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Abstract

We establish here, in a quite general context, uniform rectifiability properties for quasiminimal
crystals with a volume constraint. Namely we prove that to any quasiminimal crystal with a volume
constraint corresponds a unique equivalent open set whose boundary is Ahlfors-regular and which
satisfies the so-called condition B. Moreover implicit bounds in these properties, which imply the
uniform rectifiability of the boundary, can be chosen universal. As a consequence we give a universal
upper bound for the number of connected components of reduced quasiminimizers and we also
prove that quasiminimal crystals with a volume constraint actually satisfy, in some universal way,
an apparently stronger quasiminimality condition where admissible perturbations are not required to
be volume-preserving anymore.
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Résumé

On démontre ici, dans un contexte assez général, des propriétés de rectifiabilité uniforme pour des
cristaux quasiminimaux a volume fixé. Plus précisément, on montre qu’a tout tel quasiminimiseur
correspond un unique ouvert équivalent dont la frontiére est Ahlfors-réguliére et qui satisfait a
la condition B. De plus, les constantes implicites intervenant dans ces deux propriétés entrainant
I'uniforme rectifiabilité de la frontiere, peuvent étre choisies universelles. Comme conséquence de
ces résultats on peut par exemple obtenir une borne universelle sur le nombre de composantes
connexes des cristaux quasiminimaux réduits. On obtient aussi qu'ils satisfont a une condition
de quasiminimalité apparemment plus forte ou I'on s’est totalement affranchi de la contrainte de
volume.
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1. Introduction

In this paper we are concerned with regularity results for quasiminimal crystals with
a volume constraint. These quasiminimizers are sets for which one controls the variation
of a surface-like energy under volume-preserving perturbations. Roughly speaking one
knows that this variation is, at least for small perturbations, negligible compared to the
initial surface energy. Our main goal is to prove in a quite general context that to any
guasiminimizer corresponds a unique equivalent open set whose boundary enjoys strong
guantitative rectifiability properties.

The study of quasiminimal crystals is motivated by the study of variational problems
where surface and volume energies are competing and some classes of local minimizers
and quasiminimizers for surface-like energies have already been studied in the literature.
However one does not impose in general a volume constraint and one often considers
instead localized versions of the quasiminimality condition we shall work with in this paper
together with a larger class of admissible perturbations that are not required to be volume-
preserving. In such a case and with suitable assumptions on the surface energy, it is now
well known that the boundary of a quasiminimizer is a regular Sapr C1%, depending
also on the degree of quasiminimality) hypersurface out of a small singular set, see, e.g.,
[5,17,18] for quasiminimizers for the standard perimeter, [1,2,4,6] for quasiminimizers for
more general anisotropic surface energies, and the references given in these papers, this list
not being exhaustive. However it may be appropriate for several applications, for instance
when one works with incompressible fluids, to impose a volume constraint. In this setting,
regularity results for local minimizers and quasiminimizers for the standard perimeter are
also known (see, e.g., [15,16]). One of the aims of the present paper is to extend the study
to more general surface energies on which we shall impose only very few conditions.

The above mentioned papers give in general regularity results that are of local and
asymptotic nature. We want to stress that the kind of regularity properties we will consider
here are of a quite different flavor. We shall indeed prove quantitative rectifiability results,
namely uniform rectifiability with the terminology of G. David and S. Semmes. This
approach and some of our general arguments have been inspired by [11] where the same
kind of properties are shown in a different context. Uniform rectifiability is a variant
of the notion of rectifiability which comes with uniform and scale-invariant estimates.
This condition implies ordinary rectifiability and is actually much stronger because of
the uniform bounds (see, e.g., [9] and the references therein for more details). Moreover
we shall prove that in the present situation these bounds can be chosen universal, that is,
depending only on the general data of the problem. Besides the regularity properties, we
stress that this universal control may be considered as the central and main new information
here (especially compared with the kind of results in the above mentioned papers). This
was actually one of the main motivation for the present work and turns out to be the most
delicate point to obtain. As a consequence we will furthermore get nontrivial universal
control on other geometrical quantities such as the number of connected components of a
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guasiminimizer (see also the comment after Theorem 1.4). Note that with the quite general
setting adopted here (when (1) is essentially the only assumption on the defining integrand
for the surface energy) one cannot hope to have much more in the way of regularity than
uniform rectifiability just for reasons of bilipschitz invariance.

On the other hand, in more specific cases, one may consider this kind of rectifiability
properties as a first step in the study of the regularity of quasiminimal crystals with a
volume constraint. It turns out that the kind of properties we will obtain here are exactly
what one needs to handle properly the volume constraint. As a consequence we will be
able to prove that quasiminimal crystals with a volume constraint also satisfy another
apparently stronger quasiminimality condition where admissible perturbations are not
required to be volume-preserving anymore. Then one can apply in some cases former
results about unconstrained local quasiminimizers to get further regularity results when
suitable assumptions are made on the defining integrand of the surface energy.

Let us now define more precisely quasiminimal crystals and state the main results of
this paper. We denote i/~ the unit sphere ifR” and fix once and for all a continuous
functionl":S"~1 — R* such that

a<I(w)<p forallves 1)

for somexa > 0 andpB > 0. Then the surface energy is defined by:

Pr(F,R") := f T'(vp)dH" L,

o*F

whereF is a subset aR” with finite perimeterp* F denotes its reduced boundary,is its
generalized unit inner normal (see Section 2 for precise definitions)nd denotes the

(n — 1)-dimensional Hausdorff measure. We will call this measurelthgerimeter ofF.

We also fix some: > 0, the prescribed measure of the quasiminimal crystals, and a map
g:[0, +00] — [0, +00] such that

lim v~ V/7g) =0.

v—0t

Definition 1.1 (Quasiminimal crystals with a volume constrginive say that a subsét
of R" with finite perimeter is a quasiminimal crystal with a volume constraint (and with
prescribed measueg if |E| =a and

Pr(E,R") < Pr(F,R") +g(IF A E)) )

for any setF with finite perimeter such that’| = |E|. We will denote byQM the class
of all such quasiminimal crystals.

In this definition and in the rest of this papér, denotes the Lebesgue measur&in
andF A E :=(F\ E)U (E \ F) the symmetric difference betweéhandE.

Note that the quasiminimality condition (2) gives significant information only when
|F A E| is small. Then the way the energy can be decreased through the admissible
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modification F of the quasiminimal crystak is controlled byg(|F A E|) hence, by
assumption org, is negligible compared toF A E|~D/" |t turns out, as we shall see
later, that this last quantity can be generally related to, and shown to be negligible compared
to the initial surface energy.

When g = 0, quasiminimal crystals with a volume constraint are simply sets that
minimize theI"-perimeter among all sets with prescribed Lebesgue measure. It is well
known that, up to a null set, solutions of this variational problem are the so-called Wulff
sets. This case will play a central role in the constructions of this paper and we shall spend
some time to give a detailed analysis of Wulff sets (see Section 2).

WhenT is constant, the surface energy reduces, up to a multiplicative constant, to the
standard perimeter. This case has already been studied in [16]. However we shall give here,
even in the case of the standard perimeter, new and simpler constructions.

To state the main results of this paper we need some more definitions. FercRY
andr > 0, we denote byB, (x) the open ball with center and radius-.

Definition 1.2 (Ahlfors-regularity. Let S ¢ R" be closed. We say thétis Ahlfors-regular
(of codimension 1) if there exists a Borel measursupported inS and a constant > 1
such that

ch < (B ) <ot 3)

for all x € S andr < 1. We shall often refer to such a constahas an Ahlfors-regularity
constant fors.

This is a uniform and scale-invariant version of the property of having upper and lower
densities with respect th”~* that are positive and finite (one can indeed prove that if
is a measure that satisfies (3) thefis equivalent to the measuté* ! restricted tas).

Definition 1.3 (Condition B. Let F C R”" be open. We say thdt satisfies the condition B
if there exists a constat > 0 such that for any balB centered ord F with radiusr < 1
there exists two ball®; and B, with radiusCr such thatB; c FN B andB, C B\ F.
We shall often refer to such a constdhas a condition B constant.

This condition is a quantitative, uniform and scale-invariant way of saying that the
topological boundarg F’ of F separates well" from its complement. It turns out that sets
satisfying the condition B and whose boundary is Ahlfors-regular have strong rectifiability
properties. Namely their boundary contains “Big Pieces of Lipschitz Graphs” and thus is
uniformly rectifiable (see [7] for the original proof or [8,10] for simpler proofs). The aim
of this paper not being to speak about the theory of uniform rectifiability, we will not enter
the details and refer to [9] and the references therein for more information.

As a convention, we say that a constant is universal if its value can be chosen depending
only on (some of) the given data of the problem, namely the dimensidime boundsy
andg of the functionI”, the prescribed measuseand the functiory but on nothing else.

We can now state the main result of the present paper.
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Theorem 1.4.Let E € QM. There exists a unigue s&f equivalent toE such that

E1is open
d E1 is Ahlfors-regular

E1 satisfies the condition.B
Moreover the Ahlfors-regularity and the condition B constants can be chosen universal.

We also refer to Theorem 3.3 for a refined version of this result. Throughout this paper,
we say that two measurable sets are equivalent if the Lebesgue measure of their symmetric
difference is zero. Note that by definition of quasiminimality we are only concerned here
by equivalent classes of sets Afe QM andE’ is equivalent taE thenE’ is still in QM.

Thus it is natural to have first to clean up quasiminimal crystals before stating properties
that hold everywhere on the topological boundary. And th&segiven by Theorem 1.4 is

still a quasiminimal crystal with a volume constraint exactly in the same wagy. &ge fix

the terminology with the following definition.

Definition 1.5. We say that a seE € QM is a reduced quasiminimal crystal (with a
volume constraint) i€ is open,d E is Ahlfors-regular andE satisfies the condition B.

Note that by uniqueness in Theorem 1.4 the Ahlfors-regularity and condition B
constants of a reduced quasiminimal crystal can always be chosen universal.

As already mentioned, we would like to stress once again that, besides the uniform
rectifiability property, this universal control on the Ahlfors-regularity and condition B
constants is one of the key main new information in Theorem 1.4. This gives some kind
of geometric a priori estimates that hold true uniformly for all quasiminimal crystals in
the classQM. As an application this might be for instance of particular interest when
proving the existence of minimizers for variational problems where surface and volume
energies are competing under a volume constraint. One usually considers an approximating
minimizing sequence of sets and one would like to get from this sequence a limiting set that
still satisfy the volume constraint. This can be a quite difficult issue without any suitable a
priori estimates on the elements in the minimizing sequence. We refer to [16, Chapter 5]
for such kind of existence problems where this applies. Let us also note that the surface
energy involved in [16] is the standard perimeter. Another point of interest of Theorem 1.4
is that it holds for quasiminimal crystals for genefalperimeter, thus allowing to extend
some applications to more general settings. Recall that we only require for the defining
integrandl” the nondegeneracy condition (1) but no further or more involved regularity
assumptions.

The general strategy to prove Theorem 1.4 is to construct suitable deformations of
the quasiminimal crystakE and then deduce from the quasiminimality condition the
required conclusions. The main issue here is to handle properly the volume constraint
especially because we want to get universal constants in the Ahlfors-regularity and the
condition B. Wulff sets will play a central role for this purpose. Because they minimize the
I'-perimeter among all sets with prescribed Lebesgue measure, one can easily compare
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the I'-perimeter of a set with that of its intersection or union with any Wulff set (see
Lemmas 2.5 and 2.6).We shall use this to adjust the Lebesgue measure of deformations
of E in order to get at the end admissible candidates with exactly the same measure
than E. The delicate point is then to find suitable Wulff sets to add or to remove. This
strategy is close to that adopted in [15] where local minimizers for the perimeter with a
volume constraint are studied. However, because of the universal regularity constants we
are looking for, one needs here to find suitable Wulff sets with size independent of the
local geometry ofE and the existence and position of interior and exterior points which
depends strongly of the geometry Bfas shown in [15] will not fit our needs. We refer to
Sections 3 and 4 for more details and complete proofs.

