

Available online at www.sciencedirect.com



# DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 3220-3229

www.elsevier.com/locate/disc

# Graph powers and k-ordered Hamiltonicity

**Denis** Chebikin

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 5 April 2006; received in revised form 6 June 2007; accepted 24 June 2007 Available online 25 September 2007

#### Abstract

It is known that if G is a connected simple graph, then  $G^3$  is Hamiltonian (in fact, Hamilton-connected). A simple graph is *k*-ordered Hamiltonian if for any sequence  $v_1, v_2, \ldots, v_k$  of *k* vertices there is a Hamiltonian cycle containing these vertices in the given order. In this paper, we prove that if  $k \ge 4$ , then  $G^{\lfloor 3k/2 \rfloor - 2}$  is *k*-ordered Hamiltonian for every connected graph *G* on at least *k* vertices. By considering the case of the path graph  $P_n$ , we show that this result is sharp. We also give a lower bound on the power of the cycle  $C_n$  that guarantees k-ordered Hamiltonicity.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Graph powers; k-Ordered Hamiltonian; Hamiltonian cycles

# 1. Introduction

The concept of k-ordered Hamiltonian graphs has been recently introduced by Ng and Schultz [6]. A simple graph G is k-ordered (resp. k-ordered Hamiltonian) if for any sequence  $v_1, v_2, \ldots, v_k$  of k vertices of G there is a cycle (resp. a Hamiltonian cycle) in G containing these vertices in the given order. Note that being 3-ordered Hamiltonian is equivalent to being Hamiltonian.

A natural direction of research related to this new Hamiltonian property is to generalize existing results implying graph Hamiltonicity and obtain results implying k-ordered Hamiltonicity. In [6] Ng and Schultz generalize classical theorems of Dirac and Ore and give minimum vertex degree conditions that guarantee a graph is k-ordered Hamiltonian. These conditions were improved by Faudree [3]. Another series of results appearing in [2] describes various forbidden subgraphs that force a graph to be k-ordered or k-ordered Hamiltonian. There are many open questions about whether these properties can be ensured by sufficient connectivity in a graph (see [3]).

In this paper we extend a well-known result on Hamiltonicity of the third power of a simple graph, which is defined below.

**Definition 1.1.** Let G be a simple graph with vertex set V and edge set E. The *nth power* of G, denoted by  $G^n$ , is the simple graph with the same vertex set V and with the edge set

 $E(G^n) = \{(v, w) | d_G(v, w) \leq n\}.$ 

E-mail address: chebikin@mit.edu.

<sup>0012-365</sup>X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.06.027

Our goal is to explore the *k*-ordered Hamiltonicity of graph powers. In Section 3 we give a lower bound on the smallest power of the path  $P_n$  that is *k*-ordered Hamiltonian. In Section 4 we prove the main theorem, which states that  $G^{\lfloor 3k/2 \rfloor - 2}$  is *k*-ordered Hamiltonian for  $k \ge 4$  and a connected graph *G* on at least *k* vertices. Finally, in Section 5 we discuss the *k*-ordered Hamiltonicity of powers of the cycle  $C_n$ . We conclude the paper by mentioning possible directions for further research on the topic.

# 2. Preliminaries

All graphs considered in this paper are finite simple graphs. The distance between vertices v, w of a graph G is denoted by  $d_G(v, w)$ . The number of vertices of G is denoted by |G|. If P is a path with endpoints a and b, then aPb denotes the path P starting at a and ending at b. Since the edges of our graphs are undirected, we use the notation (u, v) and (v, u) to denote the same edge whose endpoints are u and v.

For  $k \ge 3$  and a graph G, let  $p_k(G)$  be the smallest integer p such that  $G^p$  is k-ordered Hamiltonian. In this paper we give bounds on  $p_k(G)$  for an arbitrary connected graph G and in the special cases of G being a path or a cycle.

A graph G is *Hamilton-connected* if for any pair v, w of vertices of G there is a path in G between v and w containing all vertices of G. Such a path is called a *Hamiltonian path*. The following theorem is often included as an exercise in graph theory textbooks.

**Theorem 2.1.** If G is a connected graph on two or more vertices, then  $G^3$  is Hamilton-connected.

**Proof.** Let T be a spanning tree of G. Notice that it suffices to show that  $T^3$  is Hamilton-connected since  $T^3$  is a subgraph of  $G^3$  with the same vertex set.

We will show by induction that if T is a tree, then  $T^3$  is Hamilton-connected. This is obvious if T has only two vertices.

Suppose that the assertion is true for trees with fewer than |T| vertices. Let  $v_1$  and  $v_2$  be distinct vertices of T. Choose an edge  $e = (w_1, w_2)$  of T such that T - e consists of two connected components  $T_1$  and  $T_2$  satisfying  $v_1, w_1 \in T_1$  and  $v_2, w_2 \in T_2$ . For i = 1, 2 let  $u_i = w_i$  if  $w_i \neq v_i$  or if  $|T_i| = 1$ , otherwise let  $u_i$  be a vertex of  $T_i$  such that  $d_T(u_i, w_i) = 1$ . Let  $P_i$  be a Hamiltonian path in  $T_i^3$  between  $v_i$  and  $u_i$  (if  $u_i = v_i = w_i$ , then  $P_i$  is the "empty" path starting and ending at  $v_i$ ). Notice that  $d_T(u_1, u_2) \leq 3$ , so  $v_1 P_1 u_1 u_2 P_2 v_2$  is a Hamiltonian path in  $T^3$  between  $v_1$  and  $v_2$ .  $\Box$ 

Since Hamilton-connectedness implies Hamiltonicity, we have the following immediate corollary:

**Corollary 2.2.** If G is a connected graph on three or more vertices, then  $G^3$  is Hamiltonian.

The proof of Theorem 2.1 has been included for two reasons. First, it uses the fact that it suffices to prove the statement only for trees instead of arbitrary graphs. We will use the same idea in the proof of Theorem 4.4. Second, it is based on a simple induction argument, which in contrast to the case where we need to keep track of the order in which certain vertices are contained in the cycle, cannot be applied.

The following theorem about 2-connected graphs was proved by Fleischner [4] in 1974. A simpler proof can be found in [1].

**Theorem 2.3.** If G is a 2-connected graph on three or more vertices, then  $G^2$  is Hamiltonian.

Another result relevant to the discussion of this paper was proved by Lou et al. [5].

**Theorem 2.4.** Let G be a connected graph on three or more vertices. For any two edges  $e_1$  and  $e_2$  of G, there is a Hamiltonian cycle in  $G^4$  containing  $e_1$  and  $e_2$ .

# 3. Powers of paths

Let  $P_n$  be the path on *n* vertices. In this section we present a lower bound on  $p_k(P_n)$ .

