies
(& f+e(f— Q=1 IVILSf+e(f— QISP ie, g<)

(6.6) Next we claim:

Assume f€ P and dim W, =n. Then f={g€EP|g<f} is a convex,
compact polytope of dimension », spanned by finitely many points in W,
whose interior consists of all g € P with g 3 £, in particular, f is contained in
its interior.

Proof. We know already from (R4) and (RS5) that f'is closed and convex,
we know from (R1) that f — f'=: {g—f]||g € f} is contained in W and we
know from (6.4) that f — f contains a full &-neighbourhood of 0 in W,, so f
is of dimension n and f is contained in its interior.

Finally, f — f contains no “half-line” {Av |4 > 0} (v € W\{0}) because of
(P4), so—being closed and convex in the finite dimensional vectorspace
Wit is compact. It is a polytope in the sense of pl-topology, since—by
(P1) and (R3)—there exists for each g< f some &> 0 such that A< f,
h+ g, and |h— g| < ¢ implies [g, g+ (¢/||h— gl)}(h — g)] </, so the set
f — fis the union of finitely many simplices (cf. [26]) and, hence, it is the
convex hull of finitely many points in W,. Thus f is a compact, convex
polytope of dimension # which contains f in its interior F\éf. The same holds
for any g € P with g3 f, since g3 f implies §= f. Vice versa, if g€ P is
contained in the interior f\¢f of £, then g < f and W,< W, and, thus, g f.
So the boundary f of f consists precisely of those g < f with W, & W,.

(6.7) Now for each n €N let P, denote the set P,=:{f€EP|
dim W, n}. P, is closed because of (R5). It is a pseudo-convex polytope,
since it inherits (P0), (P3), and (P4) directly from P. It inherits (P1), too,
since f, gEP,, 0| f— gl <e and T=:[f, f+ (/| - glg—-N]sP
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implies T< g and thus 7T<P,. And it satisfies (P2'), since
g€ (g, 8,)SP, and [g, flcP, implies [g,,g,,f|]SP as well as
(g1s &2, f]<3g+3ifEP,and thus |g,, g;, ] < P, (cf. Fig. 1f). We claim
that we can choose in each X-equivalence class f\df of dimension n some
g = grand some ¢ = & > O such that By=: {h € P, |[|h — gl < €} is contained
in f— &f and such that the union of all By is closed.

Proof. Since f— f< W, is a compact convex polytope, there is some
g= g;Ef\af' such that m,=: min(| g — Al |h €4f)> 0 is larger than or
equal to m,, for all g’ € f.

Moreover, for each h € P there exists some g, > 0 such that p € P and
0+#||h—p| <e, implies [h, h+ (g, /|lh— pl)(p—h)|<P. Now h€Ef
implies 4.||h— gl >¢,+m, since otherwise ¢,+m,>4-|h—g|>
2-|lh—gl+2-m,, ie, & >2|h—gll+m, which implies h<h+
2(g—h)x g Thus &+ 2(g—h) € A\df and My 2 My 5e_py- SO WE may
find some h, € &f with ||+ 2(g — h) — || < m,, in particular, || — h,| <
2|g—h|| + m, <&, and thus A< h,. But this implies [A, h,] <%, and so it
implies |4, h,] < &f since h, € ¢f implies A, < &f. In particular 1(h + k,) € &f
and thus m,<|lg—3(h+h)=3h+2(g—~h)—h<3m,, a con-
tradiction.

Now put ;= min(e,/2, m,/4). It follows that B; is contained in Nef =
§\0F since ||k — g|| < &,/2 implies g< h and thus W, S W,, so |h— g <
&,/2 and h € P, implies g<h and W,= W, and thus gxh, ie., h e N\f
Moreover, the union of all the B is closed, since #,€ () By and h;— h
(i€ N) implies h € P, and |h — h;|| < €,/4 as well as k< h, for almost all i
which together with g;= gz and |h;— g <m,/4 implies A< g; and
| — gl < (e + mg)/4 and therefore k3¢ g; for almost all i (since otherwise
h € 0g; and s0 4 ||h — g[| > €, + m, ). But this implies g; = g, for some fixed
i, and almost all i and thus

hEBgiog UB]

(6.8) It now follows from standard arguments in topology that
dim P,=n unless P=P,_, and that in case dim P < co one can compute
the (co-)homology of P from the following chain complex: For each n € N
let S, =S,(P) denote the set of pairs (f, o,), where f is an element in P with
dim W,=n and o, is an orientation of W, —if W, = {0} just assume
0,€ {£1}.

Let C, = C,(P) denote the free abelian group generated by S, modulo the
subgroup generated by all sums (f, 0,) + (g, 0,), where f 3 g and o, and o,
are opposite orientations of W,= W,. Define 0: C,—» C,_, by d(f,0) =
3% . (g:;»0,), where g,,.., g, is a system of representatives of the -
equivalence classes of elements g € §f with dim W,=n—1 and o, is the
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(unique) orientation of W;= W, for which a basis v,,..,v,_, of W, is
positively oriented if and only if the basis v,,..,v,_,, f— g, of W;=
W,® (f — g;) is positively oriented relative to o;. Then one has 9-9=0
and the (co-)homology of P coincides with the (co-)homology of the complex
Cy(P).

