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EDITORIAL REVIEW

Glomerular cells in culture

The purpose of this review is to explore the ways by which
cell culture has broadened our knowledge of the biology and
pathobiology of the renal glomerulus. With cell culture tech-
niques, one can study homogeneous populations of cells under
controlled conditions, without the influence of other glomerular
cells and extraglomerular factors. It must be noted at the outset
that there are certain inherent problems in this approach. First,
cell types in culture may show phenotypic modulation, that is,
the loss or gain of certain phenotypic properties. For example,
smooth muscle cells rapidly lose their myosin after being
cultured [1]. Second, there is a paucity of both enzymatic and
morphologic markers for glomerular cells in culture. Despite
these limitations, this approach to the study of the glomerulus
has drawn the interest of a number of investigators [2—15, 22—
291 including ourselves [16—211. Glomerular cell types from
human [2—151, rat [16—21, 24—27], dog [14, 22, 23, 281, and
guinea pig [29] glomeruli have been studied to date by various
investigators. We will discuss the various approaches these
investigators have taken in isolating, identifying, and studying
glomerular cell types as well as new information obtained from
these studies. Additionally, we will discuss further areas of
research that have developed as a direct result of data already
obtained.

The renal glomerulus is composed of at least four cell types:
(1) endothelial cells, (2) glomerular epithelial cells, (3) mesan-
gial cells, and (4) parietal epithelial cells. The endothelial cells
which line the glomerular capillary wall are characterized by the
presence of fenestrae approximately 1000 A in diameter. This
layer of endothelium may participate in the restriction of
macromolecules from passing across the capillary wall [30]. In
certain disease states the fenestrae are replaced by a continuous
layer of endothelial cytoplasm [31]. Glomerular mesangial cells
are attributed with several functions: (1) the clearing of debris
from mesangial regions by phagocytosis [32]; (2) the control of
glomerular size and blood flow by contraction [17, 33—35]; (3) as
a possible source of renin, since under certain physiological
conditions mesangial cells have the ability to develop cytoplas-
mic granules similar to those found injuxtaglomerular cells [36].
Glomerular epithelial cells are also attributed with several
functions: (1) They participate in the synthesis of the glomerular
basement membrane [37—38]; (2) they participate in the filtra-
tion process through pinocytosis of filtered proteins that may
have leaked through the glomerular basement membrane [39];
and (3) they participate in the filtration process by exerting an
influence on water flux during ultrafiltration [40]. Additionally,
intrinsic negatively charged components in the filtration barrier
are important in restricting the passage of anionic molecules
across the glomerular basement membrane [4 1—44]. Since the
glomerular epithelial cell contains a cell coat rich in negatively
charged sialoglycoproteins, it may participate in filtration in this
manner. In many forms of renal disease associated with protein-
uria, the epithelial cell foot processes are replaced by a continu-

ous band of epithelial cytoplasm adjacent to the lamina rara
externa [40, 45—47]. Loss or neutralization of negative charge
may be responsible for the loss of foot processes, since infusion
of polycationic molecules such as protamine sulfate causes
similar structural alterations to glomerular epithelial cells [48,
49]. Finally, parietal epithelial cells together with basement
membrane material form the outer wall of Bowman's capsule
which surrounds the glomerular tuft. In certain disease condi-
tions, such as rapidly progressive glomerulonephritis, it is this
cell that proliferates to form crescents [50].

Techniques for isolating glomerular cells
Glomeruli are most commonly isolated from cortical renal

