An optimal lower bound for the Frobenius problem

Iskander M. Aliev ${ }^{\text {a,* }}$, Peter M. Gruber ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics, University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, UK
${ }^{\mathrm{b}}$ Technische Universität Wien, Wiedner Hauptstraße 8-10/1046, 1040 Wien, Austria

Received 29 March 2006; revised 29 April 2006
Available online 17 August 2006
Communicated by Matthias Beck

Abstract

Given $N \geqslant 2$ positive integers $a_{1}, a_{2}, \ldots, a_{N}$ with $\operatorname{GCD}\left(a_{1}, \ldots, a_{N}\right)=1$, let f_{N} denote the largest natural number which is not a positive integer combination of a_{1}, \ldots, a_{N}. This paper gives an optimal lower bound for f_{N} in terms of the absolute inhomogeneous minimum of the standard ($N-1$)-simplex. © 2006 Elsevier Inc. All rights reserved.

MSC: 11D85; 11H31; 52C17
Keywords: Absolute inhomogeneous minimum; Covering constant; Lattice; Simplex

1. Introduction and statement of results

Given $N \geqslant 2$ positive integers $a_{1}, a_{2}, \ldots, a_{N}$ with $\operatorname{GCD}\left(a_{1}, \ldots, a_{N}\right)=1$, the Frobenius problem asks for the largest natural number $g_{N}=g_{N}\left(a_{1}, \ldots, a_{N}\right)$ (called the Frobenius number) such that g_{N} has no representation as a non-negative integer combination of a_{1}, \ldots, a_{N}. In this paper, without loss of generality, we assume that $a_{1}<a_{2}<\cdots<a_{N}$. The simple statement of the Frobenius problem makes it attractive and the relevant bibliography is very large (see [14] and [11, Problem C7]). We will mention just few main results.

For $N=2$, the Frobenius number is given by an explicit formula due to W.J. Curran Sharp [3]:

$$
g_{2}\left(a_{1}, a_{2}\right)=\left(a_{1}-1\right)\left(a_{2}-1\right)-1 .
$$

[^0]The case $N=3$ was solved explicitly by Selmer and Beyer [20], using a continued fraction algorithm. Their result was simplified by Rödseth [15] and later by Greenberg [8]. No general formulas are known for $N \geqslant 4$. Upper bounds, among many others, include classical results by Erdős and Graham [5]

$$
g_{N} \leqslant 2 a_{N}\left[\frac{a_{1}}{N}\right]-a_{1}
$$

by Selmer [19]

$$
g_{N} \leqslant 2 a_{N-1}\left[\frac{a_{N}}{N}\right]-a_{N}
$$

and by Vitek [21]

$$
g_{N} \leqslant\left[\frac{\left(a_{2}-1\right)\left(a_{N}-2\right)}{2}\right]-1
$$

as well as more recent results by Beck, Diaz and Robins [2]

$$
g_{N} \leqslant \frac{1}{2}\left(\sqrt{a_{1} a_{2} a_{3}\left(a_{1}+a_{2}+a_{3}\right)}-a_{1}-a_{2}-a_{3}\right)
$$

and by Fukshansky and Robins [7], who produced an upper bound in terms of the covering radius of a lattice related to the integers a_{1}, \ldots, a_{N}.

For $N=3$, Davison [4] has found a sharp lower bound

$$
g_{3} \geqslant \sqrt{3 a_{1} a_{2} a_{3}}-a_{1}-a_{2}-a_{3},
$$

where the constant $\sqrt{3}$ cannot be replaced by any smaller constant. Rödseth [15] proved in the general case that

$$
g_{N} \geqslant\left((N-1)!a_{1} \cdots a_{N}\right)^{1 /(N-1)}-\sum_{i=1}^{N} a_{i}
$$

The present paper gives a sharp lower bound for the function

$$
f_{N}\left(a_{1}, \ldots, a_{N}\right)=g_{N}\left(a_{1}, \ldots, a_{N}\right)+\sum_{i=1}^{N} a_{i}
$$

(and thus for g_{N}) in terms of geometric characteristics of the standard ($N-1$)-simplex. Clearly, $f_{N}=f_{N}\left(a_{1}, \ldots, a_{N}\right)$ is the largest integer which is not a positive integer combination of a_{1}, \ldots, a_{N}.

