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Abstract

Given N � 2 positive integers a1, a2, . . . , aN with GCD(a1, . . . , aN ) = 1, let fN denote the largest
natural number which is not a positive integer combination of a1, . . . , aN . This paper gives an optimal
lower bound for fN in terms of the absolute inhomogeneous minimum of the standard (N − 1)-simplex.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and statement of results

Given N � 2 positive integers a1, a2, . . . , aN with GCD(a1, . . . , aN) = 1, the Frobenius prob-
lem asks for the largest natural number gN = gN(a1, . . . , aN) (called the Frobenius number) such
that gN has no representation as a non-negative integer combination of a1, . . . , aN . In this pa-
per, without loss of generality, we assume that a1 < a2 < · · · < aN . The simple statement of the
Frobenius problem makes it attractive and the relevant bibliography is very large (see [14] and
[11, Problem C7]). We will mention just few main results.

For N = 2, the Frobenius number is given by an explicit formula due to W.J. Curran Sharp [3]:

g2(a1, a2) = (a1 − 1)(a2 − 1) − 1.
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The case N = 3 was solved explicitly by Selmer and Beyer [20], using a continued fraction
algorithm. Their result was simplified by Rödseth [15] and later by Greenberg [8]. No general
formulas are known for N � 4. Upper bounds, among many others, include classical results by
Erdős and Graham [5]

gN � 2aN

[
a1

N

]
− a1,

by Selmer [19]

gN � 2aN−1

[
aN

N

]
− aN,

and by Vitek [21]

gN �
[
(a2 − 1)(aN − 2)

2

]
− 1,

as well as more recent results by Beck, Diaz and Robins [2]

gN � 1

2

(√
a1a2a3(a1 + a2 + a3) − a1 − a2 − a3

)
,

and by Fukshansky and Robins [7], who produced an upper bound in terms of the covering radius
of a lattice related to the integers a1, . . . , aN .

For N = 3, Davison [4] has found a sharp lower bound

g3 �
√

3a1a2a3 − a1 − a2 − a3,

where the constant
√

3 cannot be replaced by any smaller constant. Rödseth [15] proved in the
general case that

gN �
(
(N − 1)!a1 · · ·aN

)1/(N−1) −
N∑

i=1

ai.

The present paper gives a sharp lower bound for the function

fN(a1, . . . , aN) = gN(a1, . . . , aN) +
N∑

i=1

ai

(and thus for gN ) in terms of geometric characteristics of the standard (N − 1)-simplex. Clearly,
fN = fN(a1, . . . , aN) is the largest integer which is not a positive integer combination of
a1, . . . , aN .

Following the geometric approach developed in [12,13], we will make use of tools from the
geometry of numbers. Recall that a family of sets in RN−1 is a covering if their union equals
RN−1. Given a set S and a lattice L, we say that L is a covering lattice for S if the family
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{S + l: l ∈ L} is a covering. Recall also that the inhomogeneous minimum of the set S with
respect to the lattice L is the quantity

μ(S,L) = inf{σ > 0: L is a covering lattice of σS}
and the quantity

μ0(S) = inf
{
μ(S,L): detL = 1

}
is called the absolute inhomogeneous minimum of S. If S is bounded and has inner points, then
μ0(S) does not vanish and is finite (see [10, Chapter 3]).

Let SN−1 be the standard simplex given by

SN−1 =
{

(x1, . . . , xN−1): xi � 0 reals and
N−1∑
i=1

xi � 1

}
.

The main result of the paper shows that the constant μ0(SN−1) is a sharp lower bound for (suit-
ably normalized) Frobenius number and integers with relatively small fN are, roughly speaking,
dense in RN−1.

Theorem 1.1.

(i) For N � 3 the inequality

μ0(SN−1) � fN(a1, . . . , aN)

(a1 · · ·aN)1/(N−1)
(1)

holds.
(ii) For any ε > 0 and for any point α = (α1, . . . , αN−1) in RN−1 there exist N integers 0 <

a1 < a2 < · · · < aN with GCD(a1, . . . , aN) = 1 such that∣∣∣∣αi − ai

aN

∣∣∣∣ < ε, i = 1,2, . . . ,N − 1, and (2)

fN(a1, . . . , aN)

(a1 · · ·aN)1/(N−1)
< μ0(SN−1) + ε. (3)

Remark 1.1. Prof. J.L. Davison kindly informed the authors that the part (i) of Theorem 1.1 was
proved by Rödseth in [16] without using geometry of numbers.