**Theorem 3.1.** For  $k \ge 3$  and  $n \ge 2k - 1$ , the inequality  $p_k(P_n) \ge \lfloor 3k/2 \rfloor - 2$  holds.

**Proof.** First, consider the case of even k, and let k = 2m. We show that  $(P_n)^{3m-3}$  is not 2m-ordered. Let  $v_1$ ,  $v_3, \ldots, v_{2m-1}, u_1, u_2, \ldots, u_{2m-1}, v_2, v_4, \ldots, v_{2m}$  be consecutive vertices of the path  $P_n$ . Suppose that C is a cycle in  $(P_n)^{3m-3}$  containing the vertices  $v_1, v_2, \ldots, v_{2m}$  in order. For  $1 \le i \le 2m$ , let  $R_i$  denote the part of C between, and including,  $v_i$  and  $v_{i+1}$  (indices taken modulo 2m). Put  $U = \{u_1, u_2, \ldots, u_{2m-1}\}$ . Since |U| < 2m, there is an index *i* such that  $R_i$  does not contain a vertex of U. In  $P_n$ , the set U is located between  $v_i$  and  $v_{i+1}$ , so  $R_i$  must contain an edge e that "skips over" U. The edge e connects one of  $v_1, v_3, \ldots, v_{2m-1}$  and one of  $v_2, v_4, \ldots, v_{2m}$  because  $d_{P_n}(v_1, v_2) = d_{P_n}(v_{2m-1}, v_{2m}) = 3m - 1 > 3m - 3$ . Also, the edge e connects two non-consecutive vertices of  $v_1, v_2, \ldots, v_{2m}$  since the distance in  $P_n$  between two consecutive vertices of this sequence is at least 3m - 2. Thus, the cycle C cannot contain e, which contradicts  $R_i$  containing e.

We treat the case of odd k in a similar way. Let k = 2m + 1. We show that  $(P_n)^{3m-2}$  is not (2m + 1)-ordered. Let  $v_1$ ,  $v_3, \ldots, v_{2m+1}, u_1, u_2, \ldots, u_{2m-1}, v_2, v_4, \ldots, v_{2m}$  be consecutive vertices of the path  $P_n$ . Suppose that C is a cycle in  $(P_n)^{3m-2}$  containing the vertices  $v_1, v_2, \ldots, v_{2m+1}$  in order. As in the previous case, we find an edge e of C connecting one of  $v_1, v_3, \ldots, v_{2m+1}$  and one of  $v_2, v_4, \ldots, v_{2m}$ . Again, this edge connects two non-consecutive vertices of  $v_1, v_2, \ldots, v_{2m+1}$  since  $d_{P_n}(v_i, v_{i+1}) \ge 3m - 1$  for  $1 \le i \le 2m$ . We obtain a similar contradiction.

We conclude that  $p_{2m}(P_n) \ge 3m - 2$  and  $p_{2m+1}(P_n) \ge 3m - 1$ . The theorem follows.  $\Box$ 

#### 4. Main theorem

We now prove our main result which gives an upper bound on  $p_k(G)$  for a connected graph G on at least k vertices. We begin by proving three technical lemmas.

**Lemma 4.1.** Let W be a tree on at least two vertices, and let w be a vertex of W. Then  $W^3 - w$  has a Hamiltonian path whose endpoints  $w_1$  and  $w_2$  satisfy  $d_W(w, w_1) = 1$  and  $d_W(w, w_2) \leq 2$ .

**Proof.** Let  $W_1, \ldots, W_m$  be the connected components of W - w. Let  $w_1^{(i)}$  be the vertex of  $W_i$  adjacent to w in W, and let  $w_2^{(i)}$  be a vertex of  $W_i$  adjacent to  $w_1^{(i)}$ , or equal to  $w_1^{(i)}$  if  $|W_i| = 1$ . Let  $R^{(i)}$  be a Hamiltonian path in  $W_i^3$  starting at  $w_1^{(i)}$  and ending at  $w_2^{(i)}$ ; such a path exists by Theorem 2.1. Note that  $d_W(w_2^{(i)}, w_1^{(i+1)}) \leq d_W(w_2^{(i)}, w) + d_W(w, w_1^{(i+1)}) \leq 3$  for  $1 \leq i \leq m - 1$ , so the concatenation  $R^{(1)} \ldots R^{(m)}$  yields the desired path with  $w_1 = w_1^{(1)}$  and  $w_2 = w_2^{(m)}$ .  $\Box$ 

**Lemma 4.2.** Let k and  $p \ge 3$  be positive integers, and let G be a connected graph on at least k vertices. Let  $v_1, \ldots, v_k$  be a sequence of k vertices of G. Suppose that there exists a tree  $U \subseteq G$  and a cycle C in  $U^p$  satisfying the following conditions:

- (i) C contains  $v_1, \ldots, v_k$  in order;
- (ii) C contains every leaf of U;
- (iii) if x is a leaf of U, then x is adjacent in C to a vertex y such that either  $d_U(x, y) \leq p 2$ , or  $d_U(x, y) = p 1$  and y is not a leaf of U.

Then there is a Hamiltonian cycle in  $G^p$  containing  $v_1, \ldots, v_k$  in order.

**Proof.** We begin by extending *C* to a Hamiltonian cycle in  $U^p$ . Let *y* be a vertex of *U* such that  $y \notin C$ . By condition (ii), *y* is not a leaf. Therefore, U - y has at least two connected components, and some part of *C* between a leaf in one component and a leaf in another component does not contain *y*. This part contains an edge (x, z) such that *y* lies on the unique path in *U* between *x* and *z*. Let *C'* be the cycle obtained from *C* by replacing the edge (x, z) with the path *xyz*. Clearly, *C'* satisfies conditions (i) and (ii). Since  $d_U(x, y) + d_U(y, z) = d_U(x, z) \leq p$ , it follows that  $d_U(x, y) \leq p - 1$  and  $d_U(z, y) \leq p - 1$ , hence *C'* satisfies condition (iii). In this way, we can add all remaining vertices of *U* to obtain a Hamiltonian cycle  $\tilde{C}$  of  $U^p$  satisfying conditions (i)–(iii) with *C* replaced by  $\tilde{C}$ .

Let T be a spanning tree of G containing U. Consider the graph T-E(U) obtained by removing the edges of U from T. Let  $U_1, \ldots, U_\ell$  be the connected components of T - E(U) such that  $|U_i| > 1$ . Let  $u_i$  denote the unique vertex

of  $U \cap U_i$ . Note that the vertices  $u_1, \ldots, u_\ell$  are distinct. Put  $T_0 = U$  and  $T_i = U \cup U_1 \cup \ldots \cup U_i$  for  $1 \le i \le \ell$ , so that  $T_\ell = T$ . We construct a sequence  $\tilde{C} = C_0, C_1, \ldots, C_\ell$ , where  $C_i$  is a Hamiltonian cycle of  $T_i^p$  satisfying the following conditions:

- (I)  $C_i$  contains the vertices  $v_1, \ldots, v_k$  in order;
- (II) if x is a common leaf of U and  $T_i$ , then x is adjacent in  $C_i$  to a vertex y such that either  $d_T(x, y) \leq p 2$ , or  $d_T(x, y) = p 1$  and y is not a leaf of U.