tissue using a modification [23] of a technique first described by
Krakower and Greenspon [22]. For rat glomeruli, renal cortical
tissue is pressed and rinsed with Hanks' salt solution through
stainless steel screens of 60 (pore size 250 ) and 150 mesh
(pore size 150 ) and collected on a 200 mesh screen (pore size
75 4. Glomeruli from other species can be collected by using
different combinations of screens [14]. With this technique, it
has been reported for the rat that 86 6% of the glomeruli are
free of capsules, 3.0 2.1% contain vascular poles, and there is
very little tubular contamination [16]. Glomerular cells can be
grown as follows: (1) by directly plating the whole glomeruli
into culture for outgrowth of cells (termed explant growth), and
(2) by enzyme dissociation of the glomeruli and plating of the
dissociated cells into culture. In either case, one has at least
three cell types present in the culture, and purification proce-
dures are necessary to ensure homogeneity. Few of the isolated
glomeruli contain capsules and since capsulated glomeruli nei-
ther attach to the substratum nor do cells grow out from them,
parietal epithelial cells are not present in glomerular cultures [3,
16—17, 25]. The influences of anoxic delay on cellular prolifera-
tion were assessed by killing rats immediately prior to, or 2, 4,
6, and 12 hr before isolating and culturing the glomeruli [25].
After a 12-hr anoxic delay, only glomerular mesangial cells
were observed in the explants while the glomerular epithelial
cells did not grow out from the glomeruli [25]. Therefore,
glomeruli obtained from autopsies performed 12 or more hr
postmortem may not be adequate for tissue culture. In addition,
glomeruli from young rats (that is, I to 2 months old) grew
significantly better than those from older rats (8 to 9 months
old) [25]. In this regard, well established human glomerular cell
lines have been obtained from infant kidneys [5, 101. Human
glomeruli for tissue culture are most often obtained from
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autopsy material (less than 12 hr postmortem) [5—151 or surgical
biopsy material [4, 12].

Several methods have been used to obtain cultures of differ-
ent glomerular cell types. One such technique is cloning [6, 10,
16—201 which allows one to obtain pure cultures of glomerular
cell types. Cells are diluted with a sufficient volume of tissue
culture medium to allow the addition of single cells to the
culture [51]. Colonies of cells, derived from a single cell are
individually subcultured and transferred to other dishes. Clon-
ing has been used to obtain homogeneous cultures of rat
glomerular epithelial, mesangial, and renin-producing cells [16—
19]. Three cell types from explanted human glomeruli have
been obtained by cloning [10]. Two of these cell types have
been identified as glomerular epithelial and mesangial cells,
respectively [6, 101.

Some investigators have isolated cultures of glomerular epi-
thelial and mesangial cells from explants of whole glomeruli
according to the differential growth capacities of these cells [24—
271. This procedure has been referred to as the "mosaic
theory"; it states that any explanted tissue contains cells with
low and high growth potential [521. According to its proponents,
glomerular epithelial cells represent a vast majority of the
emigrating population from explanted glomeruli for the first 6
days of growth and mesangial cells represent 100% of the
culture on day 30. Therefore, if one passaged and subcultured
the cells at day 6, one should obtain essentially glomerular
epithelial cells while a subculture at day 30 would represent
primarily mesangial cells.

Quadracci and Striker [3], Striker et al [5], Killen and Striker
[61, and Striker, Killen, and Farm [7] isolated glomerular
epithelial cells from human glomeruli using collagenase diges-
tion. After 30 mm of digestion, primarily glomerular epithelial
cells were obtained (90% pure). Plating of the residual dissociat-
ed glomeruli resulted in the outgrowth of mesangial cells [5]. In
addition, colonies of epithelial and mesangial cells were isolated
by cloning [6—71. In another study, exhaustive digestions of
glomeruli with a trypsin-collagenase-DNAase mixture followed
by an EDTA step resulted in a mixed population of glomerular
cells [21]. One of the cell types retrieved was a fenestrated
endothelial cell, the other was a phagocytic cell that had
receptors for Fc and complement (C3b).

Tissue culture medium used to culture glomerular cells

Cloned homogeneous cultures of rat glomerular epithelial,
mesangial, and renin-producing cells have been isolated and
maintained in culture using the following tissue culture medium:
Medium RPM! 1640 (Roswell Park Memorial Institute, Buffalo,
New York) with 20% fetal calf serum (FCS) and 200 mU/ml
insulin, diluted in half with conditioned medium obtained from
Swiss 3T3 cells in log phase growth. Swiss 3T3 cells were
maintained in Dulbecco's modified eagle medium (DMEM) with
10% FCS [16—20]. Conditioned medium seems to be essential
for cloning of rat cells. In such sparse cultures conditioned
medium supplies the necessary "chemical messengers" for
growth that can otherwise be obtained from cultures with
heavier growth [531. Insulin has been found to stimulate the
growth of rat glomerular cells in vitro [16] as well as other types
of cultured cells [54, 55]. In addition, it has been reported that
under the above conditions nearly 100% of the cultured rat
glomeruli attach to the culture flask [161. One easy and reliable

way to check the cultures for fibroblast contamination is by
growing cells in medium containing D-valine substituted for L-
valine, a condition in which fibroblasts cannot grow [561.
Fibroblasts do not contain the enzyme necessary to convert the
D-amino acid to its essential L form (that is, D amino acid
oxidase) [56].

