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Abstract

Weconsider aPoissonmodel, where themeandepends on certain covariates in a log-linearwaywith
unknown regression parameters. Someor all of the covariates aremeasuredwith errors. The covariates
as well as the measurement errors are both jointly normally distributed, and the error covariance
matrix is supposed to be known. Three consistent estimators of the parameters—the corrected score,
a structural, and the quasi-score estimators—are compared to each other with regard to their relative
(asymptotic) efficiencies. The paper extends an earlier result for a scalar covariate.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The Poisson regression model is one of the basic models used to analyze count data, see
[3,17]. The response variableYhas a Poisson distribution with a parameter� that depends
log-linearly on a vector of covariatesX: log � = �0 + ��

x X. The regression parameters
� = (�0,�

�
x )

� are to be estimated. (Here� is the transposition sign).
When working with this model, it is often assumed that the covariates are measured

without errors, and then maximum likelihood (ML) leads to consistent and asymptotically
efficient estimates of the regression parameters. It is, however, well-known that the presence
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of measurement errorsU in the covariates destroys this nice picture; for the linear model
see[5,6,13,16]. The naive ML estimator, which does not take the errors into account and
works withW = X + U in place ofX, is asymptotically biased.
In order to eliminate this bias, several methods have been proposed, see[3,4]. Most of

them depend on the assumption that the error variances and covariances are known, an
assumption that we also adopt.
The corrected score estimator is based on the log-likelihood function (or, alternatively, the

score function) of the error-free model corrected for the measurement error. This approach
has been promoted by Stefanski[14] and Nakamura[12]; for its application to the Poisson
model see[4]. This approach does not utilize the distribution of the covariatesX. It is
therefore a so-called functional method.
By contrast, structural methods work with the assumption that the distribution ofX is

known, possibly except for a finite number of unknown parameters. Here we assume that
X is Gaussian. A well-known method within this class is based on a quasi-score function
that is constructed using the conditional mean and variance ofY givenW . The resulting
(structural) quasi-score estimator is consistent and asymptotically normal. We here propose
another, simpler, structural estimator that only uses the conditional mean ofY givenW.
It can be constructed either by solving an appropriate unbiased estimating equation or,
equivalently, by maximizing a criterion function, both based on conditioningYonW. The
resulting structural estimator may not be efficient as compared to the quasi-score estimator,
but it is much simpler, and it also serves as an intermediate type of estimator when it comes
to comparing the relative efficiency of corrected score and quasi-score estimators.
The purpose of the paper is to compare the asymptotic covariance matrices of the three

consistent estimators of� mentioned above: corrected score, structural, and quasi-score
estimator. It turns out that the covariance matrices can be ordered according to the Loewner
order relation, the corrected score estimator having the largest covariancematrix. This result
holds true for any values of the error variances.
For small error variances the covariance matrices tend to become equal up the order of

squared error variances. This result generalizes a corresponding result for the scalar case
found in[9].
The paper is an extension of the scalar case, see[11], to the case of a vector valued

covariateX. The elements ofX need not all be measured with errors, some can be free of
errors. It is an advantage of this extension that error-ridden and error-free covariates can be
treated simultaneously, see also[2].
Section2serves to introduce thePoissonmodel. InSection3, thecorrectedscoreestimator

is introduced and its asymptotic covariance matrix is determined. The same is done for the
structural estimator in Section4, and in Section5the two covariancematrices are compared.
A further comparison with the quasi-score estimator is accomplished in Section6. Section
7 deals with small measurement errors, and Section8 concludes with some additional
remarks.

2. The model

We consider the joint distribution of an integer valued random variableY and ap-
dimensional random vectorX.X is normally distributed with mean vector�x and a positive
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definite covariance matrix�x :

X ∼ N(�x,�x).

The conditional distribution ofYgivenX is a Poisson distribution with parameter�, which
is the conditional expectation ofYgivenX:

� = E(Y |X).
The dependence of� onX is given by

� = �(X,�) = exp(�0 + ��
x X),

where� = (�0,�
�
x )

�, �0 and�x being the unknown parameters of interest.
Weassume that all or someof the componentsof the covariate vectorXcannot beobserved

directly. Instead we observe thep-dimensional surrogate variableW, which is related toX
by the equation

W = X + U,
whereU is an unobservable measurement error vector, which is assumed to be independent
of X andY. We further assume thatU ∼ N(0,�u) and that�u is known. If a component of
X can be observed without measurement error, the corresponding component ofU vanishes
and the corresponding rowand columnof�u are zero. Thus�u neednot be positive definite.
We observen independent realizations of(Y,W) denoted by(Yi,Wi), i = 1, . . . , n,

from which�0 and�x are to be estimated.
Apart from�0 and�x , there are also the nuisance parameters�x and�x , which typically

have to be estimated as well. This can be done easily by computing

�̂w = W := 1

n

n∑
i=1

Wi and �̂w = Sw := 1

n

n∑
i=1

(Wi −W)(Wi −W)�

and settinĝ�x = �̂w and�̂x = �̂w−�u, assuming that the latter matrix is positive definite.
Here, however, we suppose that�x and�x are known. This assumption is convenient when
it comes to comparing the asymptotic covariance matrices of various estimators of�. The
assumption may be appropriate for cases where the distribution ofX has been studied with
a lot of data in advance of the main study of interest.
We suppose that the true value of� lies in the interior of a prespecified compact subset

� of Rp+1.