Following the geometric approach developed in [12,13], we will make use of tools from the geometry of numbers. Recall that a family of sets in \mathbb{R}^{N-1} is a covering if their union equals \mathbb{R}^{N-1}. Given a set S and a lattice L, we say that L is a covering lattice for S if the family
$\{S+\boldsymbol{l}: \boldsymbol{l} \in L\}$ is a covering. Recall also that the inhomogeneous minimum of the set S with respect to the lattice L is the quantity

$$
\mu(S, L)=\inf \{\sigma>0: L \text { is a covering lattice of } \sigma S\}
$$

and the quantity

$$
\mu_{0}(S)=\inf \{\mu(S, L): \operatorname{det} L=1\}
$$

is called the absolute inhomogeneous minimum of S. If S is bounded and has inner points, then $\mu_{0}(S)$ does not vanish and is finite (see [10, Chapter 3]).

Let S_{N-1} be the standard simplex given by

$$
S_{N-1}=\left\{\left(x_{1}, \ldots, x_{N-1}\right): x_{i} \geqslant 0 \text { reals and } \sum_{i=1}^{N-1} x_{i} \leqslant 1\right\} .
$$

The main result of the paper shows that the constant $\mu_{0}\left(S_{N-1}\right)$ is a sharp lower bound for (suitably normalized) Frobenius number and integers with relatively small f_{N} are, roughly speaking, dense in \mathbb{R}^{N-1}.

Theorem 1.1.

(i) For $N \geqslant 3$ the inequality

$$
\begin{equation*}
\mu_{0}\left(S_{N-1}\right) \leqslant \frac{f_{N}\left(a_{1}, \ldots, a_{N}\right)}{\left(a_{1} \cdots a_{N}\right)^{1 /(N-1)}} \tag{1}
\end{equation*}
$$

holds.
(ii) For any $\epsilon>0$ and for any point $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N-1}\right)$ in \mathbb{R}^{N-1} there exist N integers $0<$ $a_{1}<a_{2}<\cdots<a_{N}$ with $\operatorname{GCD}\left(a_{1}, \ldots, a_{N}\right)=1$ such that

$$
\begin{gather*}
\left|\alpha_{i}-\frac{a_{i}}{a_{N}}\right|<\epsilon, \quad i=1,2, \ldots, N-1, \quad \text { and } \tag{2}\\
\frac{f_{N}\left(a_{1}, \ldots, a_{N}\right)}{\left(a_{1} \cdots a_{N}\right)^{1 /(N-1)}}<\mu_{0}\left(S_{N-1}\right)+\epsilon . \tag{3}
\end{gather*}
$$

Remark 1.1. Prof. J.L. Davison kindly informed the authors that the part (i) of Theorem 1.1 was proved by Rödseth in [16] without using geometry of numbers.

The quantity $\mu_{0}(S)$ is closely related to the covering constant $\Gamma(S)$ of the set S, where

$$
\begin{equation*}
\Gamma(S)=\sup \{\operatorname{det}(L): L \text { a covering lattice of } S\} . \tag{4}
\end{equation*}
$$

By [10, Theorem 1, Chapter 3, Section 21] (see also [1]) for each Lebesgue measurable set S

$$
\begin{equation*}
\Gamma(S) \leqslant \operatorname{vol}(S) \tag{5}
\end{equation*}
$$

and by Theorem 2 ibid.

$$
\begin{equation*}
\mu_{0}(S)=\frac{1}{\Gamma(S)^{1 /(N-1)}} \tag{6}
\end{equation*}
$$

The proof of Theorem 1 of [10, Chapter 3, Section 21] easily implies that the equality in (5) is attained only if S is a space-filler. Further, by [17, Theorem 6.3], packings of simplices cannot be very dense and, consequently, S_{N-1} is not a space-filler. Therefore, by (5) and (6),

$$
\begin{equation*}
\mu_{0}\left(S_{N-1}\right)>\frac{1}{\left(\operatorname{vol}\left(S_{N-1}\right)\right)^{1 /(N-1)}}=((N-1)!)^{1 /(N-1)} \tag{7}
\end{equation*}
$$

and we get the following result.
Corollary 1.1. For $N \geqslant 3$ the inequality

$$
\begin{equation*}
f_{N}\left(a_{1}, \ldots, a_{N}\right)>\left((N-1)!a_{1} \cdots a_{N}\right)^{1 /(N-1)} \tag{8}
\end{equation*}
$$

holds.
Inequality (8) with nonstrict sign was proved in [16]. The only known value of $\mu_{0}\left(S_{N-1}\right)$ is $\mu_{0}\left(S_{2}\right)=\sqrt{3}$ (see, e.g., [6]). In the latter case we get the following slight generalization of Theorems 2.2 and 2.3 of [4].