In another report, it was noted that rat glomerular epithelial
cells grew better in RPM! 1640 supplemented with 10% decom-
plemented FCS while the optimal growth conditions for mesan-
gial cells was RPMI 1640 with 15% decomplemented FCS [25].

The tissue culture media most commonly used for growth of
human glomerular cells has been either DMEM with 20% FCS
[8], medium 199 with 20% FCS, [4, 14] or Waymouth's tissue
culture medium [3, 5—11, 15] supplemented with either 15% [5],
20% FCS [4, 6—11, 14, 15], or pooled human serum [6].
Interestingly, it was found that coating of the culture dishes
with human cold insoluble globulin increased the plating effi-
ciency for human glomerular epithelial and mesangial cells
tenfold [71.

Recently, studies by Oberley et a! [29] with explants from
guinea pig glomeruli claimed that prostaglandins, transferrin,
and media fibronectin were necessary for growth and mainte-
nance of glomerular cells. Cell types growing out from the
glomeruli were not identified, however, and it is not clear
whether or not the growth conditions were selected for a
particular glomerular cell type or whether or not these condi-
tions were beneficial for all glomerular cells.

Properties of glomerular cells in culture
Although endothelial-like cells can be seen emigrating from

cultured glomeruli, glomerular endothelial cells, positively
identified by the presence of factor VIII antigen, have not been
isolated and maintained in homogeneous culture [4, 10, 16—20].
This is probably due to the particular conditions these highly
differentiated cells require for growth, which are unavailable in
the media presently in use.

Glomerular epithelial cells. One glomerular cell type that has
been isolated in pure culture is the glomerular epithelial cell [6,
7, 16—20, 25]. It seems quite certain that this cell type is not a
parietal epithelial cell since very few isolated glomeruli contain
Bowman's capsule [10, 16, 251, and glomeruli with capsules
attached do not adhere to the substrate and therefore cells
cannot grow from them [2, 16—20]. Although the glomerular
epithelial cell soon loses its podocytes in culture, it is identified
by the following criteria: (1) It has an epithelial morphology in
culture, namely, a polyhedral shape, as viewed by phase
contrast microscopy, and a cobblestone-like appearance of the
culture when confluency is reached [6, 15, 16, 18, 20, 251; (2) the
presence of cilia on its surface [16] and junctional complexes
[16, 25]; and (3) a cytotoxic response to the aminonucleoside of
puromycin [16] in accord with preferential injury of glomerular
epithelial cells and not other glomerular cells in vivo [40, 45, 59,
61]. In addition, this cell type does not contain factor VIII
antigen, a marker for endothelium [10, 16].

It has been demonstrated that only human glomerular epithe-
hal cells bear receptors for C3b in situ and thus should bind
circulating antigen-antibody-complement complexes [57, 58].
This putative binding of immune complexes in glomeruli might
be a significant immunopathogenetic mechanism in human
immune complex glomerular injury. The presence of receptors
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for C3b on cultured glomerular epithelial cells is controversial
[6, 11, 12, 16, 18, 19, 251. On the one hand, it has been reported
that both human and rat glomerular epithelial cells retain
receptors for C3b in culture [6, 12, 16, 18, 19]. On the other
hand, this binding has been reported by others to be lost from
cultured glomeruli or simply not to exist on cultured glomerular
cells [4, 15, 25]. Furthermore, it is not clear whether rat
glomeruli possess C3b receptors in vivo. Their presence on
cultured rat glomerular epithelial cells and not on frozen
sections of rat kidney may be a response to the culture
conditions [16] or an unmasking of specific receptor sites.
Because of the inconsistent results in demonstrating C3b recep-
tors on cultured glomerular cells, this does not as yet serve as a
useful marker for glomerular epithelial cells. If it proves to be
true that C3b receptors are present on glomerular epithelial
cells, a potential relationship to the pathogenesis of immune
complex deposition in the glomerulus could be important since
a feature of immune complex glomerular nephritis is the deposi-
tion of complement containing complexes in glomeruli leading
to complement mediated immune injury [12].