To conclude this introduction we state two consequences of Theorem 1.4 (and of the
arguments of its proof) that will be also proved in this paper. First we will be able to refine
the study of the regularity of reduced quasiminimal crystals proving the Ahlfors-regularity
and the condition B with universal constants for each one of their connected componentsin
their own. As an immediate consequence one gets the already mentioned universal upper
bound on their number.

Theorem 1.6.Let E € QM be a reduced quasiminimal crystal andbe a connected
component of. Thend A is Ahlfors-regular and4 satisfies the condition B with universal
constants. In particularE has at mostC connected components for some universal
constantC > 0.

Finally, as already mentioned, once one has Theorem 1.4 in hand, it is much easier to
find suitable volume-preserving deformations and one can definitely get rid of the volume
constraint.

Theorem 1.7.Assume thag is nondecreasing and ldf € QM. There exist a universal
functionw: [0, +00] — [0, +o0] with lim, o w(r) = 0 and a universal radiu® < 1 such
that

Pr(E, B;(x)) < Pr(F, B:(x)) + " ()
for anyx € R", r < R and any sef with finite perimeter such that A E € B, (x).

The assumption op to be nondecreasing is here mostly for technical convenience and
is not really restrictive. As already mentioned in the beginning of this introduction one
can then apply already known regularity results for sets that satisfy the quasiminimality
condition given in Theorem 1.7 and one gets further regularity for quasiminimal crystals
with a volume constraint. Precise statements depending strongly on further assumptions
on the functionsl” andw we will not enter this in detail here and refer to the already
mentioned references.

The rest of this paper is organized as follows. In Section 2 we recall some background
material, mainly about the theory of sets with finite perimeter and about the so-called Wulff
sets, and show for further reference a list of preliminary results. In Section 3 we prove the
upper estimate in the Ahlfors-regularity (see Lemma 3.1) and reduce the proof of the other
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properties to a lemma about the behavior of the proportion of a quasiminimal crystal and
of its complement inside Wulff sets (see Lemma 3.2). We prove this lemma in Section 4.
Finally we will prove Theorems 1.6 and 1.7 in Section 5.

2. Preliminaries

As a general convention the lettér will always denote in what follows a positive
constant whose value, unless otherwise stated, can change at each occurrence.

2.1. Sets with finite perimeter ardd-perimeter

We recall here well-known results about the theory of sets with finite perimeter and
refer to, e.g., [3,14] or [19] for more details. We shall use this to give useful properties of
the I'-perimeter to be used later.

For any setF c R" we denote byl r its characteristic function. If is a measurable set
and$? is open, the perimeter df in £2, denoted byP (F, £2), is defined by:

P(F, Q) :=sup{/ 1pdivedr: ¢ € CE(2,R"), [¢lloo < 1},
2

and we say thafF is a set with finite perimeter iP (F, R") < +o0.

If F is a set with finite perimeter then it turns out that the set func@or> P(F, 2)
defined above fof2 open is actually the restriction of a finite Borel measure, which will
be called the (standard) perimeterfofand denoted by (F, -). Equivalently a measurable
setF has finite perimeter if and only if the distributional gradi&tity of its characteristic
function can be represented by a vector-valued measure. Moreover the total va¥vidtion
of this measure coincides witA(F, -).

If F is a setwith finite perimeter it is well known that its perimeter coincides with the
restriction of the(n — 1)-dimensional Hausdorff measut¢* ! to its so-called reduced
boundaryo* F,

P(F,B) =H""Y(3*F N B)

for any Borel setB. The reduced boundary of a sEtwith finite perimeter is defined as
the set of points € R" such that

f|V1F|>O forallr > 0O,
Br(x)

the limit

Vig
vr(x) ;== lim fB’L
r—0 fBr(x) |V1F|
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exists, andlvp(x)| = 1. Note thato*F C dF. Moreover it follows from the theorem
of Besicovitch on differentiation of measures thgt(x) exists and|vp(x)| = 1 for
|V1F|-a.e.x € R" and furthermore thal 1 = vp|V1p| as an equality between measures.
In particular it follows that

Vi =vrlyp dH"_l. (4)

For any measurable sétandt > 0, we set:

{ . |FN By (x)| }
F(t):={xeR" lim — "7
r—0 |By(x)|

and define the essential boundayy of F as the set of points where the volume density
of F is neither O nor 19, F = R" \ (F(0) U F(1)). Note thatd, F C 9 F. It is well known
that if F' is a set with finite perimeter, then

0*F C F(1/2)C 8, F and H'"L(R"\ (F(0)UF(1)Ud*F))=0. (5)

The next lemma is a simple consequence of the above mentioned results. It will be
useful to get further properties of tHe-perimeter.

Lemma 2.1.Let A and F be two sets with finite perimeter such thlatc F. Then
*FNI*ANI*(F\ A) =0,
H"H9*F\ (3*AUd*(F\ A))) =0,
ve(x) =va(x) forH' t-aexecd*FNo*A,
vE(x) =vpa(x) forH" t-aex € 3 FNI*(F\ A).
Proof. Accordingto (5) we havé*A No*(F\ A) C A(1/2) N (F\ A)(1/2) C F(1) and

F()No*F =0, henced*F N3d*AN3d*(F \ A) =@. Next, we havely =14 + 1p\4,
hence

V1 =V14+Vipa

as an equality between measures (note thatA has finite perimeter). Then it follows
from (4) that

vrlysr = valpra + v alsc(r\a) (6)
H"*1-a.e.and, sincevr(x)| =1 for all x € 9*F, we get:
H'H9*F\ (3*AUd*(F\ A))) =0.

Finally the last two claims follow easily from the fact th&itF N d*ANo*(F\ A) =0
together with (6). O
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We now turn our attention to thE-perimeter as defined in the introduction. Recall that
I:8"1 - Rt is a fixed continuous function and that the associdtggerimeter of a set
F with finite perimeter is defined as

Pr(F,B) = / I'(vp)dH* 1

d*FNB

for any Borel setB. When dealing with quasiminimal crystals we shall also assume in
this paper thaf” satisfies (1). However, for the time being, we do not need this additional
assumption to state and prove some general properties of-fherimeter. Note that when
I' =1, theI"-perimeter ofF coincides simply with the (standard) perimeterfof Note
also that, according to (5) is well definedH”1-a.e. onF(1/2) andd, F, hence one
can replace@*F by F(1/2) or 9, F in the definition of thel"-perimeter. We will freely use
this remark in the rest of this paper, choosing in each specific situation the most convenient
definition to work with.

First it follows easily from the definition that, if andG are any two sets with finite
perimeter and? is open, then

Pr(F,2)=Pr(G,£2) whenevel(F AG)NQ|=0.

The following lemma generalizes to thé-perimeter a well-known property of the
perimeter. It will be of frequent use throughout this paper.

Lemma 2.2.Let F and G be two sets with finite perimeter. Then we have
Pr(FUG,R") + Pr(FNG,R") < Pr(F,R") + Pr(G,R").

Proof. Let F andG be two sets with finite perimeter. ThéhU G and F N G have finite
perimeter. We first estimatB, (F U G, R"). It follows from (5) that

Pr(FUG,R")=Pr(FUG,G(1)+ Pr(FUG,G(0) + Pr(FUG,G(1/2).
We have(F UG)(1/2) N G (1) =¥, hence,
Pr(FUG,G(1)=0.

Next, (F U G)(1/2) N G(0) = F(1/2) N G(0) and vrug(x) = vr(x) for H*1l-ae.
x € (FUG)(1/2) N F(1/2) according to Lemma 2.1 together with (5), hence,

Pr(FUG,G(0)) = Pr(F,G(0)).
We have, once again by (5),

Pr(FUG,G(1/2)=Pr(FUG,G(1/2NF(1)+ Pr(FUG,G(1/2)N F(0))
+ Pr(FUG,G(1/2) N F(1/2)).
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Similarly as before we haug"UG)(1/2)NF (1) =P and(FUG)(1/2NG(1/2)NF(0) =
G(1/2) N F(0) with vrug (x) = vg (x) for '~ L-a.e.x € (F U G)(1/2) N G(1/2), hence,

Pr(FUG,G(1/2NF(1)+ Pr(FUG,G(1/2)NF(0)) = Pr(G, F(0)).
Finally, sincevryg(x) = vr (x) for " t-a.ex € (FUG)(1/2) N F(1/2), we have:
Pr(FUG,G(1/2) N F(1/2)) < Pr(F,G(1/2).
It follows that
Pr(FUG,R") < Pr(F,G(0)) + Pr(G, F(0)) + Pr(F, G(1/2)). (7)
Arguing in a similar way, one also gets that

Pr(FNG,G(0) =0,
Pr(FNG,G(1)=Pr(F,G)),
Pr(FNG,G(1/2)N (FO)UF())=Pr(G, F(1),
Pr(FNG,G(1/2)NF(1/2) < Pr(G, F(1/2)),

hence
Pr(FNG,R") < Pr(F,G()) + Pr(G, F(1)) + Pr(G, F(1/2)). (8)

To conclude, we add up (7) and (8) and use once again (5) to reépver, R") and
Pr(G,R") in the right-hand side. O

The next lemma will also essentially follow from Lemma 2.1. It will be used at the end
of this paper in Section 5.

Lemma 2.3.Let F be an open set with finite perimeter. Assume #i4t1 (3 F \ 9*F) =0
and letA C F be a set with finite perimeter. Then

Pr(A,R")Y+ Pr(F\A,R")=Pr(F,R")+ Pr(A,F)+ Pr(F\ A, F).

Proof. Let F andA be as in the statement. We compute separatelyf’, R"), Pr (A, R")
andPr(F \ A,R"). Thanks to Lemma 2.1, we have:

Pp(F,R"):[F(vp)dH"’lz / Fvp)dH" 1+ / I'(vp)dH* 1t
*F 0*FNo*A d*FNo*(F\A)

= / I'(vy) dH" 1+ / I'(viya) dH" L.
I*FNo* A 9* FN*(F\A)



S. Rigot / J. Math. Pures Appl. 82 (2003) 16511695 1661

On the other hand, sincé C F, henced*A C F, sinceF is open, henc& NJF =, and
sinceH" (3 F \ *F) = 0, we have:

Pr(A,R")=Pr(A,F)+ / rp)dH"t=Pr(A, F)+ / rwadr
0*ANOF 0% AND*F

and similarly,

Pr(F\ A,R") = Pr(F\ A, F)+ / I (wpa) dH
9*(F\A)NI*F

It follows that

Pr(A,R") + Pr(F\A,R")=Pr(A, F)+ Pr(F\ A, F)+ / rp)dr =t
0% ANO*F

+ f I(vpa)dH"
8% (F\A)N9* F
=Pr(A, F)+ Pr(F\ A, F)+ Pr(F,R")

as wanted. O

Finally, let us point out that if” satisfies (1), we have for any sEtwith finite perimeter
and any Borel seB,

aP(F,B) < Pr(F,B)<BP(F,B). 9

In particular thel"-perimeter ofF is equivalent to the measuf¢’ ! restricted to one of
the set9*F, F(1/2) or 9, F.