Corollary 1.2. For $N=3$ the inequality

$$
f_{3}\left(a_{1}, a_{2}, a_{3}\right) \geqslant\left(3 a_{1} a_{2} a_{3}\right)^{1 / 2}
$$

holds. Moreover, for any $\epsilon>0$ and for any point $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$ in \mathbb{R}^{2} there exist integers $0<a_{1}<$ $a_{2}<a_{3}$ with $\operatorname{GCD}\left(a_{1}, a_{2}, a_{3}\right)=1$ such that

$$
\begin{gathered}
\left|\alpha_{i}-\frac{a_{i}}{a_{3}}\right|<\epsilon, \quad i=1,2, \quad \text { and } \\
f_{3}\left(a_{1}, a_{2}, a_{3}\right)<\left((3+\epsilon) a_{1} a_{2} a_{3}\right)^{1 / 2}
\end{gathered}
$$

Let us consider a lattice M in \mathbb{R}^{N-1} generated by the vectors

$$
\begin{equation*}
\frac{1}{N-1} \boldsymbol{e}_{1}, \ldots, \frac{1}{N-1} \boldsymbol{e}_{N-1} \tag{9}
\end{equation*}
$$

where \boldsymbol{e}_{j} are the standard basis vectors. Since the fundamental cell of M w.r.t. the basis (9) belongs to S_{N-1}, the lattice M is a covering lattice for the simplex S_{N-1}. Therefore, by (4) and (6),

$$
\mu_{0}\left(S_{N-1}\right) \leqslant \frac{1}{(\operatorname{det} M)^{1 /(N-1)}}=N-1 .
$$

This implies the following result.

Corollary 1.3. For any $\epsilon>0$ and for any point $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N-1}\right)$ in \mathbb{R}^{N-1} there exist N integers $0<a_{1}<a_{2}<\cdots<a_{N}$ with $\operatorname{GCD}\left(a_{1}, \ldots, a_{N}\right)=1$ such that

$$
\begin{gathered}
\left|\alpha_{i}-\frac{a_{i}}{a_{N}}\right|<\epsilon, \quad i=1,2, \ldots, N-1, \quad \text { and } \\
\frac{f_{N}\left(a_{1}, \ldots, a_{N}\right)}{\left(a_{1} \cdots a_{N}\right)^{1 /(N-1)}}<N-1+\epsilon
\end{gathered}
$$

Remark 1.2. Note that inequality (7) and Stirling's formula imply that

$$
\liminf _{N \rightarrow \infty} \frac{\mu_{0}\left(S_{N-1}\right)}{N-1} \geqslant e^{-1}
$$

Thus, we know the asymptotic behavior of the optimal constant $\mu_{0}\left(S_{N-1}\right)$ up to the multiple e.
For $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$, define a lattice $L_{\boldsymbol{a}}$ by

$$
L_{\boldsymbol{a}}=\left\{\left(x_{1}, \ldots, x_{N-1}\right): x_{i} \text { integers and } \sum_{i=1}^{N-1} a_{i} x_{i} \equiv 0 \bmod a_{N}\right\} .
$$

The main tool for the proof of the part (ii) of Theorem 1.1 is the following result implicit in [18].
Theorem 1.2. For any lattice L with basis $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{N-1}, \boldsymbol{b}_{i} \in \mathbb{Q}^{N-1}, i=1, \ldots, N-1$, and for all rationals $\alpha_{1}, \ldots, \alpha_{N-1}$ with $0<\alpha_{1} \leqslant \alpha_{2} \leqslant \cdots \leqslant \alpha_{N-1} \leqslant 1$, there exists an infinite arithmetic progression \mathcal{P} and a sequence

$$
\boldsymbol{a}(t)=\left(a_{1}(t), \ldots, a_{N-1}(t), a_{N}(t)\right) \in \mathbb{Z}^{N}, \quad t \in \mathcal{P}
$$