The cycle  $C_0$  satisfies the above conditions. We construct  $C_{i+1}$  by inserting the vertices of  $U_{i+1} - u_{i+1}$  between two consecutive vertices of  $C_i$ . By Lemma 4.1, there is a Hamiltonian path  $w_1 R_i w_2$  in  $U_{i+1}^3 - u_{i+1}$  whose endpoints  $w_1$  and  $w_2$  satisfy  $d_T(u_{i+1}, w_1) = 1$  and  $d_T(u_{i+1}, w_2) \leq 2$ . We consider two cases.

*Case* 1:  $u_{i+1}$  is not a leaf of  $T_i$ . Then  $T_i - u_{i+1}$  has at least two connected components, and one of the parts of  $C_i$  between a vertex in one component and a vertex in another component does not contain  $u_{i+1}$ . This part contains an edge (x, z) such that  $u_{i+1}$  belongs to the unique path between x and z in  $T_i$ . Without loss of generality, suppose that  $d_T(x, u_{i+1}) \ge d_T(z, u_{i+1})$ . Let  $C_{i+1}$  be the cycle obtained by replacing the edge (x, z) with the path  $xw_1R_iw_2z$  in  $C_i$ . Then  $C_{i+1}$  is a Hamiltonian cycle in  $T_{i+1}^p$  because  $d_T(x, w_1) = d_T(x, u_{i+1}) + 1 \le p$  and  $d_T(z, w_2) \le d_T(z, u_{i+1}) + d_T(u_{i+1}, w_2) \le \lfloor p/2 \rfloor + 2 \le p$ .

Since  $C_{i+1}$  contains the vertices of  $C_i$  in the same order as  $C_i$ , it follows that  $C_{i+1}$  satisfies condition (I). To show that  $C_{i+1}$  satisfies condition (II), we need to consider the case when x or z is a common leaf of U and  $T_{i+1}$ . If x is a common leaf of U and  $T_{i+1}$ , then x is also a leaf of  $T_i$ , so either  $d_T(x, z) \leq p - 1$ , or the vertex  $y \neq z$  adjacent to x in  $C_i$  has the property of condition (II). In the former case, we have  $d_T(x, w_1) = d_T(x, u_{i+1}) + 1 \leq p - 1$ , and  $w_1$  is not a leaf of U. In the latter case, the vertex y, which is adjacent to x in  $C_{i+1}$ , has the required property. The case when z is a common leaf of U and  $T_{i+1}$  is treated similarly.

*Case* 2:  $u_{i+1}$  is a leaf of  $T_i$ . Then, by condition (II),  $u_{i+1}$  is adjacent in  $C_i$  to a vertex y such that either  $d_T(u_{i+1}, y) \leq p-2$ , or  $d_T(u_{i+1}, y) = p-1$  and y is not a leaf of U. Let  $C_{i+1}$  be the cycle obtained by replacing the edge  $(y, u_{i+1})$  with the path  $yw_1R_iw_2u_{i+1}$  in  $C_i$ . Then  $C_{i+1}$  is a Hamiltonian cycle in  $T_{i+1}^p$  because  $d_T(y, w_1) = d_T(y, u_{i+1}) + 1 \leq p$  and  $d_T(w_2, u_{i+1}) \leq 2$ .

As in the previous case, it is easy to see that  $C_{i+1}$  satisfies condition (I). To show that  $C_{i+1}$  satisfies condition (II), we need to consider the case when y is a common leaf of U and  $T_{i+1}$ . In this case, y is also a leaf of  $T_i$ , so either  $d_T(y, u_{i+1}) \leq p - 2$ , or the vertex  $y' \neq u_{i+1}$  adjacent to y in  $C_i$  has the property of condition (II). In the former case, we have  $d_T(y, w_1) \leq p - 1$ , and  $w_1$  is not a leaf of U, and in the latter case the vertex y', which is adjacent to y in  $C_{i+1}$ , has the required property.

Since  $T_{\ell} = T$ , it follows that  $C_{\ell}$  is a Hamiltonian cycle in  $T^p$ , and hence in  $G^p$ , containing  $v_1, \ldots, v_k$  in order. The lemma follows.  $\Box$ 

**Lemma 4.3.** For every integer  $t \ge 1$  and every tree U, there exists a map  $\alpha : V(U) \rightarrow \{1, \ldots, t\}$  such that, for every two distinct vertices x and z of U and every integer  $c \in \{1, \ldots, t\}$ , there exists a sequence  $x = y_0, y_1, \ldots, y_{\ell-1}, y_{\ell} = z$  of distinct vertices satisfying the following conditions:

(A)  $d_U(y_i, y_{i-1}) \leq t$  for  $1 \leq i \leq \ell$ ;

(B)  $y_i$  is not a leaf of U for  $1 \leq i \leq \ell - 1$ ;

(C)  $\alpha(y_i) = c \text{ for } 1 \leq i \leq \ell - 1;$ 

(D) if  $\alpha(x) \neq c$  (resp.,  $\alpha(z) \neq c$ ), then  $d_U(x, y_1) \leq t - 1$  (resp.,  $d_U(y_{\ell-1}, z) \leq t - 1$ );

(E) if U has at least t - 1 non-leaves, x and z are leaves of U, and  $\alpha(x)$  and  $\alpha(z)$  are not both equal to c, then  $\ell \ge 2$ .

**Proof.** If U has at most t - 2 non-leaves, then the distance between any two vertices in U is at most t - 1, so the map  $\alpha(x) = 1$  for all x and the sequence  $x = y_0$ ,  $y_1 = z$  satisfy conditions (A)–(D) (condition (E) is not applicable in this case).

Suppose that U has exactly t - 1 non-leaves  $w_1, \ldots, w_{t-1}$ . Put  $\alpha(w_i) = i$  for  $1 \le i \le t - 1$ , and set  $\alpha(v) = t$  for every leaf v of U. If x or z is a non-leaf, then  $d_U(x, z) \le t - 1$ , so setting  $x = y_0$ ,  $y_1 = z$  satisfies the conditions of the lemma. If both x and z are leaves and c = t, then setting  $x = y_0$ ,  $y_1 = z$  satisfies the conditions of the lemma as well. Finally, if both x and z are leaves and  $c \neq t$ , then setting  $x = y_0$ ,  $y_1 = w_c$ ,  $y_2 = z$  satisfies the conditions of the lemma.

It remains to consider the case when U has at least t non-leaves. Let |U| = m, and let q be the number of leaves of U. Construct the sequence  $U_t \subset U_{t+1} \subset ... \subset U_m$  of subtrees of U as follows. Let  $U_m = U$ . For  $m - q \leq i \leq m - 1$ , choose a leaf v of U, and put  $U_i = U_{i+1} - v$ . Then  $U_{m-q}$  is the subtree consisting of all non-leaves of U. For  $t \leq i \leq m - q - 1$ , choose a leaf v of  $U_{i+1}$ , and put  $U_i = U_{i+1} - v$ .