Glomerular epithelial cell injury has been observed in many
human as well as experimental glomerular diseases [40, 45, 59—
61]. One such alteration is the replacement of podocytes with
flattened expanses of epithelial cell cytoplasm (that is, "fusion
of foot processes"), which is often associated with altered
filtration and permeability in both human and experimental
nephrosis [40, 45—47, 61—63]. Infusion of polycations (for exam-
ple, protamine sulfate, and poly-L-lysine) resulted in similar
glomerular epithelial cell alterations as that observed with the
aminonucleoside of puromycin [48, 49]. Since fixed anionic
sites are important in restricting filtration of polyanionic macro-
molecules [41, 42], a decrease in glomerular polyanions may be
accompanied by increased permeability to anionic plasma pro-
teins, with concomitant occurrence of proteinuria and glomeru-
lar epithelial cell changes [46—48, 62, 63]. The aminonucleoside
of puromycin as well as nephrotoxic serum in low doses has
been shown to injure cultured glomerular epithelial cells [16, 18,
19]. Since glomerular epithelial cells contain a cell coat rich in
sialic acid, metabolic alterations in these fixed negatively
charged moieties by agents such as the aminonucleoside of
puromycin and nephrotoxic serum could be responsible for the
demise of the cell. A cell culture system affords a useful way to
study the mechanisms of cell injury.

The cell type responsible for the synthesis of the glomerular
basement membrane (GBM) has been the focus of numerous
investigations. The GBM is composed of collagenous as well as
noncollagenous components [64]. Immunofluorescent studies in
the rat using antiserum against types IV and V collagens have
shown localization of these collagens to the mesangial matrix
region of the glomerulus as well as to the peripheral capillary
wall [65—68]. In the human glomerulus, an antiserum to pepsin-
digested bovine lens capsule reacted with the full thickness of
the GBM as well as the tubular basement membrane and
Bowman's capsule [69]. The collagenous component of the
GBM is secreted in the form of procollagen and is deposited in
the extracellular matrix without further reduction in molecular
size [64]. The interstitial collagens, types I and III, have not
been localized to the normal renal glomerulus [66, 67].

The noncollagenous components of the GBM include the
sulfated glycosaminoglycans (GAGS) [43, 44], fibronectin [8,

65, 68, 69—72], laminin [65, 69, 72, 73], and entactin [74]. Among
the GAGS found in the glomerulus, the highly negatively
charged sulfated GAGS (primarily heparan sulfate) have been
shown to be important in restricting the passage of negatively
charged macromolecules across the GBM [43, 44]. It has been
determined that the major sulfated GAG synthesized by cul-
tured human and rat glomerular epithelial cells is heparan
sulfate [7, 751. Human mesangial cells synthesized predomi-
nantly chondroitin-6-sulfate [7], while rat mesangial cells have
been reported to synthesize non-sulfated GAGS in the culture
medium [75]. Fibronectin, a fibrillar sialoglycoprotein located
on the cell surface [76] or in the extracellular matrix [77—79], is
involved in cell-to-cell and cell-to-substrate attachment [80].
The exact localization of this glycoprotein to the rat and human
glomerulus has been somewhat controversial [8, 65, 68—72, 81,
82]. It is agreed that fibronectin is most abundant in the
mesangial matrix, especially at the interface between mesangial
and endothelial cells [65, 68, 70, 72] where it may be involved
with mesangial cell-to-matrix attachment. The disagreement
concerns whether or not fibronectin is present in the peripheral
capillary wall [65, 68, 70, 72]. Cultured glomerular epithelial and
mesangial cells from humans and rats, however, have been
shown to be capable of producing fibronectin [8, 10, 71, 83].
Laminin, a sialoglycoprotein [84] implicated in the attachment
of epithelial cells to their basement membrane [85, 86] has been
localized to the lamina rarae of the peripheral capillary wall in
the rat and human glomerulus [65, 67, 69, 72, 73]; thus, laminin
may be the structural protein that is involved with attachment
of glomerular epithelial and endothelial cells to the basement
membrane. Finally, entactin, a sulfated glycoprotein, has been
localized to the lamina rarae of the rat GBM as well as the
mesangium and may also be involved in cell adhesion [74].

Although the importance of heparan sulfate in glomerular
filtration has been elucidated recently [44], the relative impor-
tance of each of the different sialoglycoproteins in normal
glomerular function is yet to be defined. Since alterations in
glomerular negative charge have been associated with glomeru-
lar disease in which altered permeability has been demonstrated
[62, 63], purified cultures of glomerular cell types should help to
elucidate the biochemical mechanisms that lead to alterations of
these highly negatively charged substances.