such that $\operatorname{GCD}\left(a_{1}(t), \ldots, a_{N-1}(t), a_{N}(t)\right)=1$ and the lattice $L_{a(t)}$ has a basis

$$
\begin{gather*}
\boldsymbol{b}_{1}(t), \ldots, \boldsymbol{b}_{N-1}(t) \quad \text { with } \\
\frac{b_{i j}(t)}{d t}=b_{i j}+O\left(\frac{1}{t}\right), \quad i, j=1, \ldots, N-1, \tag{10}
\end{gather*}
$$

where $d \in \mathbb{N}$ is such that $d b_{i j}, d \alpha_{j} b_{i j} \in \mathbb{Z}$ for all $i, j=1, \ldots, N-1$. Moreover,

$$
\begin{gather*}
a_{N}(t)=\operatorname{det}(L) d^{N-1} t^{N-1}+O\left(t^{N-2}\right) \quad \text { and } \tag{11}\\
\alpha_{i}(t):=\frac{a_{i}(t)}{a_{N}(t)}=\alpha_{i}+O\left(\frac{1}{t}\right) \tag{12}
\end{gather*}
$$

For completeness, we give a proof of Theorem 1.2 in Section 4.

2. Proof of Theorem 1.1(i)

Recall that $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$ and put

$$
\alpha_{1}=\frac{a_{1}}{a_{N}}, \quad \ldots, \quad \alpha_{N-1}=\frac{a_{N-1}}{a_{N}}
$$

Define a simplex S_{a} by

$$
S_{\boldsymbol{a}}=\left\{\left(x_{1}, \ldots, x_{N-1}\right): x_{i} \geqslant 0 \text { reals and } \sum_{i=1}^{N-1} a_{i} x_{i} \leqslant 1\right\} .
$$

Theorem 2.5 of [12] states that

$$
\begin{equation*}
f_{N}\left(a_{1}, \ldots, a_{N}\right)=\mu\left(S_{\boldsymbol{a}}, L_{\boldsymbol{a}}\right) \tag{13}
\end{equation*}
$$

Observe that the inhomogeneous minimum $\mu(S, L)$ satisfies

$$
\mu(S, t L)=t \mu(S, L), \quad \mu(t S, L)=t^{-1} \mu(S, L)
$$

Thus, if we define

$$
\begin{aligned}
& S_{\boldsymbol{\alpha}}=a_{N} S_{\boldsymbol{a}}=\left\{\left(x_{1}, \ldots, x_{N-1}\right): x_{i} \geqslant 0 \text { reals and } \sum_{i=1}^{N-1} \alpha_{i} x_{i} \leqslant 1\right\}, \\
& L_{u}=a_{N}^{-1 /(N-1)} L_{\boldsymbol{a}}
\end{aligned}
$$

then

$$
\begin{equation*}
\mu\left(S_{\boldsymbol{a}}, L_{\boldsymbol{a}}\right)=a_{N}^{1+1 /(N-1)} \mu\left(S_{\boldsymbol{\alpha}}, L_{u}\right) \tag{14}
\end{equation*}
$$

Note that det $L_{\boldsymbol{a}}=a_{N}$. Thus the lattice L_{u} has determinant 1 and we have

$$
\begin{equation*}
\mu_{0}\left(S_{\alpha}\right) \leqslant \mu\left(S_{\alpha}, L_{u}\right) \tag{15}
\end{equation*}
$$

The simplices $\left(\alpha_{1} \cdots \alpha_{N-1}\right)^{1 /(N-1)} S_{\alpha}$ and S_{N-1} are equivalent up to a linear transformation of determinant 1. Therefore

$$
\begin{equation*}
\mu_{0}\left(S_{N-1}\right)=\frac{\mu_{0}\left(S_{\alpha}\right)}{\left(\alpha_{1} \cdots \alpha_{N-1}\right)^{1 /(N-1)}}, \tag{16}
\end{equation*}
$$

and by (15), (14) and (13) we have

$$
\mu_{0}\left(S_{N-1}\right) \leqslant \frac{\mu\left(S_{\alpha}, L_{u}\right)}{\left(\alpha_{1} \cdots \alpha_{N-1}\right)^{1 /(N-1)}}=\frac{\mu\left(S_{\boldsymbol{a}}, L_{\boldsymbol{a}}\right)}{a_{N}^{1+1 /(N-1)}\left(\alpha_{1} \cdots \alpha_{N-1}\right)^{1 /(N-1)}}=\frac{f_{N}\left(a_{1}, \ldots, a_{N}\right)}{\left(a_{1} \cdots a_{N}\right)^{1 /(N-1)}}
$$