Let  $x_1, \ldots, x_t$  be the vertices of  $U_t$ . For  $t+1 \le i \le m$ , let  $x_i$  be the only vertex of  $U_i - U_{i-1}$ . Then  $V(U_j) = \{x_1, \ldots, x_j\}$  for  $t \le j \le m$ , and  $x_{m-q+1}, \ldots, x_m$  are the leaves of U.

For each vertex  $x \in U$ , we define  $\alpha(x)$  and construct a sequence  $b_1(x), \ldots, b_{t-1}(x)$  of non-leaves of U as follows. Begin by setting  $\alpha(x_j) = j$  for  $1 \le j \le t$ . Also, set  $b_i(x_j)$  be the *i*th closest vertex of  $U_t$  to  $x_j$  for  $1 \le i \le t - 1$ . (That is, rank the vertices of  $U_t$  other than  $x_j$  by distance to  $x_j$  from closest to furthest, breaking ties arbitrarily, and set  $b_i(x_j)$  to be the *i*th vertex in this ranking.) Now, let  $s \ge t + 1$ , and suppose that  $\alpha(x_j)$  and  $b_i(x_j)$  have been defined for j < s. Let  $x_r$  be the vertex adjacent to  $x_s$  in  $U_s$ ; then r < s, and  $x_r$  is not a leaf of U. Put  $b_1(x_s) = x_r$ ,  $b_i(x_s) = b_{i-1}(x_r)$  for  $2 \le i \le t - 1$ , and  $\alpha(x_s) = \alpha(b_{t-1}(x_r))$ .

Observe that  $\alpha(x_i)$  and  $b_i(x_i)$  have the following properties:

- (a) the sequence  $\alpha(x_i), \alpha(b_1(x_i)), \alpha(b_2(x_i)), \ldots, \alpha(b_{t-1}(x_i))$  contains all elements of  $\{1, \ldots, t\}$ ;
- (b)  $d_U(x_i, b_i(x_i)) \leq i;$
- (c)  $b_i(x_j) \in U_j$  for  $j \ge t$ .

We prove these properties by induction on *j*. Clearly, conditions (a)–(c) hold for j = t. Assume the above conditions for j < s, and let  $x_r$  be the vertex adjacent to  $x_s$  in  $U_s$ . The sequence  $\alpha(x_s), \alpha(b_1(x_s)), \ldots, \alpha(b_{t-1}(x_s))$  is the same as  $\alpha(b_{t-1}(x_r)), \alpha(x_r), \alpha(b_1(x_r)), \ldots, \alpha(b_{t-2}(x_r))$ , which contains all elements of  $\{1, \ldots, t\}$ . Also,  $d_U(x_s, b_1(x_s)) = d_U(x_s, x_r) = 1$  and  $d_U(x_s, b_i(x_s)) = 1 + d_U(x_r, b_{i-1}(x_r)) \leqslant i$  for  $2 \leqslant i \leqslant t - 1$ . Finally, we have  $b_1(x_s) = x_r \in U_r \subset U_s$ , and  $b_i(x_s) = b_{i-1}(x_r) \in U_r \subset U_s$  for  $2 \leqslant i \leqslant t - 1$ .

We now show that for  $t \le j \le m$ , two vertices x and z of  $U_j$ , and an integer  $c \in \{1, ..., t\}$ , there exists a sequence  $x = y_0, y_1, ..., y_\ell = z$  satisfying conditions (A)–(E) of the lemma. We proceed by induction on j. For j = t, the vertices x and z are not leaves of U, and  $d_U(x, z) = d_{U_t}(x, z) \le t - 1$ , so setting  $x = y_0$  and  $y_1 = z$  satisfies the desired conditions.

Suppose that the assertion is true for j < s, where  $s \ge t + 1$ . To prove the assertion for j = s, it suffices to consider the case when x or z is equal to  $x_s$ . Without loss of generality, suppose that  $z = x_s$  and  $x \in U_{s-1}$ . Let  $x_r$  be the vertex adjacent to  $x_s$  in  $U_s$ , and let  $x_{r'}$  be the element of the sequence  $x_r$ ,  $b_1(x_r), \ldots, b_{t-1}(x_r)$  such that  $\alpha(x_{r'}) = c$ . By property (c), we have  $x_{r'} \in U_r$ , and since  $x_r$  is not a leaf of U, it follows that  $x_{r'}$  is not a leaf of U either. By the inductive hypothesis, there exists a sequence  $x = y'_0, y'_1, \ldots, y'_{\ell'} = x_{r'}$  satisfying conditions (A)–(E). Set  $\ell = \ell' + 1$  and  $y_0 = y'_0$ ,  $y_1 = y'_1, \ldots, y_{\ell-1} = y'_{\ell-1}, y_\ell = x_s$ . It is easy to check that the new sequence  $y_0, \ldots, y_\ell$  satisfies conditions (A)–(E). The only non-trivial verification needed is for condition (D): we have  $d_U(y_{\ell-1}, z) = 1 + d_U(x_{r'}, x_r) \le t$ , and equality holds only if  $x_{r'} = b_{t-1}(x_r)$ , in which case  $\alpha(z) = \alpha(x_s) = \alpha(b_{t-1}(x_r)) = \alpha(x_{r'}) = c$ .

We now prove the main theorem.

**Theorem 4.4.** For  $k \ge 4$ , let G be a connected graph on at least k vertices. Then  $G^{\lfloor 3k/2 \rfloor - 2}$  is k-ordered Hamiltonian.

**Proof.** Put  $t = \lfloor 3k/2 \rfloor - 2$ . Let  $v_1, \ldots, v_k$  be a sequence of k vertices of G. Our goal is to find a Hamiltonian cycle in  $G^t$  containing the vertices  $v_1, \ldots, v_k$  in order. Let T be a spanning tree of G, and let U be the smallest subtree of T containing all the  $v_i$ 's. Then all leaves of U are among the  $v_i$ 's. Let q be the number of leaves of U.

Let  $\alpha$  :  $V(U) \rightarrow \{1, ..., t\}$  be a map satisfying the conditions of Lemma 4.3. For convenience, let us refer to the value of  $\alpha(v)$  as the *color* of the vertex v.

Perhaps the best way to present the construction is in the form of an algorithm. For the rest of the proof, all indices of the elements of the sequence  $v_1, \ldots, v_k$ , as well as the sequences  $h_1, \ldots, h_k$  and  $R_1, \ldots, R_k$  introduced later, are taken modulo k. Let  $V = \{v_1, \ldots, v_k\}$ , and let  $\tilde{V}$  denote the set of all non-leaves of U contained in V.

Step 1. We begin with a procedure in which we mark certain elements of V. First, mark every element  $v_i \in \tilde{V}$  such that no other element of  $\tilde{V}$  has the same color as  $v_i$ . Next, for each color  $c \in \alpha(V)$  such that no element of  $\tilde{V}$  has color c, mark one of the elements of  $V - \tilde{V}$  of color c.

Observe that at most one element of each color has been marked. We continue with a lemma.