In vivo studies using silver nitrate administration attempted
to demonstrate GBM synthesis by glomerular epithelial cells,
however, it has since been shown that silver nitrate induced
changes in the synthesis or turnover of normal GBM in vivo
[87]. Immunofluorescent studies with purified antibodies
against the different types of collagen have been performed on
cultures of human and rat glomerular epithelial cells [7, 24].
Cultured glomerular epithelial cells from both rats [24] and
humans [7] were observed to have a matrix of basal lamina type
IV collagen that surrounded the cells, while antibodies to types
I and III collagens failed to localize these antigens to these cells
[7].

Biochemical analyses of the collagenous proteins produced
by cultured human glomerular epithelial cells confirmed the
immunofluorescent studies [6, 7, 11]. That is, glomerular epi-
thelial cells synthesized predominantly type IV collagen. Addi-
tionally, rat glomerular epithelial cells have been demonstrated
to synthesize type IV procollagen in culture [831.

Mesangial cells. Cultured mesangial cells display numerous
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bundles of microfilaments oriented parallel to the plasma mem-
brane [161, similar to mesangial cells in situ [88]. Mesangial cells
have been demonstrated to contain actin and myosin by immu-
nofluorescent microscopy [9, 10, 24]. As mentioned above,
several functions have been attributed to mesangial cells. One
such function is phagocytosis [32]. However, cultured rat
mesangial cells do not phagocytose particles such as polysty-
rene, ferritin, zymosan, or carbon [161. An intriguing explana-
tion for this lack of phagocytosing ability by mesangial cells
may be the presence of more than one type of mesangial cell in
glomeruli, that is, one phagocytic and one nonphagocytic. In a
previous report, a procedure was used to isolate phagocytic
cells from rat glomeruli [21]. Glomeruli were subjected to long
enzymatic digestions, and cells that adhered to glass overnight
were examined morphologically. These cells were phagocytic
and had receptors for C3b and Fc. They had large indented
nuclei, large nuclear to cytoplasm ratios and, by scanning
electron microscopy, showed extensive foldings of the cell
surface. It was hypothesized that this cell type was a blood-
born monocyte that travels into and out from the mesangium to
clear debris [18, 19].

In a more recent study, Schreiner et al [89] and Schreiner and
Cotran [90], with repeated enzymatic digestions of rat glomeruli
conclusively demonstrated the presence of Ia-positive cells
(that is, cells that bear I-region associated antigens that permit
specific interactions between phagocytes and lymphocytes) in
rat glomeruli. These cells resembled mononuclear phagocytes.
They were a functionally heterogenous population of cells with
the capacity for Fc receptor display as well as phagocytic
ability. In addition, these cells could take up antigen and
stimulate immune lymphocytes in an I-region-restricted reac-
tion. Furthermore, it appeared they comprised approximately
2% of the total glomerular cell population and were derived
from bone marrow [90]. These studies implied that an inherent
population of glomerular cells with the potential to process
antigen and initiate cellular immune responses in situ exists [89,
90]. The significance of these cells in the pathogenesis of
glomerulonephritis remains to be elucidated. In addition, if one
examines explants from rat glomeruli 4 days after plating, there
is a population of cells that represents approximately 5% of the
glomerular outgrowth that is highly phagocytic and demon-
strates histochemically demonstrable nonspecific esterase ac-
tivity, (an enzymatic marker for monocytes) (Kreisberg and
Karnovsky, unpublished observations). These particular cells
do not survive long in culture, similar to monocytes or macro-
phages in culture. These cells probably represent all, or some,
of the Ia-positive cells described by Schreiner et al [89].