3. Proof of Theorem 1.1(ii)

The proof is based on Theorem 1.2 and the following continuity property of the inhomogeneous minima. We say that a sequence S_{t} of star bodies in \mathbb{R}^{N-1} converges to a star body S if the sequence of distance functions of S_{t} converges uniformly on the unit ball in \mathbb{R}^{N-1} to the distance function of S. For the notion of convergence of a sequence of lattices to a given lattice we refer the reader to [10, Definition 4, p. 178].

Lemma 3.1. Let S_{t} be a sequence of star bodies in \mathbb{R}^{N-1} which converges to a bounded star body S and let L_{t} be a sequence of lattices in \mathbb{R}^{N-1} convergent to a lattice L. Then

$$
\lim _{t \rightarrow \infty} \mu\left(S_{t}, L_{t}\right)=\mu(S, L)
$$

Proof. The result follows from a much more general result of [9, Satz 1].
W.l.o.g., we may assume that $\boldsymbol{\alpha} \in \mathbb{Q}^{N-1}$ and

$$
\begin{equation*}
0<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{N-1}<1 \tag{17}
\end{equation*}
$$

For $\epsilon>0$ we can choose a lattice L_{ϵ} of determinant 1 with

$$
\begin{equation*}
\mu\left(S_{\alpha}, L_{\epsilon}\right)<\mu_{0}\left(S_{\alpha}\right)+\frac{\epsilon\left(\alpha_{1} \cdots \alpha_{N-1}\right)^{1 /(N-1)}}{2} \tag{18}
\end{equation*}
$$

The inhomogeneous minimum is independent of translation and rational lattices are dense in the space of all lattices. Thus, by Lemma 3.1, we may assume that $L_{\epsilon} \subset \mathbb{Q}^{N-1}$. Applying Theorem 1.2 to the lattice L_{ϵ} and the numbers $\alpha_{1}, \ldots, \alpha_{N-1}$, we get a sequence $\boldsymbol{a}(t)$, satisfying (10)-(12). Note also that, by (17),

$$
0<a_{1}(t)<a_{2}(t)<\cdots<a_{N}(t)
$$

for sufficiently large t.
Observe that identity (12) implies (2) with $a_{i}=a_{i}(t), i=1, \ldots, N$, for t large enough. Let us show that, for sufficiently large t, the inequality (3) also holds. Define a simplex $S_{\boldsymbol{\alpha}(t)}$ and a lattice L_{t} by

$$
\begin{aligned}
& S_{\boldsymbol{\alpha}(t)}=a_{N}(t) S_{\boldsymbol{a}(t)}=\left\{\left(x_{1}, \ldots, x_{N-1}\right): x_{i} \geqslant 0 \text { reals and } \sum_{i=1}^{N-1} \alpha_{i}(t) x_{i} \leqslant 1\right\}, \\
& L_{t}=a_{N}(t)^{-1 /(N-1)} L_{\boldsymbol{a}(t)} .
\end{aligned}
$$

By (10) and (11), the sequence L_{t} converges to the lattice L_{ϵ}. Next, the point $\boldsymbol{p}=$ $(1 /(2 N), \ldots, 1 /(2 N))$ is an inner point of the simplex S_{α} and all the simplices $S_{\alpha(t)}$ for sufficiently large t. By (12) and Lemma 3.1, the sequence $\mu\left(S_{\boldsymbol{\alpha}(t)}-\boldsymbol{p}, L_{t}\right)$ converges to $\mu\left(S_{\boldsymbol{\alpha}}-\boldsymbol{p}, L_{\epsilon}\right)$. Here we consider the sequence $\mu\left(S_{\boldsymbol{\alpha}(t)}-\boldsymbol{p}, L_{t}\right)$ instead of $\mu\left(S_{\boldsymbol{\alpha}(t)}, L_{t}\right)$ because
the distance functions of the family of star bodies in Lemma 3.1 need to converge on the unit ball. Now, since the inhomogeneous minimum is independent of translation, the sequence $\mu\left(S_{\alpha(t)}, L_{t}\right)$ converges to $\mu\left(S_{\alpha}, L_{\epsilon}\right)$. Consequently, by (12),