**Lemma 4.5.** Let r be the number of elements of V that were not marked in the above procedure. Then

$$|\alpha(V)| + r \leqslant t + 1. \tag{(*)}$$

**Proof.** Let *s* be the number of elements  $v_i \in \tilde{V}$  such that no other element of  $\tilde{V}$  has the same color as  $v_i$ , and let *m* be the number of colors encountered more than once among the elements of  $\tilde{V}$ . Then

$$m \leqslant \left\lfloor \frac{|\tilde{V}|}{2} \right\rfloor = \left\lfloor \frac{k-q}{2} \right\rfloor,$$

because each of the *m* colors is encountered at least twice. Let p = k - q - s be the number of elements of  $\tilde{V}$  that were not marked. Then

$$|\alpha(\tilde{V})| + p = s + m + p = k - q + m \leq \left\lfloor \frac{3(k-q)}{2} \right\rfloor.$$

The number of marked elements of  $V - \tilde{V}$  is the number of colors encountered among the elements of  $V - \tilde{V}$  but not encountered among the elements of  $\tilde{V}$ , or  $|\alpha(V)| - |\alpha(\tilde{V})|$ . The number of elements of  $V - \tilde{V}$  that were not marked is r - p. Thus

$$|\alpha(V)| - |\alpha(\tilde{V})| + r - p = |V - \tilde{V}| = q$$

since  $V - \tilde{V}$  is the set of all leaves of U. Adding this equality to the previous inequality yields

$$|\alpha(V)| + r \leq \left\lfloor \frac{3(k-q)}{2} \right\rfloor + q = \left\lfloor \frac{3k-q}{2} \right\rfloor \leq \left\lfloor \frac{3k}{2} \right\rfloor - 1 = t+1$$

because  $q \ge 2$ .  $\Box$ 

Step 2. In this step we consider several cases, in some of which we mark one additional vertex.

*Case* 2.1:  $|\alpha(V)| + r \leq t$ . In this case, proceed directly to Step 3.

*Case* 2.2:  $|\alpha(V)| + r = t + 1$ . From the proof of Lemma 4.5 it follows that equality in (\*) holds only if

(1)  $m = \lfloor |\tilde{V}|/2 \rfloor$ , and (2) q = 2, or else q = 3 and k is odd.

We consider three further subcases.

*Case* 2.2.1: q = 2 and k is even. In this case, U is a path. Condition (1) implies that each color in  $\alpha(\tilde{V})$  is represented

by exactly two elements of  $\tilde{V}$ . Let  $v_{\ell}$  be one of the endpoints of U. Let  $v_i$  be the element of  $\tilde{V}$  closest to  $v_{\ell}$ , and let  $v_j$  be the other representative of the color  $c = \alpha(v_i)$  in  $\tilde{V}$ . Note that neither  $v_i$  nor  $v_j$  have been marked in Step 1. One of the vertices  $v_{j-1}$  and  $v_{j+1}$  is different from  $v_{\ell}$ . Without loss of generality, we can assume that  $v_{j+1} \neq v_{\ell}$ , because finding a Hamiltonian cycle containing the sequence  $v_k, ..., v_2, v_1$  in the given order is clearly equivalent to our task. Note that the path between  $v_j$  and  $v_{j+1}$  in U does not contain  $v_i$  in its interior, for then  $v_{j+1}$  would be closer to  $v_{\ell}$  than  $v_i$ . It follows that no element of V of color c lies between  $v_j$  and  $v_{j+1}$ . Mark  $v_j$ , and proceed to Step 3.

*Case* 2.2.2: q = 2 and k is odd. Again, U is a path. Condition (1) now implies that a unique color  $c_0 \in \alpha(\tilde{V})$  is represented by exactly three elements of  $\tilde{V}$ , and the other colors in  $\alpha(\tilde{V})$  are each represented by exactly two elements of  $\tilde{V}$ . If one of the two elements  $v_{i_1}$  and  $v_{i_2}$  of  $\tilde{V}$  closest to the two endpoints of U has color different from  $c_0$ , denote this element by  $v_i$  and act as in the previous case. Otherwise, both  $v_{i_1}$  and  $v_{i_2}$  have color  $c_0$ . Let  $v_j$  be the remaining element of  $\tilde{V}$  of color  $c_0$ . Suppose there is no element of V of color  $c_0$  between  $v_j$  and  $v_{j+1}$ , or between  $v_j$  and  $v_{j-1}$ . Then, as in the previous case, assume the former without loss of generality, mark  $v_j$ , and proceed to Step 3. We are left with the situation in which there is an element of  $\tilde{V}$  of color  $c_0$  between  $v_j$  and  $v_{j+1}$  and between  $v_j$  and  $v_{j-1}$ . Besides  $v_j$ , the only elements of  $\tilde{V}$  of color  $c_0$  are  $v_{i_1}$  and  $v_{i_2}$ . We conclude that  $v_{j-1}$  and  $v_{j+1}$  are the endpoints of U. At this point, we designate  $v_j$  as a "special" vertex, and we deal with it in Step 3.

*Case* 2.2.3: q = 3 and k is odd. Here U consists of three paths with a common endpoint  $u_0$ . Since  $|\tilde{V}|$  is even, condition (1) implies that each color in  $\alpha(\tilde{V})$  is represented by exactly two elements of  $\tilde{V}$ . For each of the three branches of U, find the element of  $\tilde{V}$  in this branch, if any, closest to the leaf belonging to this branch. Of these elements, let  $v_i$  be the furthest from  $u_0$ . Note that  $v_i \neq u_0$  because  $|\tilde{V}| \ge 2$ . Let  $v_j$  be the other representative of the color  $c = \alpha(v_i)$  in  $\tilde{V}$ . Neither  $v_i$  nor  $v_j$  have been marked in Step 1. As before, without loss of generality, assume that  $v_{j+1}$  is different from the leaf of U contained in the same branch as  $v_i$ . Then the unique path in U from  $v_j$  to  $v_{j+1}$  does not contain  $v_i$  in its interior, hence it contains no element of V of color c in its interior. Mark  $v_i$  and proceed to Step 3.

Step 3. Observe that in Cases 2.2.1–2.2.3, colors c and  $c_0$  are not represented by the vertices marked in Step 1, so after Step 2 there is still at most one marked vertex of each color.

In this step, we construct paths in  $U^t$  between consecutive elements of the sequence  $v_1, \ldots, v_k$  and concatenate them to form a cycle containing  $v_1, \ldots, v_k$  in order. We analyze cases and subcases corresponding to those of Step 2.

*Case* 3.1:  $|\alpha(V)| + r \leq t$ . We define a sequence  $h_1, \ldots, h_k$  of elements of  $\{1, \ldots, t\}$  as follows. For each  $\ell$  such that  $v_\ell$  is marked, set  $h_\ell = \alpha(v_\ell)$ . Let  $v_{a_1}, \ldots, v_{a_r}$  be the unmarked elements of V. Set  $h_{a_1}, \ldots, h_{a_r}$  to be distinct elements of  $\{1, \ldots, t\}$  not contained in  $\alpha(V)$ . Such an assignment is possible because  $|\alpha(V)| + r \leq t$ . Thus the elements of the sequence  $h_1, \ldots, h_k$  are all distinct.