Time-lapse cinemicroscopic studies demonstrated the pres-
ence of monocytes in glomeruli [14] which increased in number
with proliferative glomerular diseases [4, 91]. Cultures of gb-
meruli from humans, monkeys, dogs, sheep, rabbits, and rats
have been observed using time-lapse cinemicroscopy [14]. The
pattern of cell outgrowth from the glomeruli appears to be
similar for all of the species studied. Three cell populations
have been identified with the features of glomerular epithelial
cells, mesangial cells, and macrophages. The latter were only
rarely observed in outgrowths from normal glomeruli; these
cells were actively motile, phagocytic, and exhibited other
features of macrophages, such as receptors for C3b and Fc.
Glomeruli isolated from patients or laboratory animals with
proliferative glomerulopathies had larger numbers (60 times

normal) of macrophages migrating from the cultured glomeruli
[4, 91]. However, in those glomerular diseases not accompanied
by hypercellularity, such as minimal change and the membra-
nous nephropathies, the outgrowth of cells from the isolated
glomeruli resembled controls.

From these in vitro studies the existence of macrophages in
normal and altered glomeruli was established [4, 14, 21, 89—911.
It appears that blood-born monocytes travel into and out from
the glomerulus to assume a major phagocytic role in the
glomerular mesangium.

If two populations of glomerular mesangial cells exist, what is
the function of the nonphagocytic one? Again, studies on
cultured cells have helped to elucidate the biology of this
mesangial cell. Twelve years ago, Mary Bernik observed per-
sistent, rhythmic, and synchronous contractions of entire hu-
man glomeruli in vitro using cinema microscopy [2]. Additional-
ly, it appeared that cells derived from the pen- or endocapillary
positions (that is, mesangial cells) exhibited contractile activity.

In vivo physiological studies using angiotensin II [92], argi-
nine vasopressin (AVP) [93], parathyroid hormone (PTH) 194],
prostaglandin E1 (PGE1) [95], prostacyclin (PGI2) [961, and
dibutyryl cyclic AMP (cAMP) [93] have demonstrated that
these substances can decrease the ultrafiltration coefficient, Kf,
one determinant of GFR. A decreased capillary surface area
could possibly be accomplished via contracting mesangial cells
[35]. Isolated gbomeruli from rats specifically bind [97] and
localize All to the mesangium [98]. In addition, glomeruli from
rats [97] and rabbits [99] contract after exposure to All.
Cultured rat glomerular mesangial cells specifically bind and
undergo a contractile response after exposure to angiotensin II
[17, 26, 27] and AVP [17]. This contractile response is Ca++
dependent and independent of cyclic nucleotide generation [17].
Also, the contraction to angiotensin II is inhibited by prior
incubation with Sar'-ala 8 angiotensin II [26]. PTH, PGI2, PGE,
and cAMP have been shown recently to exert their effect on Kf
through renin synthesis (via increased cAMP) and local angio-
tensin II production [96]. Therefore, it has been reasoned that
one role of mesangial cells is to control glomerular size and
blood flow by contraction [17, 35].

Besides being a contractile cell, cultured mesangial cells also
exhibit other properties of smooth muscle cells in vitro. Name-
ly, these cells grow in a swirl-like fashion and pile in culture
(Kreisberg and Karnovsky, unpublished observations), forming
the so called "hills and valleys" that have been described in
smooth muscle cells [100]. Cultured mesangial cells are growth-
stimulated by platelet-derived growth factor [7] as are smooth
muscle cells in vitro [101]. Additionally, activated macrophages
produce factors that stimulate mesangial cell growth in vitro [7].
Also, human and rat glomerular mesangial cells excrete, in
addition to type IV collagen, types I and III collagens [6, 7, 11,
83]. It is interesting that mesangial cells can synthesize intersti-
tial collagens in vitro. Normal glomeruli have not been reported
to contain types I or III collagens; however, it has been
suggested that in diseased states such as diabetes mellitus,
these types of collagens can accumulate in the mesangium [82].
This alteration in cultured cells points to one weakness in
relating the biology of cells in vitro to what may be going on in
vivo.

As can be appreciated from the above discussion, glomerular
function can be altered by hormonal agents, some of which are
known and others of which are postulated to act via cAMP,
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cyclic GMP (cGMP) or both [102—1051. Since cAMP and cGMP
may play a role in modulating cellular components (for exam-
ple, platelet aggregation) which participate in tissue injury (for
example, inflammation) [105, 1061, their importance in the
pathogenesis of glomerular diseases must be elucidated. To
study alterations in cyclic nucleotide production to hormones in
diseased states, one must first characterize which glomerular
cell types respond to which hormones. Much of the work in this
field has been performed on whole isolated glomeruli [107—1101.
For example, histamine and serotonin increased cAMP produc-
tion in isolated rat glomeruli [105—108]. Studies performed on
cloned homogeneous cultures of rat glomerular mesangial cells
have shown that both AVP (at supramaximal doses, 200 nM)
and PGE2 (1 g/ml) significantly increased cellular cAMP
levels, and AVP increased measurable cAMP concentrations in
the medium as well [17]. PTH had no effect on cAMP produc-
tion by glomerular mesangial cells. Glomerular epithelial and
renin-producing cells did not respond to AVP [17].