2.2. Wulff sets

From now on we assume that: S"~1 — R+ is continuous and satisfies (1). We recall
in this section the definition of the so-called Wulff sets which are the sets that minimize the
I'-perimeter among all sets with given Lebesgue measure (see Theorem 2.4 stated below).
They will play a central role in this paper and we also give here useful properties of these
sets to be used later. We shall in particular study regularity properties directly related to
those of quasiminimal crystals as stated in Theorem 1.4.

First we extend the functiof” to R” as an homogeneous function of degree one and
we still denote this extension by,

I(x) ;:{||X||F(x/||x||) if x 0,
0 if x = 0.
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We also set:

(vy) _ ()

I'(x):= sup .
yerm\(oy I'(y)  vesn-1 I'(v)

For anyx € R” andr > 0, the Wulff set with center and radius- is defined as
W, (x) = {y eR" I'*(y—x) < r}.

More generally we say that a set is a Wulff set if it is of the previous form for som&”
andr > 0. We setW := W1(0). It is actually the closure oV that is sometimes called
the Wulff set (or crystal) of”" in the literature rather thaW - itself. This does not make
any difference for the main minimality property of Wulff sets (see Theorem 2.4) because
Wr andW - are equivalent. On the other hand, it will be more convenient for some of our
purposes to work with open sets.

We first collect for further reference simple but useful propertie§ dfand of Wulff
sets. The main point is that, for most applications, Wulff sets behave like Euclidean
balls. Note however thaf’, and thus alsd™*, are not assumed to be even and, strictly
speaking, one cannot identify Wulff sets with balls associated to some norm equivalent
to the Euclidean one. The functidi* is homogeneous of degree one and convex hence
continuous and subadditive. It follows in particular that Wulff sets are open, convex and
bounded. Moreover, for any € R” andr > 0, W,(x) is then simply the translation of
vectorx of the dilation by a factor of Wp. It follows that

|W, (x)| = [Wp|r", (10)
P(W,(x),R") = H" 1 (aW, (x)) = H" " (@Wr)r" L. (11)
Note also that, thd™-perimeter being invariant under translations and homogeneous of
degree(n — 1) with respect to the dilations, we hawe (W, (x), R") = Pr(Wr, R")r" 1.
Next, thanks to (1) and by definition éf*, we have for allkk € R”",
BHIXI < I (x) <a x| (12)
It follows that
Byr (x) C Wy (x) C Bgy(x). (13)
On the other hand, using the subadditivity/of, we also get that

|F*(y) — M| <max (I (y —x), I*(x —y)) <a Hy — x|

for anyx, y e R?, hencel™* is ana~!-Lipschitz function. Then, noting that by definition
of Wulff sets and continuity of ™* we have:

BWt(x)z{yeR": F*(y—x):t}
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for anyx € R"” andr > 0, one can apply the coarea formula with the Lipschitz function
y = I'*(y — x) and one gets that

/H"‘l(F NaW,(x)) dr < C|F N (Wy(x)\ W, (x))| (14)
forany O< r < s and with a constar@ > 0 which depends only on the dimensimandc.
Finally, denoting byF¢ the complement of a sét, we have:

as —r) < dist(W, (x), Wy(x)°) < B(s — ). (15)
Indeed, ify € aW, (x) andz € d W (x) with r < s, we have,
(s—r=I*G-x)-T*y-x)<T*c-y) <aYz-yl

from which the left inequality follows. On the other hand, jf € aW,(x), then
(s/r)(y —x) +x € dWs(x) and thus

dist(W, (x), Wy (x)) < [[(s/r) v —x) +x =y < (ly = xlI/r)(s —r) < B(s —1).

We turn now to the main characterization of Wulff sets. We refer to [12,13] and the
references therein for proofs and more details. We set:

Cr := Pr(Wr,R")|Wp|-m/n,

Theorem 2.4(Wulff Theorem).Let F' be a set with finite perimeter and finite Lebesgue
measure. Then

Cr|F|"P/" < Pr(F.R"), (16)
and equality holds if and only i is equivalent to some Wulff set.

We deduce from the minimality of Wulff sets a comparison betweer #perimeter of
a set and that of its intersection or union with any Wulff set. This will be needed later.

Lemma 2.5.For any setF with finite perimeter and finite Lebesgue measure and any Wulff
setW, we have

Pr(FNW,R") < Pr(F,R").
Proof. Let F andW be as in the statement. It follows from Theorem 2.4 that
Pr(W.R") =Cr|W|" /"< Cr|FUW|" /" < Pp(FUW,R").

Then, using Lemma 2.2, we get:
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Pr(W,R") + Pr(FNW,R") < Pr(FUW,R") + Pr(FNW,R")

Pr(F,R") + Pr(W,R"),

NN

and the lemma follows. O

Lemma 2.6.For any setF with finite perimeter and any Wulff sét, we have

Cr
|W|l/n

Pr(FUW,R") < Pp(F,R") + NAVAE

Proof. Let W be some fixed Wulff set and let us define:

Cr

G):=Pr(G,R") — —=—
F(G)=Pr(G.R") - s

|G|

for any setG with finite perimeter. IfG C W, thanks to (16) we have:

C _
Wm < CrlGI"Y/" < Pr(G.R"),
henceZ(G) > 0. On the other handF (W) = 0. It follows that, for any seG ¢ W, we
haveF (W) < F(G) and thus,

Cr

PF(W,RH) éPr(G,Rn)—l—W

W\ G|.

Now we letF be any set with finite perimeter and we apply this inequality Wits: FNW
to get:

Pr(W,R") < Pp(FNW,R") + WA\ F.

Cr_
W

Combining this with Lemma 2.2, it follows that

Cc
Pr(FUW.R") < Pr(FUW.R") + Pr(F O W.R") = Pr(W.R") + o W Fl
< Pr(F,R") + CFlW\ﬂ
~ r ’ |W|l/}’l

as wanted. O

We now discuss regularity properties of Wulff sets in terms of Ahlfors-regularity and
condition B as stated in Theorem 1.4. Recall that Wulff sets are quasiminimal crystals
with a volume constraint corresponding to a m@g 0. The setW is open and convex
and because of (13), it is then bilipschitz equivalent to the unit EuclidearBhél), that
is, there exists a bilipschitz functiofi: R" — R” such thatf (B1(0)) = W. Moreover
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the bilipschitz constant fof depends only om, @ and. On the other hand)B1(0) is
Ahlfors-regular and3; (0) satisfies the condition B with Ahlfors-regularity and condition B
constants depending only on the dimension. Ahlfors-regularity and condition B being
invariant under bilipschitz equivalence, we get tldv is Ahlfors-regular andw
satisfies the condition B as well and with constants depending onty; arand 8. Next,

using translations and dilations, we get that any Wulff set satisfies these properties together
with some uniform control on the Ahlfors-regularity and condition B constants.

Proposition 2.7.There exist two constan& > 1 andC’ > 0 depending only on, « and
B, such that, if is a Wulff set with radius > 0, then, for any € 9W andr < r, we have

ct<HHow N B () < e

and there exi_st two ball$3; and By with radius C’t such thatB1 C B;(x) N W and
B> C B;(x)\ W.

Another consequence of the bilipschitz equivalence betw#genand B1(0) and the
equivalence (9) between the standard perimeter and tperimeter is that Wulff sets
are domains of isoperimetry as well as balls are (in that case, this is just the relative
isoperimetric inequality for balls).

Proposition 2.8.There exists a constant > 0 depending only on, « and 3, such that,
for anyx € R", r > 0 and any sef with finite perimeter, we have

min{|F 0 W, (0], [W, )\ F|[}" 2" < CPr(F, Wy (x).

3

We end this section with two simple consequences of the condition B for Wulff sets to
be used in the main constructions in Section 4. For any WulffiseindA > 0, we denote
by AW the Wulff set with the same center 85 and with radius. times the radius o¥.
Roughly speaking the first lemma tells us that if a large proportion (in measure) of a Wulff
setW’ is contained in another Wulff s& and if the ratio between the radii & and W
is controlled, then a slightly smaller Wulff set is entirely containedVin

Lemma 2.9.There exists a constadt> 0, depending only on, o and 8, such that, ifW
and W’ are two Wulff sets with radius respectivelpandr’ such that

r'<207Yr and W\ W|<O|W],
then
(a/2B)W' C W.

Proof. Letd > 0 be a constant to be fixed later aldand W’ be as in the statement. Let
x be the center o¥’. We have

dist(x, dW) > (a/2)r’.
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Otherwise there would existe W N B(y/2)(x) and, sincga/2)r’ < r, Proposition 2.7
would give a ballB with radiusC’ (a/2)r’ whereC’ depends only on, o andg, such that

B C B2 () \ W.
Since, by (13)B/2)(y) C By (x) C W', we would havgB| < [W'\ W| < 6|W'| which
is impossible iy is small enough, depending only anae andp (remember (10)). Next it

follows thatx € W because otherwise we would haBg, ), (x) C W'\ W which is also
impossible if¢ is small enough. Hence, using once again (13), we get

Wias2pyr (x) C Bgy2)r(x) C W,
as wanted. O
Arguing in a similar way, we also have the next lemma.

Lemma 2.10.There exists a constaat> 0, depending only on, « and 8, such that, ifW
and W’ are two Wulff sets with radius respectivelandr’ such that

r'<2er and (W NW|<O|W,
then
(a/28)W' Cc W€,

2.3. Approximation of "-quasi-isoperimetric sets

We prove in this section an approximation lemma for géts R” that arel"-quasi-
isoperimetric in the sense that their isoperimetric rafig—"/" Pi-(F, R") is close to the
I'-isoperimetric constar® . This approximation will be done by means of Wulff sets in
the L1 sense. The main pointis that it comes with universal control. This will be one of the

key ingredients in the main constructions in Section 4.

Lemma 2.11.For any0 < § < 1, there existg > 0 depending only on, «, 8 and$ such
that if F' is a set with finite perimeter and finite Lebesgue measure such that

Pr(F.R") < Cr(1+n)|F|" D",
then there exists a Wulff sét such that W| = | F| and
|F AW|<S|F|.
Proof. To prove the lemma we will argue by contradiction and use a concentration—

compactness type argument. First we note that it is sufficient to prove the lemma with
I" convex. In that case thE-perimeter is lower semi-continuous with respect to e
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topology and this will be needed later. Indeed one can always consider the lower convex
envelopel” of I,

I:=sup|f: fisconvexandf < I'}.
It turns out that
f(x) =Sup{(y,x): y € W]"}.

In particularf is homogeneous of degree one, convex and still satisfies (1) (remem-
ber (13)). MoreovePy(F, ) < Pr(F,-) for any setF with finite perimeter andvz = Wr
(see [12, Proposition 3.5]). Hence it is sufficient to prove the lemmad far place of I
and, for simplicity of notations, we assume in the rest of this proof fhit convex.

Lets € (0, 1) be fixed. Arguing by contradiction we assume that there exists a sequence
of sets with finite perimete(Fy ), >1 such that, for alk > 1,

Pr(Fi, R") < Cr(1+ 1/k)| Fie| "V,
but|F;y A W| > §| Fi| for any Wulff setW with |W| = | Fi|. We set:
Gri={y eR" |F|Y" y € .
For allk > 1, we have
|Gkl =1 (17)

and, remembering that thé-perimeter is homogeneous of deg(ee- 1) with respect to
the dilations,

Pr(Gi, R <Cr(1+1/k), (18)
and also,
|G AW|>6 (19)

for any Wulff set such thatw| = 1.