For  $1 \le s \le k$ , let  $R_s$  be the path in  $U^t$  from  $x = v_s$  to  $z = v_{s+1}$  satisfying the conditions of Lemma 4.3 with  $c = h_s$ . Since the  $h_s$ 's are all distinct, the paths  $R_1, \ldots, R_k$  are interior vertex disjoint. Also, the path  $R_s$  contains no element of  $\tilde{V}$ , and hence no element of V, in its interior (by condition (B) of Lemma 4.3, interior vertices of  $R_s$  are non-leaves). Indeed, every interior vertex of  $R_s$  has color  $h_s$ , which is either not represented by any vertex of V if  $v_s$  is unmarked, or else represented by no vertex of  $\tilde{V}$  except  $v_s$  if  $v_s$  is marked. Hence the concatenation  $R_1 \cdots R_k$  is a cycle in  $U^t$ containing  $v_1, \ldots, v_k$  in order.

*Case* 3.2:  $|\alpha(V)| + r = t + 1$ . As in Case 2.2, we consider three subcases.

*Case* 3.2.1: q = 2 and k is even (see Case 2.2.1). Define  $h_1, \ldots, h_k$  and  $R_1, \ldots, R_k$  as in the previous case. The assignment of values of  $h_1, \ldots, h_k$  is possible because in this case there are r-1 unmarked vertices and  $|\alpha(V)|+r-1=t$ . Repeating the argument of Case 3.1, we conclude that the paths  $R_1, \ldots, R_k$  in  $U^t$  are interior vertex disjoint and that for  $s \neq j$ , the path  $R_s$  contains no element of V in its interior, where j is the index of the vertex  $v_j$  marked in Case 2.2.1. It remains to prove that  $R_j$  has the same property. Recall that there are no elements of V of color  $c = \alpha(v_j)$  between  $v_j$  and  $v_{j+1}$  on the path U. Since  $v_j$  is marked, all interior vertices of  $R_j$  have color c, so it suffices to ensure that the interior vertices of  $R_j$  lie between  $v_j$  and  $v_{j+1}$ . If this is not the case, we modify  $R_j$  as follows. Assume without loss of generality that  $v_j$  lies to the left of  $v_{j+1}$ . Let  $v_j = y_0, y_1, \ldots, y_\ell = v_{j+1}$  be the sequence of vertices of  $R_j$ . Let  $y_p$  be the last element of this sequence, if any, lying to the left of  $v_j$ . Then  $v_j$  lies between  $y_p$  and  $y_{p+1}$ , so  $d_U(v_j, y_{p+1}) < d_U(y_p, y_{p+1}) < t$  and that  $v_j$  is a non-leaf, so condition (E) is not applicable). Similarly, we can eliminate all interior vertices of  $R_j$  lying to the right of  $v_{j+1}$ . Thus the modified path  $R_j$  has the desired properties, and  $R_1...R_k$  is a cycle in  $U^t$  containing  $v_1, \ldots, v_k$  in order.

*Case* 3.2.2: q = 2 and k is odd (see Case 2.2.2). This case can be treated in exactly the same way as Case 3.2.1 unless a "special" vertex  $v_j$  was introduced in Case 2.2.2. If so, define  $h_1, \ldots, \widehat{h_j}, \ldots, h_k$  and  $R_1, \ldots, \widehat{R_j}, \ldots, R_k$  as in Case 3.1 (the hat symbol denotes omission of a sequence element), which is possible because there are r - 1 unmarked vertices besides  $v_j$ , and  $|\alpha(V)| + r - 1 = t$ . Then, as before, the paths  $R_1, \ldots, \widehat{R_j}, \ldots, R_k$  in  $U^t$  are interior vertex disjoint and do not contain elements of V in their interior. Set  $h_j = h_{j-1}$ , and let  $R_j$  be the path in  $U^t$  from  $x = v_j$ to  $z = v_{j+1}$  satisfying the conditions of Lemma 4.3 with  $c = h_j$ . Using the modification described in Case 3.2.1, we can assume that the interior vertex disjoint. Also, since  $h_j$  is different from all other  $h_s$ 's except  $h_{j-1}$ , the path  $R_j$  is interior vertex disjoint from all other  $R_s$ 's. Finally, note that the entire path  $v_{j-1}R_{j-1}v_jR_jv_{j+1}$  in  $U^t$  does not contain any vertices of V except  $v_j$  in its interior because all interior vertices of this path except  $v_j$  have color  $h_{j-1}$ , which is not represented among the vertices of  $\tilde{V}$  because either  $v_{j-1}$  is a marked leaf of U and  $h_{j-1}$  is the color of  $v_{j-1}$ , or else  $h_{j-1} \notin \alpha(V)$ . Thus we obtain the desired cycle  $R_1 \cdots R_k$ .

*Case* 3.2.3: q = 3 and k is odd (see Case 2.2.3). This case is almost identical to Case 3.2.1 except that we need to make sure that the path  $R_j$  in  $U^t$  contains no element of V in its interior, where j is the index of the vertex  $v_j$  marked in Case 2.2.3. Since  $h_j = \alpha(v_j)$  and  $R_j$  does not contain leaves of U in its interior, we only need to show that the interior vertices of  $R_j$  do not include the only other element of  $\tilde{V}$  of color  $h_j$ , namely,  $v_i$ . Suppose that  $v_i$  is an interior vertex of  $R_j$ . Let  $v_j = y_0, y_1, \ldots, y_\ell = v_{j+1}$  be the sequence of vertices of  $R_j$ . Let  $y_p$  be the last

vertex of  $R_j$  belonging to the path in U between  $v_i$  and the leaf of the branch containing  $v_i$ . By the assumption at the end of Case 2.2.3,  $y_p \neq v_{j+1}$  and hence  $p < \ell$ . First, suppose that  $y_{p+1}$  is not on the same branch of U as  $v_i$ . It is easy to see that  $d_U(v_j, y_{p+1}) \leq d_U(v_i, y_{p+1}) \leq d_U(y_p, y_{p+1})$ , the former inequality implied by the fact that  $v_i$  is the furthest from  $u_0$  of all elements of  $\tilde{V}$ . Thus we can replace  $R_j$  with the shorter path  $v_j = y_0, y_{p+1}, \ldots, y_\ell = v_{j+1}$ . It remains to show that the modified path satisfies the conditions of Lemma 4.3. Conditions (A)–(C) hold trivially. We have  $d_U(v_j, y_{p+1}) \leq d_U(y_p, y_{p+1}) \leq t$ . Condition (D) for  $x = v_j$  is not applicable because  $\alpha(v_j) = h_j = c$ , and if  $y_{p+1} = v_{j+1} = z$  and  $\alpha(z) \neq c$ , then  $d_U(v_j, y_{p+1}) \leq d_U(y_p, y_{p+1}) \leq t - 1$  by condition (D) for the old path. Finally, condition (E) is not applicable because  $x = v_j$  is not a leaf of U. Now suppose that  $y_{p+1}$  is on the same branch of U as  $v_i$ . Let  $y_m$  be the first vertex of  $R_j$  belonging to the path in U between  $v_i$  and the leaf of the branch containing  $v_i$ . Then  $y_{m-1}, y_{p+1}$ , and  $v_i$  lie on the same path in U with  $v_i$  being one of the endpoints of the path. Also,  $d_U(y_{m-1}, v_i) \leq d_U(y_{m-1}, y_m) \leq t$  and  $d_U(y_{p+1}, v_i) \leq d_U(y_{p+1}, y_p) \leq t$ , so  $d_U(y_{m-1}, y_{p+1}) \leq t - 1$ . It follows that the shorter path  $v_j = y_0, \ldots, y_{m-1}, y_{p+1}, \ldots, y_\ell = v_{j+1}$  satisfies the conditions of Lemma 4.3.