$$
\frac{\mu\left(S_{\alpha(t)}, L_{t}\right)}{\left(\alpha_{1}(t) \cdots \alpha_{N-1}(t)\right)^{1 /(N-1)}} \rightarrow \frac{\mu\left(S_{\alpha}, L_{\epsilon}\right)}{\left(\alpha_{1} \cdots \alpha_{N-1}\right)^{1 /(N-1)}}, \quad \text { as } t \rightarrow \infty
$$

and, by (13), (18) and (16),

$$
\frac{f_{N}\left(a_{1}(t), \ldots, a_{N}(t)\right)}{\left(a_{1}(t) \cdots a_{N}(t)\right)^{1 /(N-1)}}=\frac{\mu\left(S_{\alpha(t)}, L_{t}\right)}{\left(\alpha_{1}(t) \cdots \alpha_{N-1}(t)\right)^{1 /(N-1)}}<\mu_{0}\left(S_{N-1}\right)+\epsilon
$$

for sufficiently large t.

4. Proof of Theorem 1.2

Let us consider the matrices

$$
\left.\begin{array}{c}
B=\left(\begin{array}{ccccc}
b_{11} & b_{12} & \ldots & b_{1 N-1} & \sum_{i=1}^{N-1} \alpha_{i} b_{1 i} \\
b_{21} & b_{22} & \ldots & b_{2 N-1} & \sum_{i=1}^{N-1} \alpha_{i} b_{2 i} \\
\vdots & \vdots & & \vdots & \vdots \\
b_{N-11} & b_{N-12} & \ldots & b_{N-1 N-1} & \sum_{i=1}^{N-1} \alpha_{i} b_{N-1 i}
\end{array}\right) \text { and } \\
M
\end{array}=M\left(t, t_{1}, \ldots, t_{N-1}\right) \quad \begin{array}{ccccc}
d b_{11} t+t_{1} & d b_{12} t & \ldots & d b_{1 N-1} t & d \sum_{i=1}^{N-1} \alpha_{i} b_{1 i} t \\
d b_{21} t & d b_{22} t+t_{2} & \ldots & d b_{2 N-1} t & d \sum_{i=1}^{N-1} \alpha_{i} b_{2 i} t \\
\vdots & \vdots & & \vdots & \vdots \\
d b_{N-11} t & d b_{N-12} t & \ldots & d b_{N-1 N-1} t+t_{N-1} & d \sum_{i=1}^{N-1} \alpha_{i} b_{N-1 i} t
\end{array}\right) .
$$

Denote by $M_{i}=M_{i}\left(t, t_{1}, \ldots, t_{N-1}\right)$ and B_{i} the minors obtained by omitting the i th column in M or in B, respectively. Following the proof of Theorem 2 in [18], we observe that

$$
\begin{align*}
& \left|B_{N}\right|=\left|\operatorname{det}\left(b_{i j}\right)\right|=\operatorname{det} L \tag{19}\\
& \left|B_{i}\right|=\alpha_{i}\left|B_{N}\right|, \tag{20}\\
& M_{i}=d^{N-1} B_{i} t^{N-1}+\begin{array}{l}
\text { polynomial of degree less than } N-1 \text { in } t \\
\text { whose coefficients are functions of } t_{1}, \ldots, t_{N-1}
\end{array}, \tag{21}
\end{align*}
$$

and M_{1}, \ldots, M_{N} have no nonconstant common factor.
By $\left[18\right.$, Theorem 1] applied with $m=1, F=1$, and $F_{1 v}=M_{v}\left(t, t_{1}, \ldots, t_{N-1}\right), v=1, \ldots, N$, there exist integers $t_{1}^{*}, \ldots, t_{N-1}^{*}$ and an infinite arithmetic progression \mathcal{P} such that for $t \in \mathcal{P}$

$$
\operatorname{GCD}\left(M_{1}\left(t, t_{1}^{*}, \ldots, t_{N-1}^{*}\right), \ldots, M_{N}\left(t, t_{1}^{*}, \ldots, t_{N-1}^{*}\right)\right)=1
$$