Another chain complex which determines the (co-)homology of P can be
derived from the barycentric subdivision of the cell decomposition
P={sep f let F, = F,(P) denote the set of all sequences (f;, Fiss £o) With
fi€P (i=1,.,n) and S, fis - & f;, let B,=B,(P) denote the free
abelian group, generated by F,, and define 9: B, B,_, by 0(fys-r fy) =
S o (=1)(fyyeees fiseens f)- Again, one has & - =0 and the (co-)homology
of P can be identified with the (co-)homology of B, (P), as well.

(6.9) Let us now assume P =T, for some strongly discrete metric
space X of finite combinatorial dimension. Then Cy(X)=: Cy(Ty) and
B, (X)=: B4«(Ty) are exact except in dimension O since T is contractible.
We can reinterpret the chain complexes Cy,(X) and B,(X) in this case: we
know that dim W=k for some f € T, if and only if rk /= k and that f < g
for f, g€ Ty if and only if #;2.%;. Thus we can construct Cy(X) and
B,(X) from the partially ordered set #y={%;|fE€ Ty}={F S XXX|
xy=xy4 for all (x,y)EZ and xp > xp, for all (x,y) € X X AI\F'}
F(X X X) of “admissible relations” on X which is considered to be partially
ordered by inverse inclusion (i.e., 7" ¥ < % 2 %) in the following way:
let S, = S,(X) denote the set of pairs (¥, 0 ) with #" € #,, tk ¥ =k and
with 0 5 = (x,,..., X;) denoting a sequence of k elements in X, one out of each
bipartite connected component (and o, € {+1} if £ =0). For any two such
sequences (X;,..., X;) and (¥, ..., v;) let sgn((x;,...s X)), (Y155 ¥i)) denote the
product of the signum of the permutation 7 € X, for which (x;, y,) € ™
for some n, €N with ¥ ,(—1)" Note that each such sequence o ,=
(X155 X;) defines an orientation oy, of W, for which a basis
Uyses Vo € W, is positively oriented if and only if the determinant
det(v,(x;)); j=1,....x is positive and that sgn(os,0’y)=+1 if and only if
Ow 3= O 4 -

Now C,(X) can be identified with the free abelian group, generated by
S(X), modulo the subgroup, generated by all expressions of the form
(Z,04)+(F,0%) with sgn(o,,0%)=—1 in which case 9: C,(X)-
C,_,(X) maps some generator (¢, 0, = (X},..., X;)) € S,(X) onto the sum
Zleﬁx,ycf,rkjek—l(—l)ij : Sgn(vl(xur)) : (JT/', (xlr--’ 'fl]""’ xk))’ where
iy € {l,.,k} is some index such that x,,..,%; .., X, is a system of
representatives of the (k— 1) bipartite connected components of %" and
Uy € VENV .

Similarly, B,(X) can be identified with the free abelian group, generated
by all sequences (g, %].... %) € Zx'! with LR 72 -+ 2%, in
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which case ¢: B\ (X)— B,_,(X) maps a generator (%, %|,...%},) onto the
sum Yo (1) (FG s Ff ey F)).

It follows that in case dim,,,,X = n the complexes

0e—Z L CoX) & C,(X) & ... & C (X)— 0O
and
0+ Z <% By(X) <& B,(X) — --- <= B, (X) — O

are exact, if d: Co(X)— Z is defined by d(.7",04) =0, € {£1} if 7 € F;
and rk #" =0 and d: By(X)— Z by d((-%;)) = +1.

Note that the complex C,(X) can also be described purely in terms of the
partial order, defined on .#, by inverse inclusion: for each .7 € #Y =:
W ER Itk F =kt let Fp={(FpHip H=F)E RV |72
H R - A, =F} denote the set of all maximal linearly ordered sequences
ending with %" and define an orientation w4, of 7" to be a map w4
F o~ {£1} such that w{(Fy, F sy T =F )= — wplLys Liss Ga= %)
whenever #{i € {0,...., k} | #/# %} =1. One can show that there are
precisely two orientations for each .#” € #,, which differ by their sign, only,
that any sequence 0 5 = (x,,..., X ») defines an orientation «, . of % and
that sgn((xy,es X;)s (Vysees Vi) * @, 0, = #y,.....y, Whenever x,,..., x, and
Vi ¥ are two different systems of representatives of the k bipartite
connected components of #". Thus we can reinterpret C,(X) again as the free
abelian group, generated by all pairs (%, «4) with 7 € Z{ and w4 an
orientation of %", modulo the subgroup, generated by all sums of the form
(X, wyp)+ (F,— ewy), in which case 0: C,(X) > C,_,(X) is defined by

A, wp)=: N (& D)

—_—

Le RV, o8

where »7: F,-{tl1} is defined by &%, L Y =L)=:
‘0}’(%’ % ey =S'ﬂlwls‘/cr)'

It is now rather easy to derive Theorem 10 from these considerations. One
Jjust has to remark that the group G acts freely on %, ,, = {#,2 G X G|
fE€ETg ). But if f€Ty,, g€EG, g¥ =%, and, say, (1,x)E.Z}, it
follows that (g", g"x) € #; and thus f(g") + f(g"x) = I((g") ' g"x) = I(x),
which in view of I(g") < f(1) + f(g") implies I(g") < 2!(x) for all n € Z and
thus #{g"|n € 7} < 0, i.e., g = 1, since G was supposed to the torsion free.