Step 4. In this step we complete the construction of a Hamiltonian cycle in  $G^t$  containing the vertices  $v_1, \ldots, v_k$  in order. We deal with two easy cases first.

*Case* 4.1: *U* has at most t - 3 non-leaves. In this case  $d_U(v_i, v_{i+1}) \le t - 2$ , so applying Lemma 4.2 with p = t to the cycle  $C = v_1 \dots v_k$  in  $U^t$  yields a Hamiltonian cycle in  $T^t$ , which is also a Hamiltonian cycle in  $G^t$ , containing  $v_1, \dots, v_k$  in order.

*Case* 4.2: *U* has exactly t - 2 non-leaves; then the distance in *U* between any two vertices is at most t - 1. Observe that  $\lceil k/2 \rceil \leq t - 2$ , and let  $w_1, ..., w_{\lceil k/2 \rceil}$  be distinct non-leaves of *U*. Let *C* be the cycle  $v_1w_1v_2v_3w_2v_4v_5w_3...v_k$  in  $U^t$  if *k* is even, or the cycle  $v_1w_1v_2v_3w_2v_4v_5w_3...v_kw_{\lceil k/2 \rceil}$  in  $U^t$  if *k* is odd. Then every vertex of *V*, and in particular every leaf of *U*, is adjacent in *C* to a non-leaf, which is within distance t - 2 in *U*. Hence applying Lemma 4.2 with p = t to the cycle *C* yields a desired Hamiltonian cycle in  $T^t$  and hence in  $G^t$ .

Finally, we come to the most general case.

*Case* 4.3: *U* has at least t-1 non-leaves. In this case, we show that Lemma 4.2 can be applied to the cycle  $C = R_1...R_k$  constructed in Step 3. All we need to verify is that condition (iii) of Lemma 4.2 holds for every leaf of *U*. Let  $v_s$  be a leaf of *U*. Then one of  $h_{s-1}$  and  $h_s$  is different from  $\alpha(v_s)$  (the only case in which  $h_{s-1} = h_s$  is when  $v_s$  is the "special" vertex introduced in Case 2.2.2, but then  $v_s$  is not a leaf of *U*). Suppose that  $h_{s-1} \neq \alpha(v_s)$ . Note that  $v_s$  is adjacent in  $R_{s-1}$  to a non-leaf of *U*, because if  $v_{s-1}$  is a leaf, then by condition (E)  $R_{s-1}$  has at least one interior vertex, and it is a non-leaf by condition (B). By condition (D), the vertex adjacent in  $R_{s-1}$  to  $v_s$  is within distance t - 1 of  $v_s$  in *U*. Hence condition (iii) of Lemma 4.2 is satisfied, and there is a Hamiltonian cycle in  $T^t$ , and hence in  $G^t$ , containing  $v_1, \ldots, v_k$  in order. The case  $h_s \neq \alpha(v_s)$  is treated in the same way.

The theorem is now proved.  $\Box$ 

**Corollary 4.6.** For  $k \ge 4$  and a connected graph G on at least k vertices, the inequality  $p_k(G) \le \lfloor 3k/2 \rfloor - 2$  holds.

**Corollary 4.7.**  $p_k(P_n) = \lfloor 3k/2 \rfloor - 2$  for  $k \ge 4$  and  $n \ge 2k - 1$ .

**Proof.** Immediate consequence of Theorem 3.1 and Corollary 4.6.  $\Box$ 

# 5. Powers of cycles

In this section, we compute  $p_5(C_n)$  and give a lower bound on  $p_k(C_n)$ .

**Theorem 5.1.** Let  $C_n$  denote the cycle on *n* vertices. If  $n \ge 5$ , then  $(C_n)^3$  is five-ordered Hamiltonian.

**Proof.** Let  $v_1, v_2, \ldots, v_5$  be a sequence of five vertices of  $C_n$ , and let  $w_1, w_2, \ldots, w_5$  be the same five vertices in the order in which they appear in the cycle  $C_n$ . For  $1 \le i \le 5$ , let  $P_i$  denote the portion of  $C_n$  between  $w_i$  and  $w_{i+1}$  containing no other vertices of the sequence  $w_1, \ldots, w_5$  (indices taken modulo 5). We will construct 10 internally disjoint paths  $R_{ij}$  in  $(C_n)^3$ , where  $R_{ij}$  is a path between  $w_i$  and  $w_j$  for  $1 \le i < j \le 5$ . We adopt the convention that  $R_{ji} = R_{ij}$ .

First, we construct  $R_{i,i+2}$  for  $1 \le i \le 5$ . Let  $a_1, a_2, \ldots, a_5$  be integers such that  $a_i \in \{1, 2\}$  and  $a_i + 1 \ne |P_i| - 1 \pmod{3}$  for all *i* (note that  $|P_i| - 1$  is the length of  $P_i$ ).

Fig. 1. The paths  $R_{i,i+2}$  and  $R_{i+1,i+3}$ .

For  $1 \leq i \leq 5$ , let  $R_{i,i+2}$  be the path  $w_i t_1^i t_2^i \cdots t_{i_i}^i u_1^i u_2^i \cdots u_{m_i}^i w_{i+2}$ , where  $t_j^i \in P_i, u_j^i \in P_{i+1}$ , and

$$\begin{aligned} &d_{P_i}(w_i, t_1^i) \leq 3, \quad d_{P_i}(t_j^i, t_{j+1}^i) = 3 \text{ for } 1 \leq j \leq l_i - 1, \\ &d_{P_i}(t_{l_i}^i, w_{i+1}) = a_i, \quad d_{P_{i+1}}(w_{i+1}, u_1^1) = 1, \\ &d_{P_{i+1}}(u_j^i, u_{j+1}^i) = 3 \text{ for } 1 \leq j \leq m_i - 1 \quad \text{and} \quad d_{P_{i+1}}(u_{m_i}^i, w_{i+2}) \leq 3 \end{aligned}$$

We allow  $l_i = 0$  if  $d_{P_i}(w_i, w_{i+1}) \leq a_i$  and  $m_i = 0$  if  $d_{P_{i+1}}(w_{i+1}, w_{i+2}) = 1$ . Fig. 1 shows the paths  $R_{i,i+2}$  and  $R_{i+1,i+3}$ . Since  $a_{i+1} + 1 \neq |P_{i+1}| - 1 \pmod{3}$ , these paths are internally disjoint.