Considerable evidence now exists for a close association
between the renin-angiotensin system and the prostaglandin
system [111—1171. An intrinsic mechanism may, therefore, exist
within the glomerulus for modulating the contractile activity of
mesangial cells, and therefore, glomerular function. Many
studies show that isolated glomeruli release products of arachi-
donic acid metabolism into the culture medium [111, 115—117];
therefore, an intrinsic mechanism within the glomerulus for
modulating the contractile activity of mesangial cells exists.
However, there have not been many studies on prostaglandin
synthesis by various glomerular cell types. Sraer et al [116],
using subcultures of glomerular epithelial and mesangial cells,
found that cultured mesangial cells synthesized more prosta-
glandins than glomerular epithelial cells. Analyses were per-
formed using a radioimmunoassay technique. Mesangial cells
synthesized prostaglandin E2 > PGF2a > PGI2 (measured as the
stable metabolite 6-keto-PGF1,). Glomerular epithelial cells
synthesized much less prostaglandins. In addition, angiotensin
II stimulated PGE2 production by both mesangial and glomeru-
lar epithelial cells. In another study, prostaglandin production
by 9-day explants of rat glomeruli was performed [118]. The
authors concluded from morphological examination that the
predominant cell type in the culture was the glomerular epitheli-
al cell; whole glomeruli were present in the culture during the
assays. It is safe to conclude that these cultures represented a
multitude of glomerular cell types. Regardless of the type of
cells present, however, the cultures produced the following
prostaglandins in order of amount synthesized: PGE2> throm-
boxane > PGF2. Angiotensin II and III stimulated prostaglan-
din production by these cultures.

Studies in our laboratory, performed in collaboration with
Dr. Lawrence Levine of Brandeis University, showed a similar
prostaglandin profile for mesangial cells as reported by Sraer et
al [1161; however, our results with cloned populations of
glomerular epithelial cells revealed that the predominant prosta-
glandin produced by this cell was PGI2 [20]. Differences in
prostaglandin production by cells identified as glomerular epi-
thelial cells could lie in the degree of purity of the cultures as
well as the conditions of growth used.

Determining precisely the prostaglandins produced by the
different glomerular cell types is most important due to the role
prostaglandins play in the inflammatory response [119, 120] as
well as vasoactivity [96, 112, 113]. In this regard, it has been

reported recently by Band et al [121] that isolated rat glomeruli
are stimulated to produce more prostaglandins after treatment
with components of inflammatory cells (that is, superoxide and
hydrogen peroxide).

Renin-producing cells. Another cell type that has been isolat-
ed by cloning and cultured from rat glomeruli is a granulated
cell that contains renin-like activity (that is, cells that are able to
convert angiotensinogen to angiotensin I) [18, 19]. These cells
are thought to be isolated from the glomerulus and not the
vascular pole region for the following reasons: (1) Isolated
glomeruli have been shown to be able to produce renin [115]; (2)
immunofluorescence studies by Nairn, Fraser, and Chadwick
[1221 using an antibody to pig renin demonstrated renin activity
not only in juxtaglomerular cells but also in the glomerular tuft;
(3) under certain physiological conditions, for example, bilater-
al adrenalectomy [36], agranulated mesangial cells developed
cytoplasmic granules similar to those of juxtaglomerular cells;
(4) examination of serial sections of the juxtaglomerular appara-
tus found that granulated as well as agranulated cells entered
the glomerulus and became continuous with the glomerular
mesangial cells [123]; and (5) only 3% of the isolated glomeruli
had vascular poles attached [16], making it unlikely that these
granulated renin-containing cells came from the juxtaglomeru-
lar apparatus. With renin-producing cells populating the gb-
merulus, the glomerulus contains the means to regulate its own
hemodynamics. Furthermore, regulation of glomerular hemo-
dynamics does not have to take place on a whole glomerular
level, that is, single capillary 1oop flow can be regulated.
Therefore, it is possible that the glomerular mesangial cell may
contain the capacity to produce and respond to components of
the prostaglandin-renin-angiotensin system. Thus, mesangial
cells may be able to regulate their own vasoactivity.