Remark. It may be interesting to study the action of G on the contrac-
tible cell complex T4 ,, even for finite groups G and in this way to relate
properties of length functions /: G — N, defined on G, with other properties
of G.
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APPENDIX: ON THE EXISTENCE AND FINITENESS OF
OprTIMAL NETWORKS, REALIZING A FINITE METRIC SPACE

The existence and finiteness of optimal networks (or “weighted graphs™) realizing
a finite metric space is being proved and some examples are discussed, including a
simple counterexample to a conjecture of Hakimi and Yau.

Al. INTRODUCTION

Let X be a metric space with distance map D: X X X - R: (x, y) — xy.
We want to study “realizations” of X by “networks™ (cf. [9, 10, 13, 14, 28,
31}, i.e., by systems /"= (¥, &, ), consisting of a set V=V, the vertices
of #, a subset & =&, of . 75(V)= {e < V| #e =2}, the edges of .#, and a
map/=1[,:&->R, = {rER|r>0}

For any such network .#" = (V, &, ]) and any subset &’ < & we define the
span ||&'|| of & as the sum ), .4 l(e) € RU {0}. In case &' =& we also
write ||.#7)| instead of ||& .

For a network /"= (V,&,[) and any two elements u,v €V let A, &
Unsy V" denote the set of “nonrepetitive paths” from u to v in ./, ie., the
set of finite sequences (v,,V,5,U,)E V" (n221) with v, =u, v,=v,
{v,_1,v,} €&, and v, # v, for all 1 <u < v< n Obviously, a nonrepetitive
path p=(v,,.,v,) €A, , is uniquely determined by its set of edges
H{v1s Ug)ees {Uy_ (> 0,1} ©& which will thus also be denoted by f. In the
following all paths f to be considered will be assumed to be nonrepetitive.

A network /"= (V, &, 1) is said to be proper, if I(e) # 0 for all e € & and
ifdeg ,v=:#{e€ & |vEe}isatleast | foreachv € V, i.e., if V=, g€

For any u,v € V we define

w0 =0 if u=v,
=inf(|p]l | h € A4.,) if u#vand. A, ,+,
= o if u#vand A, ,=0a.

A path p € 7,  is said to be a geodesic if || ]| = uv and I({w, w'}) # O for
all {w,w'} € p. Let .#, , denote the set of geodesics in .7, .

A network # = (¥, &,1) is said to realize the metric space X if X is
contained in ¥ and one has xy =Xy for all x, y € X.

Let .#7(X) denote the class of networks realizing X and define the span
IX|| of X as the infimum |X||=:inf(}.#|||# € #(X)). A network
A" € #(X) is said to be an optimal realization of X if ||.#7|| coincides with
(1. X1l-

607/53/3-9
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In this note we want to prove the following, intuitively almost obvious, but
still seemingly not quite trivial

THEOREM. If X is a finite metric space, then there exist optimal proper
networks 4 realizing X, any such network 4" = (V,&,1) is finite (i.e., the
set V is finite) and V contains at most N(N — 1)*(N — 2)/4 vertices v with
2 <deg , v, if #X=N. Moreover, there are finitely many optimal proper
networks A1 =V, & 1)y A= Vis & 1) € A (X) such that for any
optimal proper network 4 =(V,&, )€ #(X) with deg_,v+2 for all
vE V\X there is some k € {1,..,k} and some bijection y: V=V, with
vw(x) =x for all x € X such that (v,, v,,..., U,) is a geodesic in .#" if and only
if (W), w(vy),e.., w(v,)) is a geodesic in ¥,.

Remark 1. For any such w: V-V,  one has obviously {w(u),
w(v)} € €, if and only if {u, v} € & for all u, v € V. I conjecture that one has
also [ ({w(u), w(v)})=I({u,v}) for any {u,v} € &. Moreover 1 conjecture
that for any n there is an open and dense subset ¢ in {D: {1,..,n}*> R |D
a metric} < R"* such that for all metric spaces X = ({1,...,n}, D) with D€ #
there is—up to isomorphism—only one proper optimal realization ./ =
V,&,1) € #(X) with deg v # 2 for all v € V (cf. [10]). That there are also
finite metric spaces which have more than one minimal realization is
indicated in Section 3, thereby settling a conjecture of Hakimi and Yau (cf.
[10]) in the negative.

Remark 2. The analysis presented in Section 2 allows in principle the
construction of the networks .#/,...,.#; for any given finite metric space X in
finitely many steps. It seems worthwhile to ask for more efficient algorithms
and to discuss the complexity of this problem.

A2. PROOF oF THE THEOREM

In this section let X be a fixed ﬁmte metric space. We start with the
following trivial observation:

(A2.1) If #"=(V,&,1)€#(X), then one has .7, ,#@ for all
x,y€ X with x+# y if and only if there exist finite subsets V', < V and
& S & N F(V,) such that the finite “subnetwork™ A5 = (V,, &, [, =1|g) is
proper and still in .#°(X). Moreover, in this case one can choose ¥, and &, in
such a way, that .#, is “tight,” i.e., in such a way that (V,, & = &,\|e}
[, =1lg) is not in #(X) for all e € &,.