We would like to go to the limit a& 1 400 and get, at least up to a subsequence,
some limit, sayG, for the sequencé&. Classical embeddings theorems only ensure
convergence inL&JC (in the sense of convergence of the corresponding characteristic
functions) and one could have a limit s@ét= ¢J. To avoid this situation we first need
to modify the sequencg; before passing to a subsequence. The point is that one can find
a constany > 0, depending only on, « andp, and for allk > 1, somex; € R" such that
|G N B1(xx)| = y. This follows from Lemma 2.13 to be proved a few lines below together
with (17) and (18) which imply thatG,| P (G, R")~t > a/(2Cr) for all k > 1. Then,
considering the sequen¢6 — xi)x>1 that we still denote by for simplicity, we have

|Gk N BLO)| >y (20)
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Note that (17), (18) and (19) still hold (remember in particular thatithgerimeter is in-
variant under translations). Next we have,(syfﬂGH + P(Gr,R")} < 400 and we can

extract a subsequence, still denoted(B.)x>1, which converges to some sétin Li

loc
(see [3, Theorem 3.38]). Let us prove that the convergence actually halds in
For simplicity of notations we seB; := B,;(0) for anyr > 0. Lete < 1 be fixed. We
have,

|G| < liminf |G| < +o0,
k—+00

hence one can find> 1 such thatG \ B;| < ¢. Then, by convergence in&,c, we have

|Gr N (Br+1\ By)| < 2¢ if k is large enough. Next, using Tchebytchev's inequality and the
coarea formula, one can finde (¢, r + 1) such that

H" 9By \ G(0) < C|Gy N (Bry1\ B[ < Ce

for some suitable-dimensional constaht- 0. Remember thak (0) is the set of Lebesgue
points of G, and hence is equivalent @;. Then, sinceG; N B;, andG, coincide on the
open setB;, and sinced, (G N B;,) N Gr(0) = ¥, we have (remember also (9))

Pr (G N By, R") < Pr(Gy, By) + BPH" (3B, \ Gk(0)) < Pr (G, By) + Ce.
Similarly,
Pr(Gi \ By ,R") < Pr(Gy, BS,) + BH" 13 By, \ Gi(0)) < Pr(Gy, Bf,) + Ce.

We sety, := |Gy N By, |. Applying the isoperimetric inequality (16) to both séts N B;,
andGy \ By, we get:

cr(" "+ @ =y "V < Pr(Gi N By, R") + Pr(Gi \ By, R")

<
< Pr(Gr, R+ Ce < Cr(14+1/k) + Ce,

where the last inequality follows from (18). Thuskifs large enough, we have

fr) <1+ Ce,
where 7 :[0, 1] — [0, 1] is defined byf (u) = u®D/" 4 (1 — u)*~D/" andC depends
only onn, « andg. We havef (u) = f(1—u), f(0)= f(1) =1, andf is increasing on

[0, 1/2]. On the other hand, according to (20) we have> y and it then follows that one
must have

Yk = h(e)
for some functior which goes to 1 when goes to zero. It follows that

|Gk \ Biy1l <1—m <1—h(e) and |G\ Bi41| <e,
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hence,

limsup | |1, —1g| <limsup [ |16, —1gl+1—h(e)+e=1—h(e)+¢
k—>+ooR k—>+ooB
" 1+1

for all ¢ < 1. Then we take the limit whea goes to zero to get th&dG),>1 converges
to G in L1 as claimed.

Now, passing to the limit whert 1 400 in (17) and (19), it follows from the
convergence i that|G| = 1 and that

IGAW|>$ (21)

for any Wulff set with|W| = |G| = 1. On the other hand, by lower semi-continuityRyf
whenr is convex (see [12, Theorem 4.5] and Remark 2.12), it follows from (18) that

Pr(G,R") <liminf Pr(Gy,R") < Cr.
k——+o00

Combining this with the isoperimetric inequality (16) we get tRai{ G, R") = C. Hence
G is, according to Theorem 2.4, equivalent to some Wulff set and this contradicts (21).

Remark 2.12.Theorem 4.5 in [12] about the lower semi-continuity Byf is given only

for sequences of bounded sets with finite perimeter. However it turns out that standard
truncation arguments imply that the result still holds even when the elements of the
sequence are not necessarily bounded. More precisely, we consider a s€qiygpse of

sets with finite perimeter such that sup{|G«| + P (G, R")} < +oo and we assume that
(Gr)r>1 converges to some sét in L. Then one can construct an increasing sequence
(ri)k>1 With ¢ 1+ +o00 and such that

Pr(Gk N By, R") < Pr(Gr, R") + 1/k.

Indeed one first fix for instance(k) large enough so thaGy \ B.x)| < C/k for some
suitable small universal constafit> 0 and then one choosese< (r(k), r (k) + 1) in the
same way ag in Lemma 2.11 so that

H" (3B, \ Gr(0) < B/
Then, sincery + +o0o and becausdG| < liminf,_, 1+ |Gr| < +00, the sequence
(Gk N By )k>1 still converges inL! to G and it follows from [12, Theorem 4.5] applied to

that latter sequence of bounded sets that

Pr(G,R") <liminf Pr(Gr N By, R") <liminf Pr(Gg, R™).
k—+00 k— 400

Of course the same arguments apply to more general anisotropic perimeters as considered
in [12].
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Lemma 2.13.Let F be a set with finite perimeter and finite Lebesgue measure. Assume
thaty € (0, |B1(0)|/2) is such thal F N B1(x)| < y forall x e R". Then

CIFI"P(F,R")™ <y
for some constant > 0 that depends only om.
Proof. Let F andy be as in the statement. Let be a maximal family of points ifR" at

mutual distance> 1/2 and such thatF N By 2(x)| > 0 for all x € A. Then( J, . 4 B1(x)
covers almost all of". Otherwise there would exist a poin R” such that

‘(F\ U Bl(X)) N B2(y)

xeA

> 0.

By maximality of A we would havey € By/2(x) for somex € A and thenBy/»>(y) C Bi(x)
which gives a contradiction. Hence we have

IFI< SO |F 0 Bi)| <y Y |F 0B "V <oy ¥ ST P(F Bi)),
xeA xeA xeA

where the last inequality follows from the relative isoperimetric inequality for balls (note
that|F N B1(x)| < y < |B1(0)|/2 hence mifi F N Bi(x)|, |B1(x) \ F|} = |F N B1(x)]).

Now the ballsB;1(x), x € A, have bounded overlap because the bBllg(x), x € A, are
disjoint. Thus we have

Y P(F. Bi(x)) <CP(F,R")
xeA

and it follows
|F| < CyY"P(F,R")

as claimed. O

3. Ahlfors-regularity and condition B

This section and the following one are entirely devoted to the proof of Theorem 1.4. In
this section we prove in Lemma 3.1 the upper estimate in the Ahlfors-regularity and reduce
the proof of the other properties to alemma, Lemma 3.2, which analyzes the behavior of the
proportion of a quasiminimal crystal and of its complement inside Wulff sets. We fix for the
rest of this section and the following one a quasiminimal crystal with a volume constraint
E € QM with prescribed measure as in Definition 1.1. Recall that in this definition
I:S*~1 - Rt is a fixed continuous function which satisfies (4)[0, +o00] — [0, +00]
is fixed such that lim_, o+ v="~Y/"g(v) = 0 anda > 0 is fixed.
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Note that because of (13) one can replace in the definitions of the Ahlfors-regularity
(Definition 1.2) and of the condition B (Definition 1.3) balls by Wulff sets and get
equivalent definitions. We shall freely use this in what follows, choosing in each situation
the most convenient definition to work with.

Lemma 3.1.There exists a universal constafit- 0 such that
Pr(E, W,(x)) < Cr"t
forall x e R"” andr < 1.

Proof. Letx e R" andr < 1 be fixed. We seF' = (E \ W, (x)) U W whereW is a Wulff
set contained i, (x) and such thatW| = |E N W,(x)|. Then|F| = |E| and F' is an

admissible candidate fdf. We haved, F N W, (x) C 9W U dW, (x) andF coincides with
E on the open seW, (x)¢. Combining this with (9) and (11), we get:

Pr(F,R") < Pr(E, W,(x)°) + BH""2@W) + BH" "1 (dW, (x))
< Pr(E,R") — Pr(E, W,(x)) + Cr"™%,

for some universal constagt > 0. Moreover we haveF A E| < 2|E N W, (x)| < Cr".
Thus ifr is small enoughy; < r1 say for some universal constant< 1, we have

g(IFAE)) <L
by assumption og. Then it follows from the quasiminimality of (see (2)) that
Pr(E,R") < Pr(F,R")+¢(|F A E|) < Pr(E,R") — Pr(E, W,(x)) + cri
hence,
Pr(E, W,(x)) <Cr" 4,
which gives the required conclusion provideet 1. The conclusion for radit € (r1, 1]
and with a slightly different constant which dependsrerfollows easily by a covering

argument (one can for instance covf(x) with at mostC(r/r1)" Wulff sets with
radiusry). O

The lower estimate in the Ahlfors-regularity and the condition B are more delicate to
prove, especially because we want to get universal constants in these properties. The main
step in the proof is given by Lemma 3.2 stated below. It says that if the proporti&n of
(in measure) inside some Wulff set, séy, is small enough theil/2)W is essentially
contained in the complement &f, and similarly forE€. Forx € R" andr > 0, we set

3

h(x,r):=r~"min{|E N W, (x)

W, (x)\ E|}.
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Lemma 3.2. There exist two universal constardg > 0 and R < 1 such that, for any
x eR"andr < R, if h(x,r) < &g, then

|ENW,/2(x)| =0 or |W,2(x)\E|=0.

We will prove this lemma in Section 4. The proof relies strongly on the quasiminimality
of E. Then it turns out that once one has this lemma in hand, the required properties follow
essentially by quite standard covering arguments that do not use the quasiminimality of
anymore. The same kind of arguments have been already used in the literature, see, e.g.,
[11] for a different situation and [16] for the case of the standard perimeter. For sake of
completeness we give some more details about this in the rest of this section (this will also
be useful later).

We set:
Eq:={x e R": there exists > 0 such tha{W, (x) \ E| =0}, (22)
Eo:= {x e R": there exists > 0 such thatE N W, (x)| =0}, (23)
S = {xeR": h(x,r)>€of0|’a||r<R}, (24)

wheregg and R are given by Lemma 3.2. One can actually deduce from Lemmas 3.1
and 3.2 the following refined version of Theorem 1.4.

Theorem 3.3.With E1, Eg and S as above, the following conclusions hold

E1, Eg and S form a partition ofR”,

E1 and Eg are open and equivalent t6 and E€ respectively
S=0E1=0EFy,

0E1=0,E1=0+E anddEg = 0,Eg = 0+(E®),

S is Ahlfors-regular

E; is bounded

E1 and Eg satisfy the condition B

Moreover the Ahlfors-regularity and condition B constants can be chosen universal.

Proof. The first claim is an immediate consequence of Lemma 3.2. Thé&'setsd Eg are
clearly open. MoreoveFE; coincides with the sek (1) of Lebesgue points of. Indeed

if x € E(1) thenh(x,r) =r""|W,(x)\ E| if r is small enough andl(x, r) tends to zero
whenr goes to zero. Then it follows from Lemma 3.2 that E;. The other inclusion
follows from the definition ofE1. HenceE and E; are equivalent. Similar arguments
with E replaced by its complement show th&g is the set of Lebesgue points &f and
thenE€ and Ep are equivalent.
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By definition of S and sinceE and E1, respectivelyE¢ and Eo, are equivalent, we
clearly haveS c 9E1 N 9Eg. On the other handE1 and Eg are open and disjoint
and, sinceE1, Egp and S form a partition of R”, it follows that dE1 U 9Eg C S.
Thus S =0E1=0Eg. We clearly haveE; = E1(1) = E(1) = Eo(0) = E(0) and
Eo=E1(0) = E(0) = Eg(1) = E°(1). Then the equalities betwee$ and the various
essential boundaries is an immediate consequence of the definitions together with the fact
that E1, Eg andS form a partition ofR”.