3. The corrected score estimator

3.1. The estimator

The log-likelihood of the error free model is given by

QL(b) =
n∑
i=1

[Yi ln �(Xi, b)− �(Xi, b)] (1)
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with b = (b0, b
�
x )

� ∈ � and�(Xi, b) = exp(b0 + b�
x Xi). If we replace the unobservable

variablesXi by the observable surrogatesWi , we arrive at the criterion function for the
so-called naive estimator, which is found by maximizing

Qnaive(b) =
n∑
i=1

[Yi ln �(Wi, b)− �(Wi, b)], b ∈ �.

The resulting estimator̂�naive would be the ML estimator ifW were measured without
errors, i.e., ifW = X, and in this case it would be consistent. But asXi has been replaced
byWi , the estimator̂�naive is inconsistent. To construct a consistent estimator, we have to
correct for the measurement error. Let us denote a typical term of the right-hand side of (1),
dropping the indexi, by

q(X, Y, b) = Y ln �(X, b)− �(X, b).

We are looking for a “corrected” functionqcor(W, Y, b), such that

E(qcor(W, Y, b) |X, Y ) = q(X, Y, b),

see[4, Chapter 6]. Such a function is given by

qcor = Y ln �(W, b)− exp(−1
2b

�
x �ubx)�(W, b) (2)

because

E[ln �(W, b) |X] = E(b0 + b�
x W |X) = b0 + b�

x X = ln �(X, b)

and

E[�(W, b) |X] = exp(b0 + b�
x X)E exp(b�

x U) = �(X, b)exp(12b
�
x �ubx),

see also Lemma1 below. The corresponding corrected criterion function is

Qcor(b) =
n∑
i=1

[Yi ln �(Wi, b)− exp(−1
2b

�
x �ubx)�(Wi, b)],

and the estimator̂�cor is a measurable solution to

�̂cor ∈ arg max
b∈�

Qcor(b).

Note that�̂cor is a solution to the corrected unbiased estimating equation

�
�b
Qcor(b) = 0.

It is therefore called a corrected score estimator. This estimator is strongly consistent, and√
n(�̂cor − �) converges in distribution toN(0,�cor), where�cor can be found by the

following sandwich formula.
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Define the corrected score function by

S(W, Y, b) = �
�b
qcor(W, Y, b)

and letS = S(W, Y,�) and

A = − E
�S
��� , B = cov S. (3)

Then, see[4, Appendix A3; 10],

�cor = A−1BA−�. (4)

We are going to evaluate this matrix. We will see thatA is nonsingular.

3.2. A lemma

In the sequel, we will often use the following easy to prove lemma and its corollaries.
(For special cases see (6)–(8) in[12].)

Lemma 1. LetW ∼ N(�w,�w) and let f be an arbitrary function for which the following
expectation exists. Then, with �(W, b) = exp(b0 + b�

x W),

E[f (W)�(W, b)] = exp(b0 + b�
x �w + 1

2b
�
x �wbx)E[f (W + �wbx)]. (5)

Proof. LetZ ∼ N(0, I ). ThenWand�w + �
1
2
wZ have the same distribution and therefore

E[f (W)�(W, b)] = E[f (�w + �
1
2
wZ)�(�w + �

1
2
wZ, b)]

= (2�)− p
2

∫
f (�w + �

1
2
wz)exp(b0 + b�

x �w + b�
x �

1
2
wz− 1

2z
�z) dz

= (2�)−
p
2 exp(b0 + b�

x �w + 1
2b

�
x �wbx)

×
∫
f (�w + �

1
2
wz)exp[−1

2(z− �
1
2
wbx)

�(z− �
1
2
wbx)] dz

= exp(b0 + b�
x �w + 1

2b
�
x �wbx)E[f (�w + �

1
2
wZ + �wbx)],

which is equal to the right-hand side of (5). �
Lemma1 has two corollaries. The first one follows from Lemma1 by applying it to the

conditional distribution ofW givenX, which isW |X ∼ N(X,�u), and by replacing�w
and�w with X and�u, respectively.

Corollary 1. Let W |X ∼ N(X,�u) and let f be an arbitrary function for which the
following expectation exists. Then, with �(W, b) = exp(b0 + b�

x W),

E[f (W)�(W, b) |X] = exp(12b
�
x �ubx)�(X, b)E[f (W + �ubx) |X]. (6)
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For the second corollary, simply note that�2(W, b) = �(W,2b).