_Proof. If such a proper finite subnetwork exists, one has obviously
/ y# @ for all x, y € X with x # y. Vice versa, 1f/V y#FDforallx,yeX
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with x # y, one just chooses a geodesic f, ,, for each {x, y} € #4(X) and

puts & = U, yjeam fixyy and Vo=U.cqe. Finally, if the resulting

network .#; is not tight, one just chooses a minimal subset &’ < & such that

A" =Ueeg &, €', I'=1|g) is in #(X) which exists because of the

finiteness of &;. The minimality of &’ then guarantees the tightness of .#™.
Another trivial, but useful observation is

(A2.2) If p=(vy,..,v,) is geodesic in some network .# and if
1<v<ugn, then (v,,v,,,,.,v,) is a geodesic, too. In particular, if s =
(v,s-nv,) and 9=(w1,..., w,) are geodesics in .# and if v,=w, and
v, =wy for some v,u € {1,..,n} and a,f € {1,..,m} with v <u and a <f
then (Wyses W =V, U4 jyes Uy = Wp, Wp s, W) IS @ geodesic, too, and
hence, by choosing v and a as small as possible and 4 and § as big as
possible, we can always find a geodesic 9’ GJVWI w, With #{eEg’\M
eN Urep /# @} <

Next we show

(A2.3) If #"€4#(X) is proper and tight, then it is finite; in
particular, any optimal realization .#” of X is finite.

Proof. By (A2.1), it is enough to show that ./ y;era for all x,y€X
with x # y. To this end we define for any u, v € V with {u, v} € & and any
€ > 0 the set

A7) = {(x, y) € X* | there is a path = (v, =X, Vy,., U, = V) E A,

with |l <xy+eand u=v,, v=0,,, for some v € {1,..,n—1}.

Since .#” is tight, we have .7 7i(¢) #+ @ for all u,v € V with {4, v} € &€ and
any ¢ > 0. Since #7%(¢’) is contained in Z7%(¢) for ¢’ < ¢ and since .Z7%(¢) is
finite together with X, we have that even the intersection 77} = (), o7 5(€)
is not empty for any u, v € V with {y, v} € &,

Note that (x, y)€.%7%(e) implies xy <Xu +uv + vy <xu + I({u, v}) +
vy < xp + ¢ and this in turn implies easily

={(x, ) EX* | xy =Xu + I({u, v}) + 0p}.

In particular, Z7 # @ implies /({u, v}) = uv.

Next we cla1m deg(v) =#{e€ & | v E e} < o for each v € V. Otherwise
there would exist at least one v €V and two elements u,,u, € V' with
{v,u,}, {v,u,} €&, and &7, =77, , in which case the edge {v, u,} is super-
ﬂuous in A" —contradlctmg the tightness of .#"—since it is surely super-
ﬂuous for any (x, ») EX’\}”,, , whereas for the remaining pairs (x, y) €

Ji’”” there exists for any € > 0 a path i € 4 , with ||| <xy + ¢ and
w1th {v,u,} € p which implies {v, u,} € p, at least for & < Min(vu, , 74, ).
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Next we define a pair (u, v) € V? with {4, v} € & to be unavoidable with
respect to some (x, y) € #% if there exists some ¢ > 0 such that for any path
h € A, with | p]| < xy + & one has necessarily {u,v}€E p. Let Z* denote
the set of those (x, y) €. 7™ for which (u,v) is unav01dable Smce N s
supposed to be tight we have have #* # @ for all u, v € V with {u,v} € &.
If (x,y)EZXUNF% for some u,, v,, U, 1,EV with {u, v},
{u,,v,} €&, then one has necessarily either xy=xu, +u v, +v,4, +
U,0; + 0,9 OF Xy =Xty + UV, + V0, + 1,0, +0,).

Now assume J_/x,y:Q for some x, y€E X with x+# y. For any vEV
define

g, = min(l, I({v, w}) + Wy — 2y | {v, w} € &, [(fv, w}) + Wy — 2y > 0).

Thus &, > 0 since deg v < oo and for any path = (v =v,, U3,.., v, = y) in
., with || a]| <Ty + ¢, one has necessarily vv, + v,y =0y.

Now choose a path = (x =0, Uy,.., v, = ¥) €A, , With | o]| <xp +&,.
Since Xv, + 0,y =xy<0,0, + 0,03 + - +0,_,v, there is a largest
yE {2, n— 1} with xy=%v, +0,0; + - +0,_,0, +0,y and this v is
necessarily smaller than n — 1, so one has xy =xv, + 0,y < X0, + 0,0, +

v,_,7 and, thus, 0,0, + 0,y 20,Y+¢&,. Put wy=v, and u;=v,,,,
forget the old path /z (v, v,) and choose a new path i=(w,=v,, v;,.,
v, =) with || <w,y +¢€,, . Again there exist some v € {2,...,n — 2} with
Wy =040+ +0,,0,+7,y and vv,,+l+v,,+1y>vy+s Put
w,=v, and u, =v,,,. Continuing this way we get two infinite sequences

Wiy Wyy Wy and UpsUyy Usgeons

such that

i) xy=xw,+ww, + - +Ww,_w,+w,y forall n=1,2,.