Next we prove thaf is Ahlfors-regular withw = Pr(E, -) = Pr(E1, ) in (3). First we
have sptu) c 9E1 = S. The upper estimate follows from Lemma 3.1. Next i€ S and
r < R, we have by definition of and by the relative isoperimetric inequality for Wulff
sets (Proposition 2.8),

ng’_l)/"r"*1 < C(r"h(x, r))(nfl)/n < Pr(E, Wy (x)).

This gives the required conclusion provideel R. The conclusion for radii € (R, 1]
follows easily with a slightly different constant depending now alsaon

To prove thatE; is bounded, we consider a maximal famil{y of points indE1 at
mutual distance> 1. The ballsBy/2(x), x € A;, are pairwise disjoint and sindeE; is
Ahlfors-regular we have:

card A1) < C Y Pr(E1, Bya(x)) < CPr <E1, U Bl/z(x)) < CPr(E1,R") < +o0.
xEA]_ xEA]_

SincedEq C UxeAl B1(x) we getthad E; is bounded. Hence, sin¢€1| < +o00, we have
diam(E1) = diam(d E1) < +o0.

We now prove thaf; and Eg satisfy the condition B. Let € S andr < min(1/2, BR)
be fixed. Set:

Z:= {z € B,j2(x): dist(z, §) < sr/Z},
where 0< s < 1 will be fixed small later. We havEZ| < Csr. To see this, we take a
maximal family A of points inS N B, (x) at mutual distance: sr/2. The ballsB;,4(y),

y € A, are pairwise disjoints is AhIfors—reguIarUyeA Bgr/a(y) C Bor(x), then, arguing
as above, we get:

card A) < C(sr) ™" > " Pr(E, By ja(y)) < C(sr) " Pr(E, Bar(x)) < Cs™" .
yeA

Going back toZ, we have

zc | BG.sn
yeA

and thenZ| < Ccard A)(sr)" < Csr™ as claimed. Since € S, we also have:
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|[ELN B (0)] > |[ELN Wpo1,(x)| > e0f™"r",

|Eo N Br(x)| > |Eo N Wg-1,(x)| = e0p™"r".

Then, ifs is small enough, depending ansg andg, one can findi1 € (E1 N By (x)) \ Z
andzo € (EoN By (x)) \ Z and then

By, j2(z1) C E1N By (x) = B, (x) \ Eo,
By, /2(z0) C EoN By (x) = B, (x) \ E1.

This gives the required conclusion for anye S = 9Eg = 9E1 andr < min(1/2, BR).
And the conclusion follows easily for any< 1 (with a slightly different constant in the
condition B). This concludes the proof of the theorenm

To prove Theorem 1.4 it only remains to prove uniqueness. This follows from the fact
that two open sets that are equivalent and both satisfy the condition B coincide.

4. Behavior of the proportion of E and E€ inside Wulff sets

This section is devoted to the proof of Lemma 3.2. The basic idea is the following. When
the proportion of the complement a&f inside some Wulff set is very small, it is natural to
try to add this Wulff set (or at least a slightly smaller onetoSimilarly if the proportion
of E is very small, one can to try to remove the Wulff set frémThen, to make use of
the quasiminimality off' through a suitable comparison argument, one needs, because of
the volume constraint, to adjust the measure of this first modification to get an admissible
candidate with exactly the same Lebesgue measureEhahoreover, remembering also
that we want to get at the end universal regularity constants, one must find a way to do
these adjustments while keeping some universal control in all the constructions.

In the first case, adjusting the measure (that is, removing some mass) will not be too
complicated because Lemma 2.5 gives a way to do this while keeping a suitable control on
the variation of tha™-perimeter. This will be done in Section 4.1.

The second case, when one needs to add some mass after having removed a Wulff set, is
more complicated and will occupy Sections 4.2, 4.3, 4.4 and 4.5. We shall not get directly
the conclusion but rather argue by contradiction. Roughly speaking we will consider a
point, sayx, around which the proportion of inside Wulff sets is small but for which
the conclusion of Lemma 3.2 fails. We shall prove that near such a point one can always
find some Wulff set essentially containedfinthat one can moreover move around to add
some mass (see Lemma 4.3). The point is that its size and the way it can be moved around
will be controlled in a uniform and universal way. The mass that can then be added and the
associated variation of the-perimeter (remember Lemma 2.6) will consequently be also
suitably controlled. This will be used to prove through a direct comparison argument that
the conclusion of Lemma 3.2 does hold far away fremn particular it will follow that
the condition B holds on a substantial partodf. Then, using this condition B property,
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one can perform suitable constructions that allow in turn to remove definitely the set
aroundx and give the final contradiction.

4.1. Behavior of£¢

We prove in this section Lemma 3.2 when the proportion of the complemé&haofund
some point is very small. The proof is divided into two parts. First we show that in that
case the proportion df¢ decreases geometrically.
Lemma 4.1.There exists a universal constant> 0 such that, for any € R" andr < 1,

|[W,(0)\ E| <err” = h(x,r/2) <h(x,r)/2.

Proof. Lete1 > 0 be a small constant that will be fixed later. ket R” andr < 1 be such
that|W,(x) \ E| < exr”. First, if g1 is small enoughs; < |Wr|/2, we have:

h(x,r)=r""|W,(x)\ E|.

Next, using Tchebytchev’s inequality and (14), one can alwaysfid-/2, r) such that

H'H@W, () \ EQD) < Cr YW, () \ E| = Cr"h(x, r)
for some universal consta@t> 0. Recall thatt (1) is the set of Lebesgue points Bfand
thusis equivalentt& . We setF = (E U W;(x)) N W whereW is a Wulff set chosenin such
a way that| | = | E| (obviously we takeW = R" if [W;(x) \ E| =0). Using Lemma 2.5
and the fact thak andE U W, (x) coincide on the open sé&¥;(x)¢, we get:

Pr(F,R") < Pr(EUW,(x),R") = Pr(E, W;(x)) + Pr(E U W,(x), dW,;(x)).
Furthermore, (E U W;(x)) N E(1) = ¥, hence by choice afwe have:
Pr(EUW,(x), dW:(x)) < BH" 2 (dW, (x) \ EQD) < Cr"hix, ),

and finally,

Pr(F,R") < Pr(E,R") — Pr(E, W,(x)) + Cr" h(x, r).
On the other hand,

|FAE|<2|Wi(x)\ E| <2r"h(x,r) < 261

(recall thatr < 1). Hence, ife1 is small enough, we get thanks to the relative isoperimetric
inequality for Wulff sets (Proposition 2.8) that, for some suitable universal constan,

g(IF A E) < W)\ E|" ™" < Pr(E, Wy(v)) /2.
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Since|F| = |E|, one gets by quasiminimality af,
Pr(E,R") < Pr(F,R") +¢(|F A EJ)
< Pr(E,R") — Pr(E, Wi(x))/2+ Cr"Yh(x, 1),
that is,
Pr(E, W, (x)) < Cr" Yh(x, r)

for some suitable universal constant- 0. On the other hand, once again by the relative
isoperimetric inequality for Wulff sets, we have

C(r*h(x, r/2)" ™" < Pr(E, Wy2(x)) < Pr(E, Wi (x))
hence,

h(x,r/2) < Ch(x, "D < Cey’ " Phix,r) <h(x,r)/2,
providedes is chosen small enough.0

Now the conclusion is an automatic consequence of the previous lemma.
Lemma 4.2.There exists a universal constant> 0 such that, for any € R" andr < 1,
(W, () \E|<ear” = |W2(x)\ E|=0.
Proof. Leteo > 0 be a small constant to be fixed later. ket R” andr < 1 be such that
W, (x) \ E| < e2r” and lety be any point inW, 2(x). We haveW, 2(y) C W, (x) and, if
&2 is small enough,
h(y,r/2) = (r/2) " |Wr2() \ E| < (r/2) 7" | W (x) \ E| < 2%¢2.
Then, using Lemma 4.1 and an induction procedure, one can easily show that
h(y. Z_kr) = (Z_kr)_n|W27kr(y) \E|
and
h(y, 27(k+1)r) < h(y, 27kr)/2
forall k > 1, provideds; is small enough. It follows that
im (27) " Wm0\ E| =0,

and thusy is not a Lebesgue point of the complement/f Since this holds for any
y € Wy 2(x), we get thatW,2(x) \ E| =0 as wanted. O
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4.2. The main constructions

Following the strategy sketched at the beginning of this section, we turn now our
attention to points around which the proportionfis very small. The proof in that case
is divided in several steps and will be achieved in Section 4.5. Arguing by contradiction
we shall first analyze the behavior &f around such points for which the conclusion of
Lemma 3.2 fails.

Lemma 4.3.There exists a universal constant> 0 such that, for any € R"” andr < 1,
if

|ENW,(x)|<esr” and |ENW,20x)| >0,
then there exist; € (r/2, 5r/8) andrz € (7r/8, r) such that

n_w?>2<{P(E N Wy, (x), Wy, (x)), P(E\ W, (x), dWy,(x))} =0,

|EN (W) \ Wi (0))| =0,

and one can find a Wulff s& C W, (x) suchthatW \ E|=0and|W|= C|E N W, (x)|
for some universal constant > 0.

Note that all the conclusions in this lemma come with universal and scale-invariant
bounds. The proof will be achieved in Section 4.4. It will be a consequence of several
suitable uses of the main lemma to be proved now, see Lemma 4.4. Let us stress that the
various constructions of the present section give the main comparison arguments of this
paper. They will be quite constantly re-used later (in slight different context and with slight
technical differences though).

For the rest of this section, let € R" be fixed. For simplicity of notations, set
W := W (x) for s > 0. For any fixed 0< sp < s1 <sp <1landi =1, 2, set

Ei =FEN (WYi \ WS,',;L) and mj = |El

s

0= n(])alxz{P(E N Wy, dWs,), P(E\ Wy, dWs)}.
i=0,1,

For anye > 0, we say thatl;) holds if

emin{sf, (sz—sl)"} if so=0,

max{my, mo} < : (He)

& min{sg, (51— s0)", (s2 — sl)"} if so > 0.

Note that whensg = 0, then Wy, = ¢ and the convention is thatl = E N W,, and
P(E N Wy,, dWy,) = P(E \ Wy, dWy,) = 0.
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Lemma 4.4.There exist two universal constards > 0 and C > 0 such that, if(H,)
holds, then

min{my, mo} < Cp™ =Y. (25)

In what follows, when saying that a constant depends only on some given data, we mean
that its value can be chosen depending only on these data and also possibly, ¢h g
anda but on nothing else.

We begin with the proof of Lemma 4.4 in two special cases. The first one deals with the
situation wheret! and E2 are of comparable size.

Lemma 4.5.For anyt € (0, 1), there existg > 0 depending only on such that, if(H;)
holds andrm1 < m2 < T Ym1, then (25) holds with a constan€ which depends only
onrt.

