MRI-GUIDED APPROACH TO LOCALIZE AND ABLATE GAPS IN REPEATED ATRIAL FIBRILLATION ABLATION PROCEDURE: A PILOT STUDY

Poster Contributions
Poster Sessions, Expo North
Sunday, March 10, 2013, 3:45 p.m.–4:30 p.m.

Session Title: Arrhythmias: AF/SVT VII
Abstract Category: 4. Arrhythmias: AF/SVT
Presentation Number: 1236-35

Authors: *Felipe Bisbal, Esther Guiu, Antonio Berruezo, Pilar Cabanas, Susana Prat-Gonzalez, Cesar Garrido, David Andreu, Juan Fernandez-Armenta, Barbara Vidal, Teresa M. Caralt, Josep Brugada, Lluis Mont, Hospital Clinic, Barcelona, Spain, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain*

Background: The presence of gaps in prior pulmonary vein (PV) isolation (PVI) ablation lesions may be the cause of procedural failure. Delayed-enhanced (DE) cardiac magnetic resonance (CMR) allows the identification of radiofrequency (RF) lesions and gaps (CMR gaps). The present study aimed to test the usefulness of a new DE-CMR guided approach to ablate gaps in repeat procedures.

Methods: A 3D DE-CMR volume-rendered left atrial reconstruction (3D model) was created after manually segmenting endocardium and epicardium. The pixel signal intensity map was projected on the 3D model and color-coded. The 3D model was then imported into the navigation system. RF was delivered targeting the CMR gaps, blinded to electrical data.

Results: A series of 6 patients were included (61±7 years, 50% with paroxysmal AF, mean time from prior PVI of 17±7 months). 3 patients had additional roof line. In total, 37 CMR gaps were identified around 22 PVs and 7 at the roof line, with a mean of 7.3 gaps/patient and a mean gap length of 6.3 mm. 18/22 PVs were electrically reconnected (mean of 3/patient). All reconnected PVs presented CMR gaps, with electrical-CMR concordance of 94%. Guided by the 3D model, isolation of all PVs was achieved after a mean of 2.8±1.8 RF applications/gap (18.2±10.5/patient) and 124±86 seconds/gap (869±730 seconds/patient).

Conclusion: DE-CMR is a useful tool to guide the repeat PVI procedure by accurately identifying and locating the gaps, with the potential of reducing procedure duration and RF application time.