(i) {w,,u,l €& andw,u, +u,y>w,y +¢, foralln=1, 2,...,
(iii) for all n=1,2,., there exists a geodesic i €.7,, (with
w, = x) which does not contain {w,, u,}.

n—1+Wn

In particular, for all m,n € N with m <n one has w,y=w,w,+w,y >
w,y and thus one has w, # w,, as well as w, # i,,. It follows that there exist
some m,n € A" with m<n and fw'"—fw"— A . We claim that for all
(a, b)) €% we necessarily have ab—aw +w n, + U, W, + W, +U,b
since otherwise we have ab=aw, + w,u, + u,w, + w,u, +u,b and thus
Wolly + UyW, =W, w, which implies XYy =XW, + W,W, +W, ¥y =XW, +
Wiy, + U, W, +w,y and hence w,u,, + U,y =W, y, a contradiction.

Thus, for all (a,b)E€.# we have indeed ab=aw, + w,u, +u,w,, +
Wi, + u,b which implies w,u, + u,w,, =w,w,. But from the property
(111) just above we derive the existence of a geodesw h E/V . With
(W, u,} € h. "
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Thus, for any (a, b) € % and any path g= @@=z, 2y zy=b)in A,
with, say, z,=w,, z,,,=u,, z,=w,, and z,,, =u, for some 0v<
#<h_the part (z,,2,.,5,2,) in g can be replaced by the geodesic
hE A, v, With {w,,u,} & p by which replacement we get a path 9 ENep
of length ||7’|| smaller than or equal to Hg” which avoids {w,,u,}, a final
contradiction.

Now we can prove

(A2.4) For any .#" € #(X) there is some proper, finite, and tight
N € N (X) with ||#7|| < ||#7]] and hence, one has

| X|| = inf(|.#"|| |.#" € #"(X), .# finite and tight).

Proof. If .+ is finite, there is nothing to prove. Otherwise we have
l#7) > | X|| by (A2.3) and thus we can find some .#” = (V, &, [) € #(X)
with || 47| < ||-#7|l. W.l.o.g. we may assume uv = I({u, v}) for all {y,v}E&
and uv # O for all u, v € V with u + v. Again, if #" is finite, there is nothing
left to prove. Otherwise choose some ¢ > 0 with ||#7|| + ¢ - (%) <||-#] and
some finite subset &, < & with ||&| > ||.#”'|| — € and I(e) > O for all e € &,.
Let Vy=XU (,eq,e. Since X and V, are finite, the set of nonnegative real
numbers {Xv, + 0,0, + -+ 0,y —xp|x, YEX; n€EN; v,.., v, E Vy} is
obviously discrete. In particular, there is some positive # such that

X0, + 0,0, + -+ 0,7 —xy< 1

for some x,y€X, n€N, and v,,..,v,E V, implies xv, + 7,0, + -+ +
v,y —xy=0. Now choose for any x, y€ X with x+ y some path =
X= Uy, Uypey Uy =y)in A7 with | p]| <xy+n. Let AOE = {{u;, ;11 }seens
{ugs w4} with 1<y <4, <o+ <@ <n— 1. From [|p|| <xy + 1 we get

Xty Uy Uy g AU U, F U Uy e U Y XY <Y

and thus Xu;, + u;, U4; ; + -+ + U;, 1Y = xp. By the choice of &, we have

xui] +u11+lui2 + e +uik+1y <eé&.

Thus, if we enlarge &, by the edges {{x,u;}, {#; 4158, e {Uiprs VHN
F5(V,) and define I({u, v}) = uv for any such edge {u, v}, we enlarge ||| by
less than € and get a geodesic from x to y in the enlarged network. Since this
can be done for any {x, y} € %(X), we see that we can enlarge &, to some
set &< %(V,) and define some /;: & — R, in such a way that /] =
(V,, &, 1,) is proper and in .#(X) and satisfies ||.#;]| < ||/ || + (%) - € <
[|-#]l. Finally, w.l.o.g. we may assume .#] to be tight.
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Next we prove

(A2S) If /" =(V,&, )€ (X) is proper and tight and if =
(x=v,,v5,.., v, = y) is a geodesic in .#” for some x, y € X with x # y, then

#E {1, n)|degv, 23} K(N—1)(N=2) if N=#xX

Proof. By (A2.2) we can find for any a,b € X with a # b a geodesic 9
with #{e € g\h|eN {v,,..., v,} # @} < 2. Moreover, if a€ {x,y} (and
b & {x, y}) the same argument yields a geodesic 9 with

#le € g\ﬁ e M (V) sy U} # D} = 1.

Moreover, once we have chosen a geodesic g, for all {a, b} € F(X), it
follows from the tightness of .#” that & = U, p1e ) a5+ Thus, using the
especially chosen geodesics 9 from above we get that

#le€ &\ eN (v, v} = D)

< X #e€ gia Y G n\hleN vy, v,} B}

aex\[x,y)

+ > #{e € grap\ €N (Vs v,} # B)
ta,bye Ax\(x,y})

<2AN-2)+2 (N2“2> =(N-1)N-2).
From this, (A2.5) follows immediately.
(A2.5) in turn implies:

(A2.6) If /" =(V.&,1)€ A4 (X)is proper and tight and if #X = N,
then

NN = 1}(N—~1)
7 .