Information gained from in vitro studies on glomerular cells

It has been demonstrated that cultures of glomerular epitheli-
al cells from human and rat glomeruli participate in the synthe-
sis of basal lamina collagen. Glomerular epithelial cells also can
synthesize heparan sulfate, a sulfated GAG present in the GBM
that forms part of the filtration barrier. Although still somewhat
controversial, it appears that human glomerular epithelial cells
contain receptors for complement (C3b) which are retained for
long periods in culture. In this regard, glomerular epithelial cells
could play an important role in the course of immune complex
glomerulonephritis by binding complement-containing com-
plexes in situ. Both glomerular epithelial and mesangial cells,
produce significant quantities of vasoactive prostaglandins
(PGE2 and PGI2) which could modulate mesangial cell contrac-
tion and consequently gbomerular blood flow. In addition,
prostaglandin production by glomerular cells could modify
cellular activity during inflammation.

In vitro studies have demonstrated conclusively the presence
of at least two populations of cells that reside in the mesangium.
One cell type is the contractile mesangial cell (Ia-negative); the
other is an Ia-positive cell derived from the bone marrow. The
presence of antigen-processing cells in the glomerular mesan-
gium casts new light on the pathogenesis of glomerulonephritis,
as well as the mechanisms that underlie kidney transplant
rejection. Additionally, this monocytic cell could provide mito-
gens for gbomerular mesangial as well as endothelial cell prolif-
eration. Cultured mesangial cells predominantly synthesize
interstitial collagen. The possibility of a third type of mesangial
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cell that produces renin exists. Alternatively, perhaps the
resident contractile mesangial cell has the capability of produc-
ing renin under different physiological conditions.

Future avenues of research
It is our opinion that the search for specific markers (for

example, antigenic or enzymatic) for the different glomerular
cell types should continue. Markers to specifically identify
glomerular cells should lay to rest any doubt as to the identity of
the cell type being studied. Along with this research effort, a
defined serum-free medium should be established for each
glomerular cell type. This is a vast undertaking, but without
such an effort, the study of hormonal regulation of glomerular
cell function in normal and diseased states would be incom-
plete. These studies should be directed along similar avenues as
that taken by Barnes and Sato [1241 for such established cell
lines as M2R, MDCK, HeLa and B 104. Oberley et al [29] have
already embarked on such a journey with guinea pig glomeruli
(see Tissue culture medium used to culture glomerular cells
section).

The next obvious area of research is the possible alterations
in GBM metabolism by cultured glomerular epithelial cells in
diseased states. Such studies can be accomplished by either
isolating cells from diseased humans or animals or by mimick-
ing certain diseased conditions in vitro (for example, lipoid
nephrosis using the aminonucleoside of puromycin and diabetes
mellitus by culturing under hyperglycemic conditions). Mesan-
gial matrices are commonly widened in diabetic glomeruloscie-
rosis; interstitial collagen metabolism by cultured mesangial
cells under hyperglycemic conditions would be important to
study.

Since many hormones exert their cellular effect via changes
in cellular cyclic nucleotide production, the cyclic nucleotide
responsiveness to hormones by each glomerular cell type is an
important area of research. In addition, once the cyclic nucleo-
tide responsiveness to particular hormones by glomerular cells
is well established, modulation of the hormonal effect under
altered culture conditions (for example, hyperglycemia and
insulin deprivation) would be important to study. Further,
hormonal modulation of a function of a particular glomerular
cell type (for example, contraction of mesangial cells) should be
studied. In this regard, it has been reported recently that insulin
is required for the contraction of cultured mesangial cells by
angiotensin II [125].

Finally, prostaglandin production by glomerular cells along
with its modulation by various hormones should be exhaustive-
ly studied. Interaction between the renin-angiotensin system
and the prostaglandin system in the glomerular mileu undoubt-
edly determines the state of glomerular hemodynamics.

In conclusion, we have only attempted to present a few of the
important issues that should be addressed in the field of
glomerular cell metabolism. With purified cultures of glomeru-
lar cell types, one should be able to characterize specific
biochemical alterations in diseased states that have only been
characterized up to the present time by morphological criteria
alone.
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