For  $1 \le i \le 5$ , let  $R_{i,i+1}$  be the path in  $(C_n)^3$  between  $w_i$  and  $w_{i+1}$  containing all vertices of  $P_i$  that are not contained in  $R_{i,i+2}$  and  $R_{i-1,i+1}$ .

Define  $i_j$  by  $v_j = w_{i_j}$  and form a cycle C in  $(C_n)^3$  containing  $v_1, \ldots, v_5$  in order by linking the paths  $R_{i_1i_2}$ ,  $R_{i_2i_3}, \ldots, R_{i_5i_1}$ . Finally, we extend C to a Hamiltonian cycle using the following procedure.

- (1) If C is not Hamiltonian, choose a vertex  $z \notin C$  of  $C_n$  adjacent in  $C_n$  to a vertex  $u \in C$ .
- (2) At most one vertex adjacent to u in  $(C_n)^3$  is more than distance 3 away from z. Since u is adjacent to two vertices in C, we can choose a vertex t adjacent to u in C such that  $d_{C_n}(t, z) \leq 3$ .
- (3) Replace the edge (t, u) of C with the path tzu.
- (4) If C is not Hamiltonian, return to Step (1).

Since during the procedure we insert the remaining vertices into *C* without changing the order of the vertices already in *C*, the order in which  $v_1, \ldots, v_5$  are contained in *C* is preserved, so  $(C_n)^3$  is five-ordered Hamiltonian. This completes the proof of the theorem.  $\Box$ 

**Corollary 5.2.** If G is a Hamiltonian graph on five or more vertices, then  $G^3$  is five-ordered Hamiltonian.

**Proof.** Let *C* be a Hamiltonian cycle in *G*. Then  $C^3$  is five-ordered Hamiltonian. Since  $C^3$  is a subgraph of  $G^3$  with the same vertex set, it follows that  $G^3$  is five-ordered Hamiltonian, too.  $\Box$ 

The next proposition yields a lower bound on  $p_k(C_n)$ .

**Proposition 5.3.** If  $m \ge 3$  and n is sufficiently large, then  $(C_n)^m$  is not 2m-ordered.

**Proof.** Let  $v_1, v_3, v_5, \ldots, v_{2m-1}, w_1, w_2, \ldots, w_{n-3m+1}, v_2, v_4, \ldots, v_{2m-4}, v_{2m}, v_{2m-2}, u_1, u_2, \ldots, u_{m-1}$  be the vertices of  $C_n$  (in this order; see Fig. 2). Suppose  $(C_n)^m$  is 2m-ordered; then there is a cycle C in  $(C_n)^m$  that contains  $v_1, v_2, \ldots, v_{2m}$  in order. For  $1 \le i \le 2m$ , let  $R_i$  be the portion of C between  $v_i$  and  $v_{i+1}$  that does not contain any other vertices of the sequence  $v_1, \ldots, v_{2m}$  (indices taken modulo 2m). Denote  $U = \{u_1, u_2, \ldots, u_{m-1}\}$  and  $W = \{w_1, w_2, \ldots, w_{n-3m+1}\}$ .

If *n* is sufficiently large, then we have  $d_{C_n}(v_i, v_{i+1}) > m$  for all *i*. Therefore, each  $R_i$  must contain a vertex of *U* or a vertex of *W*. Since |U| = m - 1, there are at least m + 1 paths  $R_i$  that do not contain vertices of *U* and hence consist only of vertices in  $\{v_i, v_{i+1}\} \cup W$ . Each such  $R_i$  must contain at least  $\lfloor |W|/m \rfloor$  vertices of *W*, otherwise there would be *m* consecutive vertices of *W* not contained in  $R_i$ , and hence  $R_i$  would have two adjacent vertices that are more than distance *m* apart in  $C_n$ . We conclude that at least m + 1 of the paths  $R_i$  have at least  $\lfloor |W|/m \rfloor$  interior vertices, thus

$$|C_n| > (m+1) \left\lfloor \frac{|W|}{m} \right\rfloor = (m+1) \left\lfloor \frac{n-3m+1}{m} \right\rfloor > n$$



if *n* is sufficiently large—a contradiction. It follows that  $(C_n)^m$  is not 2m-ordered.  $\Box$ 

**Corollary 5.4.**  $p_k(C_n) \ge \lfloor k/2 \rfloor + 1$  for sufficiently large *n*.

**Corollary 5.5.**  $p_5(C_n) = 3$  for sufficiently large *n*.

**Proof.** Immediate consequence of Theorem 5.1 and Corollary 5.4  $\Box$ .

# 6. Conclusion and open problems

Our main result, Theorem 4.4, is a generalization of the classic theorem stating that the third power of a connected graph is Hamiltonian. In view of Theorem 3.1, the result is sharp. Having established a universal lower bound on  $p_k(G)$  for all connected graphs G, it is natural to look for such a bound valid for a more restricted family of graphs. The case  $G = P_n$  appears to represent the worst case scenario in that it requires the largest power to achieve *k*-ordered Hamiltonicity. Perhaps the next simplest case is  $G = C_n$ , some results on which are given in Section 5. It would be nice to find the actual value of  $p_k(C_n)$ . A more challenging task is to obtain a version of Theorem 4.4 generalizing Theorem 2.3 about two-connected graphs.

### Acknowledgments

This research was begun in the 2002 Research Experience for Undergraduates at the University of Minnesota Duluth. I would like to thank the program director Joseph Gallian for suggesting this problem and encouraging me to work on it. I would also like to thank advisors Geir Helleloid and Phil Matchett for many useful comments on this paper. Finally, I want to thank all other student participants and visitors for a wonderful summer.

The work on the main result of this paper and a large portion of this manuscript were completed during the author's visit at Institut Mittag-Leffler in Djursholm, Sweden in January 2005. I would like to thank Anders Björner, Director of IML, and Richard Stanley for organizing the Algebraic Combinatorics program and for inviting me to participate.

#### References

- [1] R. Diestel, Graph Theory, second ed., Springer, Berlin, 2000.
- [2] J.R. Faudree, R.J. Faudree, Forbidden subgraphs that imply k-ordered and k-ordered Hamiltonian, Discrete Math. 243 (2002) 91–108.
- [3] R.J. Faudree, Survey of results on k-ordered graphs, Discrete Math. 229 (2001) 73-87.
- [4] H. Fleischner, Hamiltonian squares of graphs, Recent Advances in Graph Theory, in: Proceedings Second Czechoslovak Symposium, Prague, 1974, Academia, Prague, 1975, pp. 197–206.
- [5] D.J. Lou, S.W. Xu, T.X. Yao, Hamiltonian cycles containing specific edges in power graphs, Nanjing Daxue Xuebao Ziran Kexue Ban 27 (1991) 71–73.
- [6] L. Ng, M. Schultz, k-ordered Hamiltonian graphs, J. Graph Theory 24 (1997) 45-57.