#vE V|degv > 21 K

Proof. Again we choose a geodesic Pix, 0 € /I_/x , for each {x, y} € #(X).
Since ./ is tight we have & = U, ,jcqm Jix,yy- Since any v €V with
deg v > 2 occurs in at least two of our geodesics and since in each of these
geodesics there occur at most (N — 1) - (VW — 2) such v, we get that indeed

NV —1X(N—2)
: .

#{v e Vldcgv>2}<%(1;) C(N— (N =2)=
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We are now ready to prove

(A2.7) There exist some .#" € #(X) with | /7| = | X]|.

Proof. Otherwise there exists an infinite sequence .#;= (V;, &;, 1)) (€ N)
of finite, proper, and tight networks in #(X) with |.#]] > || X| and
lim,_,, [|-#]| = | X|. W.Lo.g. we may assume that for each v € V\.X one has
deg,.v > 2: if degree v < 1 and v € X, then v cannot occur in any geodesic
connecting some x, y € X and thus it cannot occur in a proper network at
all. If degv=2, say {e€&|vE€e}={{v,u,}, {v,u,}}, then we can
exchange the two edges {v,u,} and {v,u,} for the one edge {u,,u,} and
define I({u,, u,}) = I{{u,,v}) + I;({v, 4,}) and drop v and get again a tight,
proper, and finite network in .#(X) of the same span. Thus we have
#VA\X < N(N — 1)*(N — 2)/4 for each i.

Now, let Y be some arbitrary set of cardinality N(N — 1)*(N — 2)/4 which
is disjoint from X. Note that for each & < A(X U Y) the set L,< R¥ of all
[: &0, max(xy|x, yE€X)] with (XUY, &, [)EA#(X) is a (possibly
empty) compact subset of R, more precisely, L ; is the union of finitely many
compact convex subsets L (&), where & runs through all subsets of .#(¢)
which contain for each x, y € X with x# y some € F of the form p =
{x v}, {01, U3} {0, ¥} S & and I € L is in L 4(¥) whenever any p S &
with i € £ is a geodesic in (XU Y, &, I). Since the “trace-map” tr: L~ R:
I ) .cgl(e) is continuous on L, there exist some [, € Ly with tr(/y) =
mg=:min(tr(l) | I € L,).

Since we only have finitely many & € %5(X U Y) and since L, cannot be
empty for all such &, there exist some & © .%,(X U Y) with L ;# @& such that
for all &' € #(XUY) one has my < mg. We claim that || X|| = mg so that
N =(XVUY, &,z is an optimal realization of X. Moreover, by dropping all
elements v € X U Y with deg ,v =0 and by identifying all u,v € XU Y for
which v equals 0 in .#" and by modifying & and [/, accordingly, we get
some optimal network .#| € #(X) which is also proper.

For the proof of the optimality of .#" it is enough to show that mz < ||.#]||
for all i. But for any i there exists an injective map y,;: V, < XU Y with
w(x)=x for all xEX. Let &' =y(&)= {{y), y()}|{u,v} €&} and let
I': & >R, be defined by I"({y(u), w(©)})=1({u, v}) Then we have
I' € L, and thus we have mg  tr(l’) = ||.#]]|. Q.E.D.

Finally, let {&,, &,...,&,} denote the set of subsets & < .#,(X' U Y) with
mg=||X|| and XS Vy=U,coe and #{e€E & |vE e} #2 for all v € V\X.
For each & =&, (a = 1,..,a) let {¥7,¥%,..., ¥7 } denote the set of subsets
& < #(&) for Wthh there exist some [ E L4 with’ tr(l) = mz = || X|| such that
l(e)#0 for all e€ &—so A7 =:(V4,&,1) is proper—and & is the set of
geodesics in .#"f. For each such ¥ = £§ (8= 1, 2,...,b,) choose some such
I=If€Lg and let #F (a=1l,..,a; f=1,.,b,) denote the resulting
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network (V,=Vg , &,,05); of course, we may have b,=0 for some
e € {l,.,a}l, eg., for X={a,b,c} and Y=1{a’,b’, ¢’} we have my=||X|| =
3(ab + be + ca) for & = {{a,a’'}, {b,b'}, {c,c'}, {a’,b'}, {b',¢'), {c'sa'}),
but some /€ L, satisfies tr({)=mg=|X|| only if I({a’,b'}})=1{{b',c'})=
I({c'va’})=0 (and I({a,a'}) = 3(ab + ac — bc), I({b,b'}) = 3(ab + bc — ac),
I({c, ¢’'}) = 3(ac + bc — ab)).

Now assume 4" = (V, &, 1) € #7(X) to be a proper optimal realization of
X with deg v+ 2 for all v € V\X and, as above, choose some injective map
y: VS XUY, with wx)=x for all x€X. Let &' = {{y(w), w(v)}|
{u,v} €&} and put I': &' > R: {wu), w()}— I({u,v}). 1t follows that

=1 y(V)=U,cq € contains X, that #le' €&’ |v' Ee'}+2 for all
v' € y(V)\X and that tr(!") = ||.#7|| = X|| and hence mz = || X]|, so we have
&' =&, for some a€ {l,.,a}. Moreover we have ['(e')#0 for all
e€&'=¢&,, thus there must exist some f€{l,.,b,} with 5=
{(hS &' | p’ a geodesic in (¥, &7, I")}.