The quantity μ0(S) is closely related to the covering constant Γ (S) of the set S, where

Γ (S) = sup
{
det(L): L a covering lattice of S

}
. (4)

By [10, Theorem 1, Chapter 3, Section 21] (see also [1]) for each Lebesgue measurable set S

Γ (S) � vol(S), (5)
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and by Theorem 2 ibid.

μ0(S) = 1

Γ (S)1/(N−1)
. (6)

The proof of Theorem 1 of [10, Chapter 3, Section 21] easily implies that the equality in (5) is
attained only if S is a space-filler. Further, by [17, Theorem 6.3], packings of simplices cannot
be very dense and, consequently, SN−1 is not a space-filler. Therefore, by (5) and (6),

μ0(SN−1) >
1

(vol(SN−1))1/(N−1)
= (

(N − 1)!)1/(N−1)
, (7)

and we get the following result.

Corollary 1.1. For N � 3 the inequality

fN(a1, . . . , aN) >
(
(N − 1)!a1 · · ·aN

)1/(N−1)
(8)

holds.

Inequality (8) with nonstrict sign was proved in [16]. The only known value of μ0(SN−1)

is μ0(S2) = √
3 (see, e.g., [6]). In the latter case we get the following slight generalization of

Theorems 2.2 and 2.3 of [4].

Corollary 1.2. For N = 3 the inequality

f3(a1, a2, a3) � (3a1a2a3)
1/2

holds. Moreover, for any ε > 0 and for any point α = (α1, α2) in R2 there exist integers 0 < a1 <

a2 < a3 with GCD(a1, a2, a3) = 1 such that∣∣∣∣αi − ai

a3

∣∣∣∣ < ε, i = 1,2, and

f3(a1, a2, a3) <
(
(3 + ε)a1a2a3

)1/2
.

Let us consider a lattice M in RN−1 generated by the vectors

1

N − 1
e1, . . . ,

1

N − 1
eN−1, (9)

where ej are the standard basis vectors. Since the fundamental cell of M w.r.t. the basis (9)
belongs to SN−1, the lattice M is a covering lattice for the simplex SN−1. Therefore, by (4)
and (6),

μ0(SN−1) � 1

(detM)1/(N−1)
= N − 1.

This implies the following result.
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Corollary 1.3. For any ε > 0 and for any point α = (α1, . . . , αN−1) in RN−1 there exist N

integers 0 < a1 < a2 < · · · < aN with GCD(a1, . . . , aN) = 1 such that

∣∣∣∣αi − ai

aN

∣∣∣∣ < ε, i = 1,2, . . . ,N − 1, and

fN(a1, . . . , aN)

(a1 · · ·aN)1/(N−1)
< N − 1 + ε.

Remark 1.2. Note that inequality (7) and Stirling’s formula imply that

lim inf
N→∞

μ0(SN−1)

N − 1
� e−1.

Thus, we know the asymptotic behavior of the optimal constant μ0(SN−1) up to the multiple e.

For a = (a1, a2, . . . , aN), define a lattice La by

La =
{

(x1, . . . , xN−1): xi integers and
N−1∑
i=1

aixi ≡ 0 mod aN

}
.

The main tool for the proof of the part (ii) of Theorem 1.1 is the following result implicit in [18].

Theorem 1.2. For any lattice L with basis b1, . . . ,bN−1, bi ∈ QN−1, i = 1, . . . ,N − 1, and for
all rationals α1, . . . , αN−1 with 0 < α1 � α2 � · · · � αN−1 � 1, there exists an infinite arithmetic
progression P and a sequence

a(t) = (
a1(t), . . . , aN−1(t), aN(t)

) ∈ ZN, t ∈ P,

such that GCD(a1(t), . . . , aN−1(t), aN(t)) = 1 and the lattice La(t) has a basis

b1(t), . . . ,bN−1(t) with

bij (t)

dt
= bij + O

(
1

t

)
, i, j = 1, . . . ,N − 1, (10)

where d ∈ N is such that dbij , dαjbij ∈ Z for all i, j = 1, . . . ,N − 1. Moreover,

aN(t) = det(L)dN−1tN−1 + O
(
tN−2) and (11)

αi(t) := ai(t)

aN(t)
= αi + O

(
1

t

)
. (12)

For completeness, we give a proof of Theorem 1.2 in Section 4.
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2. Proof of Theorem 1.1(i)

Recall that a = (a1, a2, . . . , aN) and put

α1 = a1

aN

, . . . , αN−1 = aN−1

aN

.