Put

$$
\boldsymbol{a}(t)=\left(M_{1}\left(t, t_{1}^{*}, \ldots, t_{N-1}^{*}\right), \ldots,(-1)^{N-1} M_{N}\left(t, t_{1}^{*}, \ldots, t_{N-1}^{*}\right)\right), \quad t \in \mathcal{P} .
$$

Then the basis $\boldsymbol{b}_{1}(t), \ldots, \boldsymbol{b}_{N-1}(t)$ for $L_{\boldsymbol{a}(t)}$ satisfying the statement of Theorem 1.2 is given by the rows of the matrix obtained by omitting the N th column in the matrix $M\left(t, t_{1}^{*}, \ldots, t_{N-1}^{*}\right)$. The properties (19)-(21) of minors M_{i}, B_{i} imply the properties (10)-(12) of the sequence $\boldsymbol{a}(t)$, $t \in \mathcal{P}$.

Acknowledgments

The authors are especially grateful to Professors M. Henk and A. Schinzel for important comments and remarks that strongly improve the exposition. The authors also thank Professors I. Cheltsov, L. Fukshansky, L. Davison and J. Ramírez Alfonsín for very helpful and useful discussions.

References

[1] R.P. Bambah, On lattice coverings, Proc. Nat. Inst. Sci. India 19 (1953) 447-459.
[2] M. Beck, R. Diaz, S. Robins, The Frobenius problem, rational polytopes, and Fourier-Dedekind sums, J. Number Theory 96 (1) (2002) 1-21.
[3] W.J. Curran Sharp, Solution to Problem 7382, Mathematical Questions and Solutions from the Educational Times, vol. 41, C.F. Hodgson and Son, London, 1884.
[4] J.L. Davison, On the linear Diophantine problem of Frobenius, J. Number Theory 48 (3) (1994) 353-363.
[5] P. Erdős, R. Graham, On a linear Diophantine problem of Frobenius, Acta Arith. 21 (1972) 399-408.
[6] I. Fáry, Sur la densité des réseaux de domaines convexes, Bull. Soc. Math. France 78 (1950) 152-161.
[7] L. Fukshansky, S. Robins, Frobenius problem and the covering radius of a lattice, Discrete Comput. Geom, in press.
[8] H. Greenberg, Solution to a linear Diophantine equation for nonnegative integers, J. Algorithms 9 (3) (1988) 343353.
[9] P. Gruber, Zur Gitterüberdeckung des \mathbb{R}^{n} durch Sternkörper, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 176 (1967) 1-7.
[10] P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers, North-Holland, Amsterdam, 1987.
[11] R.K. Guy, Unsolved Problems in Number Theory, third ed., Problem Books in Mathematics. Unsolved Problems in Intuitive Mathematics, Springer, New York, 2004.
[12] R. Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica 12 (2) (1992) 161-177.
[13] R. Kannan, L. Lovász, Covering minima and lattice-point-free convex bodies, Ann. of Math. (2) 128 (3) (1988) 577-602.
[14] J.L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford Lecture Ser. Math. Appl., Oxford Univ. Press, New York, 2005.
[15] O. Rödseth, On a linear Diophantine problem of Frobenius, J. Reine Angew. Math. 301 (1978) 171-178.
[16] O. Rödseth, An upper bound for the h-range of the postage stamp problem, Acta Arith. 54 (4) (1990) 301-306.
[17] C.A. Rogers, Packing and Covering, Cambridge Tracts in Math. and Math. Phys., vol. 54, Cambridge Univ. Press, New York, 1964.
[18] A. Schinzel, A property of polynomials with an application to Siegel's lemma, Monatsh. Math. 137 (2002) 239-251.
[19] E. Selmer, On the linear Diophantine problem of Frobenius, J. Reine Angew. Math. 293/294 (1977) 1-17.
[20] E. Selmer, O. Beyer, On the linear Diophantine problem of Frobenius in three variables, J. Reine Angew. Math. 301 (1978) 161-170.
[21] Y. Vitek, Bounds for a linear Diophantine problem of Frobenius, J. London Math. Soc. (2) 10 (1975) 79-85.

[^0]: * Corresponding author. Fax: +44 1316506553.

 E-mail addresses: i.aliev@ed.ac.uk (I.M. Aliev), peter.gruber@tuwien.ac.at (P.M. Gruber).