Hence the networks /7§ (a = 1,..,a; B=1,..,b,) fulfill the requirements
mentioned in the last part of our theorem.

A3. SoME ExAMPLES AND COUNTEREXAMPLES

(A3.1) If X={1,2,3}, then .+ =({0,1,2,3}, {{0,1}, {0,2},
{0, 31}, 1) with ({0, i}) = 3(ij + ik — jk) ({i, j, k} = {1,2,3}) is an optimal
realization of X. It is proper if and only if i + ik > jk for all i, j, k with
{i, j,k} =1{1,2,3}. Otherwise, if, for instance, 12+23=13, ./ =(X,
{{1, 2}, {2,3}}, 1) with I({i, j})=1ij for i=2 and j=1 or j=3 is a proper
optimal realization. In both cases the given proper optimal realizations are
the only optimal realizations .#" = (V, &, 1) with deg v+ 2 for all v € V\X.

(A3.2) If X={a,b,c,d} and if, for instance, ab+ cd > ac + bd >
ad+bc then A/ ={XU{a’, b, ¢, d'}, & 1} with &={{a,a’}, |b, b},
{e,e'} {d,d'}, {a’, e}, {e/,b'}, {b',d'}, {d',a'}} and [: & » R defined by

I({a’, ¢'}) = Y(ab + cd — ad — be) = I({d", b'}),
I({¢', b'}) = Y(ab + cd — ac — bd) = I({d", a'}),
I({a,a’}) = 3(ac + ad — cd),
I({b, b'}) = (be + bd — cd),
I({e, ¢'}) = 5(ac + bc — ab),
I({d, d’}):%(ad+ bd — ab),

is known to be an optimal realization of X. If it is proper, it is the only
optimal realization /"= (V, &, ) with deg(v)=2 for all » € V\X, up to
isomorphism. Otherwise we may have degeneracies, but still we have only
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one proper optimal realization—up to isomorphism—without vertices of
degree 2 except possibly those from X.

(A33) If X={a,b,c,d,e} and if ab="1, ac=4, ad=S5, ae=3,
be=5, bd=6, be=4, cd=7, ce=3, de=4, then we have two
nonisomorphic proper optimal realizations without vertices v of degree 2
except v = e, namely,

A =XV e b, ¢ d' u,0, &, 1} and
Sy=XUla', b, ¢, d u,0, &, 1,} with
&= {{a.a'} {b.b') fe ) d') (@', '}, {b', '), fa', ),
(e, uls {b', v ', o), fe, u), fer o))
and
L:&-R defined by /,({x,y}) =1 for xy)=(aa’)(c,c),
(a’, u), (c', u), (', v), (d', v), (e, u), and (e, v) and
Lx,y))=2 for (x,y)=(a’,d’), (b',¢’), (b, b’), and (d, d’)
and with
&={{a,a’'l, {b, b}, {c,c'}, {d, d"}, {a’, ¢’} {b', d"}, {a’, u},
{d’s u}, {b', v}, {c', v}, {e, ul, {e, v}}
and
L:& - R defined by I,({x, y}) = 1for (x,y) = (a,a’), (¢, ¢'),
(a',u), (d',u), (b',v), (c',v), (e, u), and (e, v) and
L{§x,y})=2 for (x,y)=(a’,c’), (b',d’), (b,b'), and (d, d’).

a c a c

u

a c a’ c

e

e u v

d b d' b
)

d b d b

607/53/3-10
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Thus, in general, we cannot expect to have only one such minimal realization
(cf. |2, Sect. 5]).

(A34) If X=|{a,b,c} with ab=bc=1 and ac =2, the family of

infinite networks

S,=(a=ay,a,,05,..h,c=¢y,01,C35..}, &, 1)

with

g = {{ai—l’ ai}’ {ai, ci}’ {C,—, b}’ {Ci, ci—l} | i= 1, 2,}

and with /,: & - R defined by

I{a;, ) =1{ci, e D) =1—¢ for i=0,
=¢/2' for i>1,

L(a;,c))=4- (/29 for i=1,2,.,
and
L(ec;, b)) =2 (/29 for i=1,2,.,
shows that there are infinite proper networks in .#"(X) with ||.#,|| =2 + 6¢ =

||l X|l + 66 approximating || X|| arbitrarily well without containing a tight

su

bnetwork and such that any edge in & occurs in at least one geodesic.
The existence of such networks may explain some of the technical

difficulties we encountered in Section 2.

5.

6.

7.

REFERENCES

. H. J. BANDELT AND A. DRESS, Reconstructing the shape of a tree from observed
dissimilarity data, in preparation.

. M. BOURQUE, Arbres de Steiner et reseaux dont certains sommets sont a localisation
variable, Ph.D. thesis, Université de Montréal, Montréal, Canada.

. P. BUNEMAN, A note on the metric properties of trees, J. Combin. Theory Ser. B 17
(1974), 48-50.

. L. M. CHiswEeLL, Abstract length functions in groups, Math. Proc. Cambridge Philos. Soc.

80 (1976), 451-463.