Define a simplex Sa by

Sa =
{

(x1, . . . , xN−1): xi � 0 reals and
N−1∑
i=1

aixi � 1

}
.

Theorem 2.5 of [12] states that

fN(a1, . . . , aN) = μ(Sa,La). (13)

Observe that the inhomogeneous minimum μ(S,L) satisfies

μ(S, tL) = tμ(S,L), μ(tS,L) = t−1μ(S,L).

Thus, if we define

Sα = aNSa =
{

(x1, . . . , xN−1): xi � 0 reals and
N−1∑
i=1

αixi � 1

}
,

Lu = a
−1/(N−1)
N La

then

μ(Sa,La) = a
1+1/(N−1)
N μ(Sα,Lu). (14)

Note that detLa = aN . Thus the lattice Lu has determinant 1 and we have

μ0(Sα) � μ(Sα,Lu). (15)

The simplices (α1 · · ·αN−1)
1/(N−1)Sα and SN−1 are equivalent up to a linear transformation of

determinant 1. Therefore

μ0(SN−1) = μ0(Sα)

(α1 · · ·αN−1)1/(N−1)
, (16)

and by (15), (14) and (13) we have

μ0(SN−1) � μ(Sα,Lu)

(α1 · · ·αN−1)1/(N−1)
= μ(Sa,La)

a
1+1/(N−1)
N (α1 · · ·αN−1)1/(N−1)

= fN(a1, . . . , aN)

(a1 · · ·aN)1/(N−1)
.
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3. Proof of Theorem 1.1(ii)

The proof is based on Theorem 1.2 and the following continuity property of the inhomoge-
neous minima. We say that a sequence St of star bodies in RN−1 converges to a star body S

if the sequence of distance functions of St converges uniformly on the unit ball in RN−1 to the
distance function of S. For the notion of convergence of a sequence of lattices to a given lattice
we refer the reader to [10, Definition 4, p. 178].

Lemma 3.1. Let St be a sequence of star bodies in RN−1 which converges to a bounded star
body S and let Lt be a sequence of lattices in RN−1 convergent to a lattice L. Then

lim
t→∞μ(St ,Lt ) = μ(S,L).

Proof. The result follows from a much more general result of [9, Satz 1]. �
W.l.o.g., we may assume that α ∈ QN−1 and

0 < α1 < α2 < · · · < αN−1 < 1. (17)

For ε > 0 we can choose a lattice Lε of determinant 1 with

μ(Sα,Lε) < μ0(Sα) + ε(α1 · · ·αN−1)
1/(N−1)

2
. (18)

The inhomogeneous minimum is independent of translation and rational lattices are dense in
the space of all lattices. Thus, by Lemma 3.1, we may assume that Lε ⊂ QN−1. Applying The-
orem 1.2 to the lattice Lε and the numbers α1, . . . , αN−1, we get a sequence a(t), satisfying
(10)–(12). Note also that, by (17),

0 < a1(t) < a2(t) < · · · < aN(t)

for sufficiently large t .
Observe that identity (12) implies (2) with ai = ai(t), i = 1, . . . ,N , for t large enough. Let

us show that, for sufficiently large t , the inequality (3) also holds. Define a simplex Sα(t) and a
lattice Lt by

Sα(t) = aN(t)Sa(t) =
{

(x1, . . . , xN−1): xi � 0 reals and
N−1∑
i=1

αi(t)xi � 1

}
,

Lt = aN(t)−1/(N−1)La(t).