Proof. Lett € (0, 1) be fixed,e > 0 be a small constant to be fixed later, assume tHa (
holds and thatmi < m> < t~1m1. We want to replac&Z! U E2 by a single Wulff set.
According to H,) we havemi + m2 < 2¢(s2 — s0)". Hence, thanks to Lemma 4.6 (to be
proved below), one can find a Wulff sBt € Wi, \ WSO with |W| =m1+m>, atleastifc is
small enough, how small depending onlymnr andB. We setF = (E\ (EXUE2)UW.
Then|F| = |E| and F is an admissible candidate. We first estimatelitperimeter. We
have (see Lemma 2.2)

Pr(F,R") < Pr(E\ (E*U EZ), R") 4+ Pr(W,R").
The setE \ (E' U E?) coincides withE on the open setWs, \ Wy,)¢, is equivalent to

the empty set inside the open 3&t, \ W, coincides withE \ W;, on a neighborhood
of 3W,, and with E N Wy, on a neighborhood afWy,. It follows that

Pr(E\ (E'UE?),R")
= Pr(E,R") — Pr(E, Wy, \ Wyy) + Pr(E \ Wy,, dWs,) + Pr(E N Wy, dWy,)
< P[‘(E,]Rn) - P]"(E, Ws‘l \ WSO) - P]"(E, Ws‘z \ Wsl) +2,B,0

On the other hand, arguing in a similar way, we have

PF(Eia Rn) = PF(Ea WS‘I' \ WS,',]_) + PF(E \ infl’ BWS‘,',J_) + PF(E N WS‘,‘a BWYI')
< PF(E, W.Y,' \ W.Yi,]_) + Zﬁp
fori =1, 2. Hence we get that
Pr(E\ (E*UE?),R") < Pr(E,R") — Pr(EY,R") — Pr(E? R") +68p

and going back ta, it follows:
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Pr(F,R") < Pr(E,R") — Pr(EY, R") — Pr(E% R") + Pr(W,R") +66p
< Pr(E,R") — Cr(m{" D" +my ™" — (g + ma)"~Y/") 1 6pp

g P]"(E, Rn) _ Crmgnfl)/n(l_l_ u(n—l)/n _ (1_|_ u)(n—l)/n) + 6ﬂ,0,

by the isoperimetric inequality for thE-perimeter (see Theorem 2.4) and by choic@&/gf
and wheret = my/m1. We haveu € [z, 4 by assumption and

min {14+u""P" — @+ u)*D/m >0,

uelr,t—1]

hence,

(n=1)/n

Pr(F,R") < Pr(E,R") — Cemy + 6Bp

for some constantC; > 0 which depends only ont. On the other hand,

|FAE|<2(m1+m2) <21+t YHm1 <21+t He by (H,) (recall thats; < 1 for
i =0, 1, 2), and we choose small enough, depending only enso that

g(FAE)<Com V" /2.
Then we get by quasiminimality df,
Pr(E,R") < Pr(F,R") +g(IF A E) < Pr(E,R") — Com{" /" /2 1+ 6pp,
and finally,
min{ma, ma} < m1 < Cp"/ ",
whereC depends only on, as required. O
Lemma 4.6.There exists a constant> 0, depending only on, « and 8, such that, for all
0<s <s'<1landm > Osuch thatn < c(s’ —s)", one can find a Wulff sa¢ € W \ W
with [W| = m.

Proof. With the notations of the statement, we apply the condition B to some pdifi¥jn

to find a Wulff setW’ with radius comparable to dig¥s, W) and strictly contained in

W \ Wy (see Proposition 2.7 and recall also that because of (13), one can replace balls by
Wuff sets in the condition B). Then we have

|W'| = Cdist(Wy, W5)" > c(s' —5)"
according to (10) and (15) and for some suitable constarisdc depending only on, «

andg. Then, ifm < c(s’ — s)", one can obviously find a Wulff s&v c W’ with |[W|=m
which gives the conclusion.O
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We now prove Lemma 4.4 when eithef or E2 are notI"-quasi-isoperimetric in the
sense of Lemma 2.11.

Lemma 4.7.For anyn > 0, there exists > 0 depending only on such that, if(H,) holds
and

Pr(E',R") > Cr@+n)|E|" /"
fori =1ori =2, then(25) holds with a constant which depends only on

Proof. Let n > 0 be fixed and: > 0 be a small constant to be chosen later. Assume that
(H.) holds and that

Pr(EL,R") > Cr(L+n)|E[" /"
fori =1 ori =2. We replaceE’ by a Wulff setw; € W;, \ Wy, , with |W;| = m; setting
F = (E \ E")UW,. This is always possible according to Lemma 4.6 together wit} (

providede is small enough. We hayé'| = | E|. Arguing as in Lemma 4.5, we have:

Pr(E,R") — Pr(E',R") + Pr(W;,R") + 48p
Pr(E,R") = Crym{"~V" + 4pp

Pr(F,R")

NN

by assumption otE’ and choice ofW;. On the other hand, we hayg A E| < 2m; < 2¢
because ofH.). Then, ife is small enough, depending only gn

g(IF A E) < Cram!" V"2,
and we conclude using the quasiminimalitysimilarly as before,
Pr(E.R") < Pr(F.R") +g(IF A E|) < Pr(E.R") — Cram{" /" /24 4fp,
hence,
min{m1, ma} < m; < Cp™ "=,
whereC dependsonlyon. O
We now turn to Lemma 4.4 in its full generality.
Proof of Lemma 4.4. Let ¢4 > 0 be a small universal constant to be fixed later and
assume thatH,,) holds. Lett < 1 be a small constant to be fixed universal later. If
tmy < mp < v~ 1my1, Lemma 4.5 gives the required conclusion providadis small

enough. Thus we only need to consider the cases whegre tmy or m1 < tma. To fix
the ideas we assume that we are in the first case. The other one can be proved exactly in
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the same way exchanging the rolefof and E2. The idea is to removE? from E and add
the corresponding mass " using a suitable Wulff set.

Stepl. We first want to find a Wulff seli; with |W1| comparable tan; and essentially
contained inEL. Lets > 0 be a small constant to be fixed universal in a momentaad
be associated thby Lemma 2.11. If

Pr(ELR") > Cr@+npm{ """,

then Lemma 4.7 gives the conclusion providads small enough. Thus one can assume
that

Pr(ELR") < Cr(1+npm{~ V",
and, according to Lemma 2.11, one can then find a Wulfiiéestuch thatW| = m1 and

|EY A W| < 8ma.

We havelW \ E| < |W \ E1| < 8§|W| and the radius oW is less than 1 becaus® | = |E1|
andEl c W;,. Hence, ifs is small enough, we get from Lemma 4.2 that

W'\ E| =0,

whereW’ = (1/2)W. On the other hand, we have
[W'\ Wy < [W\ EY < Cslw|,
W N Weol < [W\ EY < C8IW|,

and, thanks t@H,,), r' < Cm}/" < Cei/" min{so, s1} wherer’ denotes the radius d¥’.

Then it follows from Lemmas 2.9 and 2.10 that
W1 = (a/2B)W' C Wy, \ Wi,

provideds ande4 are chosen small enough. Singé = E N (W, \ W), we finally get
that

|Wi\ E*| = Wi\ E|=0.
Step2. Next we show that it is always possible to mad¥e strictly inside W, \ WSO
until it reaches a new positioW, such thatf W» \ E1| = m». First we note that because
|W1| = Cm1 for some universal constagt> 0 and because @#,,), we have

|[W1| < Ceals2 — s1)",

hence one can always find a Wulff sét; € W, \ W, such that|Wj| = |W1| (see
Lemma 4.6) provided, is small enough. Moreoven, < tmp < W] if t is small
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enough. Then, sincéWs \ EY| =0 and E1 N W] = @, one can mové¥; continuously
inside Wy, \ W, (at least ife4 is small enough, depending only on the dimensien,
and B, to make sure to stay insid&;, \ W,,) until it reaches an intermediate position
W2 € Wy, \ W, betweenW; andW; such that

|W2\El| =mo.

Step3. We setF = (E \ E?) U W». By construction we haveF| = |E| and F is an
admissible candidate. Arguing as in Lemma 4.5 and using Lemma 2.6, we have:

Pr(F,R") < Pr(E\ (E*UE?),R") + Pr(E*U Wa, R")

<Pr(ER) = Pr(E%R") + W2\ £+ 6pp

Cr_
|Wo|/n
< Pr(E,R") — Crmy ™" 4 cm " ma+6Bp
< Pr(E,R") — Crmy D" 4 cc/mm§ 1" 4 6pp
for some universal constaat> 0. Then we choose small enough so that
Pr(F,R") < Pr(E,R") — Crmy™ """ /24 68p.
To conclude we haviF A E| < 2mp < 2e4 by (H,,) and, ife4 is small enough,
g(FAE))<Crmy™" /4,
Then we use similarly as before the quasiminimalityEof
Pr(E.R") < Pr(F,R") +g(|F A E|) < Pr(E,R") — Crmy """ 14+ 6pp,
to get that
min{m1, mp} =mp < Cp"/ =1
for some universal constagt> 0. O
4.3. Vanishing traces

The first conclusion of Lemma 4.3 will be given by Lemma 4.8 proved in this section.
It essentially follows from an iterative use of Lemma 4.4.

Lemma 4.8.There exists a universal constant> 0 such that, for any € R” andr < 1,
if |[ENW,(x)| <esr", then there existy € (r/2,5r/8) andr; € (7r/8, r) such that

n_w?>2<{P(E N Wy, (x), Wy, (x)), P(E\ Wy, (x), dWy,(x))} =0.
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Proof. Let e5 > 0 be a small constant to be fixed universal later and assume th&t"
andr < 1 are as in the statement. We prove that one canvfird(r/2, 5r/8) such that

P(E N er(x), aer(x)) = P(E \ er(x), 3Wr1(x)) =0.

One can argue exactly in the same way to get the existencea(7r/8, r). To simplify
the notations, we set as befd#g := W;(x) for s > 0.

First we note that it is sufficient to build two nonconstant seque@cg$:o increasing
and(b;) ;>0 decreasing such that, for gll> 0,

r/2<aj<bj<5r/8, (26)
_Iim b/—ajzo, (27)
Jj—>+oo
lim P(ENWa;, 0Wa) = lim P(E\ Wy, dW,,) =0. (28)
J—>+00 J—+0o0

Indeed, ifr; denotes the common limit of these two sequences, we havér/2, 5r/8).
Moreover,

P(E, W,,) < P(ENW,, R") < liminf P(E N W,,,R")

Jj—+o00

by lower semicontinuity of the perimeter and becatiseW,; converges it to ENW,,.
On the other hand, we have

P(ENWa,,R") = P(E, Wa;) + P(ENWg,,dW,,).

Then, since(Waj)j>o is an increasing sequence of sets such [U;i\tWaj = W,, and
because of (28), we get

lim  P(ENW,,,R") = P(E, Wy).