J. P. CUNNINGHAM, Free trees and bidirectional trees as representations of psychological

distance, J. Math. Psych. 17 (1978), 165-188.

W. H. E. DAy, Distributions of distances between pairs of classifications, in “Numerical

Taxonomy” (J. Felsenstein, Ed.), pp. 127-131, Springer-Verlag, New York/Berlin, 1983.

A. J. DossoN, Unrooted trees for numerical taxonomy, J. Appl. Probab. 11 (1974),

32-42.



8.

16.

17.
18.

19.
20.
2L
22.

23.

24.

25,

26.

27.

28.

29.

30.
3L

32.

33.

COHOMOLOGICAL DIMENSION 401

W. M. FitcH, A non-sequential method for constructing trees and hierarchical
classifications, J. Mol. Evol. 18 (1981), 30-37.

. A. J. GOLDMANN, Realizing the distance matrix of a graph, J. Res. Nat. Bur. Standards

Sect. B 70 (1966), 153-154.

. S. L. HakiMi AND S. S. YAu, Distance matrix of a graph and its realizability, Quart.

Appl. Math. XXII (1965), 305-317.

. A. H. M. HoAgrg, On length functions and Nielson methods in free groups, J. London

Math. Soc. 14 (1976), 188-192.

. A. H. M. Hoare, An embedding for groups with length functions, Mathematika 26

(1979), 99-102.

. W. IMRicH, Realisierung von Metriken in Graphen, Osterreich. Akad. Wiss.

Math.—Natur. Kl. Sitzungsber. IT 178 (1969), 19-24.

. W. IMRICH AND E. STOTSKII, Optimal embeddings of metrics in graphs, Siberian Math. J.

13 (1972), 558-565; Dokl. Akad. Nauk. SSSR 200 (1971), 279-281.

. W. IMrICH, On metric properties of tree-like spaces, in “Beitrdge zur Graphentheorie und

deren Anwendungen, Oberhof, East Germany,” pp. 129-156, edited by Sektion Mardk
der Technischen Hochschule Ilmenau, 1979.

W. IMrICH AND G. SCHWARZ, Trees and length functions on groups, Ann. Discrete Math.
17 (1982), 347-359.

R. C. LYNDON, Length functions in groups, Math. Scand. 12 (1963), 209-234.

C. A. MEACHAM, A manual method for character compatibility analysis, Taxon 30
(1981), 591-600.

C. A. MEACHAM, A probability measure for character compatibility, Math. Biosci. 57
(1981), 1-18.

H. M. MULDER, The structure of median graphs, Discrete Math. 24 (1978), 197-204.

J. I. NAGATA, “Modern Dimension Theory,” Wiley, New York, 1965.

A. N. PatriNos AND S. L. HakMi, The distance matrix of a graph and its tree
realization, Quart. Appl. Math., October 1972.

D. PeEnNy, L. R. FouLbps, aND M. D. HENnDY, Testing the theory of evolution by
comparing phylogenetic trees constructed from five different protein sequences, Nature
297 (1982), 197-200.

D. F. RoBiNsoN AND L. R. FouLps, Comparison of phylogenetic trees, Math. Biosci. 53
(1981), 131-147.

F. J. RoHLF, Numbering binary trees with labeled terminal vertices, Bull. Math. Biol. 45
(1983), 33-40.

C. P. ROURKE AND B. J. SANDERSON, “Introduction to Piecewise-Linear Topology,”
Springer, Berlin, 1972,

S. SattaH AND A. TvERsKY, Additive similarity trees, Psychometrika 42 (1977),
319-345.

J. M. S. SIMOES-PEREIRA, A note on the tree realizability of a distance matrix, J. Combin.
Theory 6 (1969), 303-310. ’

J. M. S. SiIMOES-PEREIRA AND C. M. ZAMFIRESCU, Submatrices of non-tree-realizable
distance matrices, Linear Algebra Appl. 44 (1982), 1-17.

J.-P. SERRE, Groupes discrets, Extrait de I’Annuaire du Collége de France, 1969-1970.
E. D. Storsku, Embedding of Finite Metrics in graphs, Siberian Math. J. § (1964),
1203-1206.

J.-P. TigNoL, Remarque sur le groupe des automorphismes d’un arbre, Ann. Soc. Sci.
Bruxelles 93 (1979), 196-202.

J. Tirs, Sur le groupe des automorphismes d’un arbre, in “Essays on Topology and
Related Topics (Mémoires dédiés 4 G. de Rham), pp. 188-211, Springer-Verlag, Berlin/
Heidelberg/New York, 1970.



402 ANDREAS W. M. DRESS

34. J. Trts, A “theorem of Lie-Kolchin” for trees, in “Contributions to Algebra: A collection
of papers dedicted to Ellis Kolchin,” pp. 377-388, Academic Press, New York/San
Francisco/London, 1977.

35. M. S. WaTterRMAN AND T. F. SmitH, On the similarity of dendrograms, J. Theoret. Biol.
73 (1978), 789-800.

36. M. S. WaterMaN, T. F. SMiTH, M. SINGH, AND W. A. BEYER, Additive evolutionary
trees, J. Theoret. Biol. 64 (1977), 199-213.

37. D. L. WILKENS, Length functions and normal subgroups, J. London Math. Soc. 22
(1980), 439-448.