By (10) and (11), the sequence Lt converges to the lattice Lε . Next, the point p =
(1/(2N), . . . ,1/(2N)) is an inner point of the simplex Sα and all the simplices Sα(t) for
sufficiently large t . By (12) and Lemma 3.1, the sequence μ(Sα(t) − p,Lt ) converges to
μ(Sα − p,Lε). Here we consider the sequence μ(Sα(t) − p,Lt ) instead of μ(Sα(t),Lt ) because
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the distance functions of the family of star bodies in Lemma 3.1 need to converge on the unit ball.
Now, since the inhomogeneous minimum is independent of translation, the sequence μ(Sα(t),Lt )

converges to μ(Sα,Lε). Consequently, by (12),

μ(Sα(t),Lt )

(α1(t) · · ·αN−1(t))1/(N−1)
→ μ(Sα,Lε)

(α1 · · ·αN−1)1/(N−1)
, as t → ∞,

and, by (13), (18) and (16),

fN(a1(t), . . . , aN(t))

(a1(t) · · ·aN(t))1/(N−1)
= μ(Sα(t),Lt )

(α1(t) · · ·αN−1(t))1/(N−1)
< μ0(SN−1) + ε

for sufficiently large t .

4. Proof of Theorem 1.2

Let us consider the matrices

B =

⎛
⎜⎜⎜⎜⎝

b11 b12 . . . b1N−1
∑N−1

i=1 αib1 i

b21 b22 . . . b2N−1
∑N−1

i=1 αib2 i

...
...

...
...

bN−1 1 bN−1 2 . . . bN−1N−1
∑N−1

i=1 αibN−1 i

⎞
⎟⎟⎟⎟⎠ and

M = M(t, t1, . . . , tN−1)

=

⎛
⎜⎜⎜⎜⎝

db11t + t1 db12t . . . db1N−1t d
∑N−1

i=1 αib1 i t

db21t db22t + t2 . . . db2N−1t d
∑N−1

i=1 αib2 i t

...
...

...
...

dbN−1 1t dbN−1 2t . . . dbN−1N−1t + tN−1 d
∑N−1

i=1 αibN−1 i t

⎞
⎟⎟⎟⎟⎠ .

Denote by Mi = Mi(t, t1, . . . , tN−1) and Bi the minors obtained by omitting the ith column in M

or in B , respectively. Following the proof of Theorem 2 in [18], we observe that

|BN | = ∣∣det(bij )
∣∣ = detL, (19)

|Bi | = αi |BN |, (20)

Mi = dN−1Bit
N−1 + polynomial of degree less than N − 1 in t

whose coefficients are functions of t1, . . . , tN−1
, (21)

and M1, . . . ,MN have no nonconstant common factor.
By [18, Theorem 1] applied with m = 1, F = 1, and F1ν = Mν(t, t1, . . . , tN−1), ν = 1, . . . ,N ,

there exist integers t∗1 , . . . , t∗N−1 and an infinite arithmetic progression P such that for t ∈ P

GCD
(
M1

(
t, t∗1 , . . . , t∗N−1

)
, . . . ,MN

(
t, t∗1 , . . . , t∗N−1

)) = 1.
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Put

a(t) = (
M1

(
t, t∗1 , . . . , t∗N−1

)
, . . . , (−1)N−1MN

(
t, t∗1 , . . . , t∗N−1

))
, t ∈P .

Then the basis b1(t), . . . ,bN−1(t) for La(t) satisfying the statement of Theorem 1.2 is given by
the rows of the matrix obtained by omitting the N th column in the matrix M(t, t∗1 , . . . , t∗N−1).
The properties (19)–(21) of minors Mi , Bi imply the properties (10)–(12) of the sequence a(t),
t ∈P .

Acknowledgments

The authors are especially grateful to Professors M. Henk and A. Schinzel for important
comments and remarks that strongly improve the exposition. The authors also thank Profes-
sors I. Cheltsov, L. Fukshansky, L. Davison and J. Ramírez Alfonsín for very helpful and useful
discussions.

References

[1] R.P. Bambah, On lattice coverings, Proc. Nat. Inst. Sci. India 19 (1953) 447–459.
[2] M. Beck, R. Diaz, S. Robins, The Frobenius problem, rational polytopes, and Fourier–Dedekind sums, J. Number

Theory 96 (1) (2002) 1–21.
[3] W.J. Curran Sharp, Solution to Problem 7382, Mathematical Questions and Solutions from the Educational Times,

vol. 41, C.F. Hodgson and Son, London, 1884.
[4] J.L. Davison, On the linear Diophantine problem of Frobenius, J. Number Theory 48 (3) (1994) 353–363.
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