Jj—+o0
Thus, going back t& N W, , we finally get
P(EN W, R") = P(E, Wy,),
which implies that
P(ENW,,,dW,,)=0.
To prove thatP(E \ Wy, dW,;) = 0, one argue in a similar way, using the sequence
(E\ ij)j>o to compareP(E \ W, R*) andP(E,R" \ W,,).
We construct now these two sequences) ;>0 and (b;) ;0. This will done by an

induction procedure and an iterative use of Lemma 4.4. Wegetr/2 andbg = 5r/8.
Assume that we have construcigdandb; such that (26) holds and set:
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Using Tchebytchev’s inequality and (14) (we argue here in a similar way than in
Lemma 2.11, see also Lemma 4.1), one can always find:
sy eaj,a;+1;/4),
s] € (aj+31;/8,a; +51;/8),
sy ebj—1;/4,b)),
such that

-1 m;
max (MW \ EO)} < Gyt

for some universal constanfy > O and wherem; = [E N (Wp; \ Waj)|. Then,
remembering thad, (E N Ws._,') N E0) =¥ ando,(E \ Ws._,') N E(0) =@, we get:

o ) ) ) ) -1 .
pji= ig(]ﬁﬁ{P(E N Wsi,, BWSi,), P(E\ Wsi,, BWSi,)} < ig(]),ai),(Z{Hn (8W8i, \ E(0))}

< (29)
lj

We set:

ajs1:=s) and bji1:=s] if|Eﬂ(Wsi'\Wsé)|<|Eﬂ(Wyé\Ws{)

ajy1:=s; and bji1:=s5) otherwise

The sequencea;) ;>0 is clearly increasing(b;) ;>0 is clearly decreasing, (26) clearly
holds by construction, and we have:

5
bjr1—aj1<glj—aj.

thus (27) follows. To prove (28), we first show that.if is small enough, then, for all

Jj=0,
<efL) (30)
mj\€ §

for some small universal constant- 0 which depends essentially only on the constant
given by Lemma 4.4, and

i -1 NI
U B j —k i _
pi < ((l_[lkN ) cpio" chim kmo) : (31)
k=0
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whereN =n/(n — 1) and C is given by Lemma 4.4. To see this let- 0 be a small
constant to be fixed soon. Whgnr= 0, we have

mo < |ENW;| <esr”,

andlp =r/8, hence (30) holds provided is small enough. And (31) is exactly (29) with
j = 0. Assume that (30) and (31) hold for some: 0. We have

_ L\
max([£0 0w\, ) < <)
and, on the other hand,
< sé.

Hence(H;,) is satisfied withsg = so, s1 = sl andsy = s2 provideds < ¢4 and Lemma 4.4
implies that

m/_;,_]_ C,Oj . (32)
This combined with (29) and (30) gives
m; N 1N n
m/_;,_]_ CCl l < C'e (lj) ’
J

for some universal constadt’ > 0. On the other hand, by construction, we hayvg >
1;/8 and, ife is small enough (recall tha¥ > 1), we get:

lj+1
<el .
mj+1 X 5( 3 )

Next, thanks to (29), (32) and (31), we have:

m 1 C1C it - /HN k i+1 A

) i - Lo

pir1<C It < jv < l_[l c;=° CXi=iN " mg .
lj+1 /+1

By induction it follows that (30) and (31) hold for ajl > 0 as claimed. Finally we note
that sinceN > 1 we have:

S
Cy =N CZIi:lN*k) < +00.

jz0
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Furthermore, L= Iy > lo/8" = r/8 1 for all k > 0, hence

J —k Foo —k Foo —k +00 A7—k ¥oo —k
ST >(H8-<k+w )Z >(H8-“<“>N )
k=0 k=0 k=0 k=0

forall j > 0. Then, (31) implies that

N

pj

m N/
(%)
rn

for some universal constagt > 0 (which does not denote anymore the constant given by
Lemma 4.4). On the other hand, by assumption, we waye es5r”, and if g5 if small
enough, we get

lim pj= 0,

Jj—>+oo -
from which (28) follows and this concludes the proof of the lemma.
4.4, Proof of Lemma 4.3
We now complete the proof of Lemma 4.3. Lsat> 0 be a small constant to be fixed
universal later, assume thate R"” andr < 1 are as in the statement and set as before
W, := Wi(x) for s > 0. If ¢3 is small enough, Lemma 4.8 gives < (r/2,5r/8) and
r2 € (7r/8, r) such that

pi= _mi»z({P(E NW,,, 0W,,), P(E\ W,,,0W,,)} =0.
=4,
On the other hand, we have:

|EN W, | <|ENW,| <ear” < Cesmin{ry, (r2 —rp)"},

|EN (W, \ Wp)| SIENW,| <ear’ < Cezmin{ry, (rz —r1)"},

because1 > r/2 and (r, — r1) > r/4. Hence, ifez is small enough, one can apply
Lemma 4.4 withsg = 0, s1 = r1 ands2 = r2, and one gets that

min{|E N W,,],

EN (W, \W,)|}=0.
Since by assumptiofE N W,,| > |E N W, 2| > 0, it follows that
|[EN (W, \ W,)|=0

which proves the first part of the lemma.
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Next we prove the existence of the Wulff 3&t We setE = EN W,, and lets > 0 be
a small constant that will be fixed small and universal soonabe associated té by
Lemma 2.11. We have

Pr(E,R") < Cr(1+n)|E|"D/n

providedes is small enough. Otherwise, we argue as in Lemma 4.7 antl setE \ E)U
W’ whereW’ is a Wulff set contained iV, with |W’| = | E|. Taking into account the fact
thatp as defined above vanishes and arguing as in Lemma 4.7, we have:

Pr(F,R") < Pr(E,R") — Pr(E,R") + Pr(W',R") < Pr(E,R") — Cry|E|"~D/"

(one has actually equality on the first line because one even know# tisaequivalent
to the empty set insid&,, \ W,;). Then we use as usual the quasiminimalityffto
conclude, choosings small enough so that

g(IF AE|) < Cry|E|"~P/"/2
(notethal F A E| < 2|E| < Ce3), and we get
Pr(E.R") < Pr(F.R") +g(|F AE|) < Pr(E,R") — C|E|"" /",

This implies that|E| = 0 and gives the contradiction becauggl > |E N W, 2| > 0.
Now we argue in a similar way than in Step 1 of the proof of Lemma 4.4. By choice
of f n and thanks to Lemma 2.11, one can find a Wulff getsuch that|W| |E| and

|W A E| < 8|E| Then Lemma 4.2 implies tha(1/2)W \ E| = 0 whenevers is small
enough. On the other hand, we have:

|(1/2W\ W,,| < |(1/2W\ E| <C3|(1/2W| and s’ < Cey"r1,

wheres’ denotes the radiusgft/Z)W. Thus, if§ andez are small enough, we get from
Lemma 2.9 thaW := («/48)W C W,, and this concludes the proof.

4.5. Behavior oft

We conclude this section with the end of the proof of Lemma 3.2. WR fi1 universal
and small enough so th&@BR) W | < a. Recall thata denotes the prescribed Lebesgue
measure of the quasiminimal crysial Remembering Lemma 4.2, it remains to prove that
foranyx e R" andr < R, if h(x,r) =r"|ENW,(x)| < eg then|ENW, ,2(x)| = 0, where
g6 > 0 is a small suitable universal constant. Thuslet 0 to be fixed later. Arguing by
contradiction, we assume that one can find R” andr < R such that

|[ENW,(x)| <eer” and |ENW,2(x)|>0.

The contradiction will follow from the same kind of comparison arguments as before
together with a suitable use of Lemma 4.3. The point is that, for such pojtie traces
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of E on the boundary of the associated Wulff sets given there vanish. Furthermore there
will be some space available around them (namely the annulus-lik&,sét) \ W, (x)
with the notation of Lemma 4.3) and this will be quite useful to add some mass when
needed, moving around the Wulff set also given by Lemma 4.3 that is essentially contained
in EN Wy, (x).

Thus, assuming thats is small enough, let1 € (r/2,5r/8) andrp € (7r/8,r) be
associated t@ by Lemma 4.3 and set

EL:=EnW,(x).
Stepl. We first prove that the conclusion of Lemma 3.2 holds outsid&gf(x), that
is,
y € War(x), t <ap 'R andh(y.r) < 6

= |ENWy200)|=00r|W,2(») \ E| =0, (33)

providedes is small enough. Taking into account Lemma 4.2 and arguing as before, it is
sufficient to assume that one can find Wag(x)¢ andr < B LR such that

|[ENW;(y)| <eet” and |ENW2(y)| >0,

and to find a contradiction. We let € (¢/2, 5¢/8) andr, € (7¢/8, t) be associated to such
ay by Lemma 4.3 and set:

E2:=ENW,(y).

Note that E! and E? do not denote here the same sets as in Section 4.2 but they
will play similar roles in the comparison arguments. First sinc& Wag(x) and
max(r2, Ba 1t} < R, we haveW,,(x) N W, (y) = ¥. Indeed, otherwise one could find

z € W,,(x) N W, (y) and then one would have (remember in particular (12)):

r(y—x)<IT*(y—2)+ M@z —x) < a "z —y)+ Iz —x) <2R,

which gives a contradiction. Then, arguing as in the proof of Lemma 4.5, it easily follows
from the construction of; andy;, i = 1, 2, especially from the fact that

m?>2({P(E N Wi, (x), dWy, (x)), P(E \ Wy, (x), 3W,, (x))}

=1,

= E%{P(E NW,(y), W, (y)), P(E \ W, (), oW, (y))} =0,
that

Pr(E\ (E'UE?),R") < Pr(E,R") — Pr(ELR") — Pr(EZRY).  (34)
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(One can even show the equality becauseis equivalent to the empty set inside
(Wi () \ Wy () U (Wi, () \ Wy, (y)).) Now let T > O be a small constant to be fixed
universalin amoment. We hayE?| < t|EY| or|E1| < t| E?| providedsg is small enough.
Otherwise, one can essentially follow the proof of Lemma 4.5. We repidde E2 by

a single Wulff setW with Lebesgue measut&?| + |E2| strictly contained inW,., (x) if

r2 > 12 orin Wy, (y) otherwise. This is always possible providgds small enough because
|EY| + |E?| < Cegmax(ro, 12} (remember that, > 7r/8 andr, > 71/8), see Lemma 4.6.
Then, withF = (E \ (E1 U E?)) U W and remembering (34), we argue as in the proof of
Lemma 4.5 and we would get by quasiminimality®tthat | E1| = 0 providedsg is small
enough. This gives a contradiction becalgé > |E N W, 2(x)| > 0.

Thus let us assume thaE?| < t|E1|. The other case is similar, exchanging the role
of E! and E2. The argument is now close to that of the proof of Lemma 4.4. By
Lemma 4.3 one can find a Wulff sé& C W, (x) so that|W \ El = |W\ E|=0 and
|W| = C|E| for some universal constaiit > 0. Next we havegW| < Ceg(ra — r1)"
(remember that, — r1 > r/4) hence, ifeg is small enough, one can find thanks to
Lemma 4.6 a Wulff setW’ € W,,(x) \ W, (x) such that|W’| = |W[. In particular
W’ N E1 =@. On the other hand, we hayg?| < r|EY| < |W| if T is small enough. Thus
one can move¥ strictly inside W,,(x) until it reaches a new positio, betweenWw
andW’ so that| W, \ EY| = |W» \ E| = |E?| (remember thaE N W,,(x) andEL N W, (x)
are equivalent). Then we sét = (E \ E2) U W». By construction we haveF| = |E|.
Arguing as in the Step 3 of the proof of Lemma 4.4 and remembering (34), one gets by
quasiminimality ofE that|E2| = 0 providedr and thersg are chosen small enough. But
|E2| > |EN W:,2(y)| > 0 and this gives a contradiction and concludes the proof of (33).

Step2. We set2 = Wz (x). It is not hard to see that because of (33), essentially
the same conclusions as in Theorem 3.3 hold insdd®ne must however check that we
are not in a degenerate situation where one would HanE2) = ¢ and/or Eq(2) = ¢
and/or where the corresponding s&t2) would be empty. HereE1(£2) = E1 N £2,
Eo(£2) = EoN 2 whereE1 andEg are defined in (22) and (23). SimilarB(£2) = SN 2
wheres is defined as in (24) withg in place ofsg andef 1R instead ofR. This follows
from the choice ofk. In fact we even have:

|E\ War(x)| > |E| - |GR)Wr|=a - |BR)Wr| >0,

hence|E1(2)| > |E \ W3r(x)| > 0 becauseE1(£2) turns out to be equivalent t6 N £2.
Similarly Eg(£2) is equivalent toE€ N £2 hence| Eg(£2)| = +o0. On one hand, it follows
that E1(£2) and Eo(£2) are nonempty open and disjoint sets that both nigek (x)¢
henced E1(2) \ War(x) # @ and dEo(£2) \ W3r(x) # #. On the other hand, arguing
as in Theorem 3.3, one can prove thEl2) = dE1(£2) N 2 = dEp(£2) N 2 hence
S(£2) # ¢ and everS(£2) \ War(x) # @. Then one can argue as in the rest of the proof of
Theorem 3.3 to get the Ahlfors-regularity and the condition B. Note however that, strictly
speaking, one must handle carefully the localization insidend one gets the condition B
property only inside a slightly smaller set, that is, around pointS(i2) \ W3g(x) say.
That is the main reason for the choice ®fwhich ensures by the previous argument that
S(2)\ War(x) # 0.
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Thus lety € S(2) \ W3r(x). Note that W,s-1x(y) C 2. Then letWo € Eo N
Wop-1r(y) and W1 € E1 N Wg-15(y) be two Wulff sets given by the condition B with
radiusC R where(C is a suitable universal constant (recall, as already used, that one can
replace balls by Wulff sets in the definition of the condition B). Then we h&&e, E| =0,
|Wo N E| =0 and|E| < |Wa| providedeg is small enough (by choice d¥1, we have
that|W1| is some universal number). Hence, arguing as before, one can Wiostictly
inside Wep-15(y) SO that it reaches an intermediate positlBrbetweenW; and Wy with

|W\ E|=|EY|. Thenwe seF = (E \ E})UW. We havelF| = |E| and

Cr
|W|1/n

< Pr(E.R") - Cr|EY"P" 1 c|EY|

Pr(F,R") < Pr(E,R") — Pr(ELR") +

W\ E|

< Pr(E,RY — (CF _ Cgé/n)|E1|(nfl)/n
< P]"(E,]R") _ CI.,|E1|(11—1)/11/2

providedeg is small enough. Note that here we do not have any information about the
trace of E on the boundary of Wulff sets aroundand one must argue in a slightly more
careful way than before to get the first inequality. This follows for instance from the fact
that F = E \ E* on a neighborhood OWop-1r (¥, F = EU W inside W,z-1£(y) and

that, on the other hand; \ E1 = E insideW,4-15(y) andE U W = E on a neighborhood

of Wyg-15(y)¢, hence

Pr(F,R") = Pp(E\ E*, Wo5-12(3)°) + Pr(EUW, Wyp-12(y))
= Pr(E\ELR") + Pr(EUW,R") — Pr(E,R").
Then one uses the usual arguments to estinPater \ EL R") and Pr(E U W, R").
Then we conclude as usual, using the quasiminimalit db get that|EL| = 0 if g is

chosen small enough. This is not possible becafise W, 2(x)| > 0 and give the final
contradiction.

5. Consequences

We end this paper with the proof of Theorems 1.6 and 1.7.
5.1. Connected components

We prove in this section Theorem 1.6 which mainly says that each connected component
of a reduced quasiminimal crystal has an Ahlfors-regular boundary and satisfies the
condition B on its own and with universal constants. Thus let us fix a reduced quasiminimal

crystalE € QM as in Definition 1.5 and led be a connected component®f The general
scheme of the proof is the same as for the proof of Theorem 3.3.
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First we havedA Cc dE and 0FE = 9, E becauseE is reduced (see Theorem 3.3
and remember that by uniqueness in Theorem E.4pincides with the sef; defined
in (22)). Hence it follows from the Ahlfors-regularity @fE (we actually need here only
Lemma 3.1) that

Pr(A, W,(x)) < BHHBANW, (x)) < BH"HOE N W, (x))

< BatPr(E, W, (0) <Cr't

for anyx € R” andr < 1 and for some suitable universal consté@nt 0.
Forx e R" andr > 0, we set:

ha(x,r):=r~"min{|A N W,(x)

2 [ Wr(x)\ A|}

Using similar arguments than in the proof of Theorem 3.3, it is not hard to see that the
Ahlfors-regularity ofd A and the condition B for (note thatA is open because is), will

follow as soon as we show thati = S4, where

Sp = {x eR" ha(x,r) >e7forallr < R}

for some suitable universal constanis> 0 andR < 1. We obviously haves, C 9A.

We note that the value dt here may be slightly different from that given by Lemma 3.2
(even though a suitable choice could be used for both cases) and we only assume to begin
with that R is smaller than the value given there. Then, siadecC JE, it follows from
Theorem 3.3 that

[Wr () \ A| = [W,(x) \ E| > eor”

whenever € 9A C 9E andr < R.
To bound from belowA N W, (x)| we argue in a similar way than in Section 4.1 and
first prove the following lemma:

Lemma 5.1.There exists a universal constamat> O such that, for any € R” andr < R,
[ANW, (0| <egr" = hax,r/2) <ha(x,r)/2.

Proof. The proof will be achieved as usual thanks to a suitable comparison argument. One
will try to remove the component fromE insideW, (x) (or in a slightly smaller Wulff set)
and then, arguing as in Section 4.5 Step 2, we shall use the condition B outsigg.of
to add the corresponding mass. The main difference with the previous constructions is that
we only remove here a part &f.

Thus leteg < |Wr|/2 be a small constant to be fixed later and assumeathaiR”
andr < R are as in the statement. Using Tchebytchev’s inequality and (14), we choose
t € (r/2,r) such that

H'HANIW, (1)) < Cr" tha(x, r)
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for some universal constaat> 0. We first estimate thé&'-perimeter ofE \ (A N W, (x)).
Since E is reduced, we know thaE is open anddE = d,E, hence one can apply
Lemma 2.3 and it follows:
Pr(E\ (ANW,(x)),R") = Pr(E,R") — Pr(AN W;(x),R")
+ Pr(ANW;(x), E)+ Pr(E\ (AN W, (x)), E)
< Pr(E,R") — Pr(A, W;(x))

+ Pr(ANW;(x), E)+ Pr(E\ (ANW;(x)), E).
SinceE and A are open andAN E =@, we haved(ANW;(x)) NE C ANaW,(x) and
A(E\ (ANW;(x))NEC ANA3dW;(x). By choice oft, it follows:

Pr(ANW,(x), E)+ Pr(E\ (ANW,(x)), E) <28H" (AN W, (x))

<Cr" tha(x, ),
and finally
Pr(E\ (AN W,(x)),R") < Pr(E,R") — Pr(A, W;(x)) + Cr"tha(x, r).

Next, arguing as in Section 4.5 Step 2, one can always chBaseiversal and small
enough so that one can finde dE with Wr(y) N Wg(x) = @. Then, rephrasing the
argument in Section 4.5 Step 2, one can move strictly inBigéy) some Wulff set given
by the condition B to find a Wulff seW € Wgr(y) whose Lebesgue measure is some
universal number and such thait \ E| = |A N W;(x)|, at least ifeg is small enough. Then
we setF = E \ (AN W;(x)) UW. By construction we haveF| = |E| and, arguing as
before,

Cr
|W|1/n
< Pr(E,R") — Pr(A, W,(x)) + Cr" thp(x,r) + C|A N W, (x)|
< Pr(E,R") — Pr(A, W, (x)) + Cr" ha(x, r)

Pr(F.R") < Pr(E\ (ANW,(x)),R") + [W\ E|

for some universal constart > O (recall thatr < 1). On the other hand, we have
|[FAE|<2IANW;(x)] < Cr'ha(x,r) < Ceg. Then, if eg is small enough, we get by
the relative isoperimetric inequality for Wulff sets (Proposition 2.8)

g(IF A E)<ClANW,)|" ™" < Pr(A, Wi(x)/2,
and we argue as in Lemma 4.1 to get the conclusian.
Then it follows automatically that, for al e R" andr < R,

[ANW, ()| <egr” = |ANW,2(x)|=0
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for some suitable universal constagt> 0 (see the argumentin Lemma 4.2). On the other
hand, sinceA is open, one also automatically has

(A)° = {x e R": there exists > 0 such thafA N W, (x)| =0}.
Hence we get that for all e R” andr < R,
[ANW,(x)|<egr” = xe(A)r.
Then, takings7 = min{eo, €9}, it finally easily follows that A = S4 as wanted.
Remark 5.2.Note that one can also easily see that
A ={x e R": there exists > 0 such thatW, (x) \ A| =0}.

To conclude the proof of Theorem 1.6 it remains to give an upper bound for the number
of connected components &f. To get this one can for instance apply the condition B to
a pointx € 9A to obtain the existence of a Wulff s& contained inA N W1(x) whose
radius is a universal constant. This implies that> |W| > C for some universal constant
C > 0. Since|E| is fixed, | E| = a, we get the required conclusion.

5.2. Unconstrained local quasiminimality condition

This section is devoted to the proof of Theorem 1.7 which asserts that any quasiminimal
crystal with a volume constraint actually satisfies a stronger quasiminimality condition
where admissible perturbations are not required to be volume-preserving. We assume
here thatg is nondecreasing and léf be a fixed reduced quasiminimal crystal as in
Definition 1.5 (see Remark 5.3 for the general case). Similarly as before we alSodet
be fixed universal and small enough so that, for anyR", one ha)E \ Bog/(x) # 0.

Then letR < R’ to be fixed universal later and lete R” andr < R be fixed. We consider
a compact perturbatiofi of E inside B, (x) so thatF' A E € B, (x).

If |F| > |E|, we choose a Wulff seW such that|/F N W| = |E| (with W = R" if

|F| = |E|) and it follows from the quasiminimality af and from Lemma 2.5 that

).

Pr(E,R") < Pr(FOW,R") +¢(|(FNW) A E[) < Pr(F.R") +g(2| B (x)

because
(FNW)AE|<|FAE|+|E\W|<2|B (x)|.
If |F| < |E|, we pick some ballB centered omE \ Bag (x) with radius R’ and
let Wo € B\ E and W1 € E N B be two Wulff sets given by the condition B and with

radiusC R’ for some suitable universal constant- 0. We have:

O0<|E|—|F|<|F AE|<|Br(0)| < |Br(x)| < |Wal
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providedR < R’ is chosen small enough. Then we argue as in the previous sections (see
for instance Section 4.5 Step 2) to find a Wulff &t € B in betweenW; and Wy

with |W'| = |W1| = |Wp| and |W’ \ E| = |E| — |F|. Since B N B,(x) = ¥ and thus in
particularE and F coincide onB, we havel F U W’| = |E|. According to Lemma 2.6 and

by construction, we have:

Cr
|W/|1/n

Pr(FUW',R") < Pr(F,R") + W'\ E| < Pr(F,R") + C|B,(x)|

for some universal constaft> 0. On the other hand, we have:

(FUW)AE|<|FAE|+|W\E|<2|B(x)

s

and it follows from the quasiminimality of that

Pr(E,R") < Pr(FUW' R +g(|[(FUW') A E|)

<
< Pr(F,R") + C|By(x)| + (2] B, (x)]).

Then, taking into account the fact theitand F' coincide on a neighborhood &, (x)¢,
we get in both cases:

Pr(E, B(x)) < Pr(F, B,(x)) + " to(r),
where
o(r) =r~""D(C|B.(0)| + g(2| B-(0)])).

We have lim_ow(r) = 0. This is exactly what we want and concludes the proof of
Theorem 1.7.

Remark 5.3.The assumption o to be reduced is not a serious issue here. Otherwise we
consider the equivalent reduced quasiminimal cryBtaiven by Theorem 1.4. TheRA
and E1 essentially coincide on a neighborhoodBf(x)<, that is,|(F A E1) \ B/(x)| =0

for somer’ < r, and the same construction as before applied Within place of E gives

the required conclusion.
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