Corollary 2. With the assumptions of Lemma1,

E[f (W)�2(W, b)] = exp(2b0 + 2b�
x �w + 2b�

x �wbx)E[f (W + 2�wbx)] (7)

and with the assumptions of Corollary1,

E[f (W)�2(W, b) |X] = exp(2b�
x �ubx)�

2(X, b)E[f (W + 2�ubx) |X]. (8)

3.3. Evaluation of A

We have

S =

 Y − e−1

2��
x �u�x�(W,�)

YW − (W − �u�x)e
−1
2��

x �u�x�(W,�)


 (9)

and

− �S
��� = e

−1
2��

x �u�x�(W,�)
(

1 (W − �u�x)
�

W − �u�x (W − �u�x)(W − �u�x)
� − �u

)
.

(10)

Taking the expectation of (10) and applying Lemma1with b = � and noting that�w = �x
and�w = �x + �u, we find

A= e�0+��
x �x+1

2��
x �x�xE

(
1 (W + �x�x)

�
W + �x�x (W + �x�x)(W + �x�x)

� − �u

)

= e�0+��
x �x+1

2��
x �x�x

(
1 (�x + �x�x)

�
�x + �x�x (�x + �x�x)(�x + �x�x)

� + �x

)
. (11)

Note thatA turns out to be symmetrical. InvertingA, we get from (11)

A−1 = e−(�0+��
x �x+1

2��
x �x�x)

×
( (

�x+�x�x
)� �−1

x

(
�x+�x�x

)+ 1 −(�−1
x �x+�x)

�
−(�−1

x �x + �x) �−1
x

)
. (12)

3.4. Evaluation of B

Hereafter, in symmetrical matrices, we will often write down only one of the two corre-
sponding symmetrical entries.
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We have from (9) with � = �(W,�):

SS� =




Y 2 Y 2W�

−2Ye−
1
2��

x �u�x� −Y (2W − �u�x)
�e−

1
2��

x �u�x�

+e−��
x �u�x�2 +(W − �u�x)

�e−��
x �u�x�2

Y 2WW�

· · · −Y [W(W − �u�x)
� + (W − �u�x)W

�]
×e−1

2��
x �u�x�

+(W − �u�x)(W − �u�x)
�e−��

x �u�x�2



. (13)

We observe thatES = 0. This follows by applying Corollary1 with b = � to the
evaluation ofE(S |X). As to the various parts ofS in (9), we find

E(Y |X) = �(X,�),

e
−1
2��

x �u�xE[�(W,�) |X] = �(X,�),
E(YW |X) = E[E(YW |X, Y ) |X] = E(YX |X) = �(X,�)X,

e
−1
2��

x �u�xE[(W − �u�x)�(W,�) |X] = �(X,�)X

and thusE(S |X) = 0. HenceB can be written as

B = ESS�. (14)

Applying Corollaries1 and2 (8) with b = �, we find from (13) with � := �(X,�):

E
(
SS� |X, Y

)

=




Y 2 − 2Y�

+e��
x �u�x�2

Y 2X� − Y (2X + �u�x)
��

+e��
x �u�x (X + �u�x)

��2

. . .

Y 2(XX� + �u)
−Y [(X + �u�x)X

� +X(X + �u�x)
�]�

−2Y�u�

+e��
x �u�x

[
(X + �u�x)(X + �u�x)

� + �u
]
�2



. (15)

Remember that by the properties of the Poisson distribution

E(Y 2 |X) = �(X,�)+ �2(X,�).

Therefore, taking the expectation of (15) with respect toYand using again the abbreviation
� = �(X,�), we get

E(SS� |X) = �

(
1 X�

X XX� + �u

)

+�2




−1+e��
x �u�x −X� − ��

x �u
+e��

x �u�x (X + �u�x)
�

(XX�+�u)

· · · −[(X+�u�x)X
� +X(X+�u�x)

�] − 2�u
+e��

x �u�x [(X + �u�x)(X + �u�x)
� + �u]
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= �
(
1 X�
X XX� + �u

)

+(e��
x �u�x − 1)�2

(
1 X� + ��

x �u
· · · (X + �u�x)(X + �u�x)

� + �u

)

+�2
(
0 0
0 �u�x�

�
x �u

)
.

Applying again Lemma1andCorollary2 (7), but nowwithWreplaced byX ∼ N(�x,�x),
we finally get

B = E[E(SS� |X)] =
= exp(�0 + ��

x �x + 1
2�

�
x �x�x)

×
(

1 (�x + �x�x)
�

· · · (�x + �x�x)(�x + �x�x)
� + �w

)

+exp(2�0 + 2��
x �x + 2��

x �x�x)(e
��
x �u�x − 1)

×
(

1
[
�x + (�w + �x)�x

]�
· · · [�x + (�w + �x)�x

] [
�x + (�w + �x)�x

]� + �w

)

+exp(2�0 + 2��
x �x + 2��

x �x�x)
(
0 0
0 �u�x�

�
x �u

)
. (16)

3.5. Change of basis

In order to simplify the expressions forA andB, see (11) and (16), we introduce

g := �x + �x�x

and

R :=
(
1 g�
0 I

)
.

Then

A = R�A1R (17)

with

A1 = exp(�0 + ��
x �x + 1

2�
�
x �x�x)

(
1 0
0 �x

)
(18)

and

B = R�B1R (19)
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with

B1 = exp(�0 + ��
x �x + 1

2�
�
x �x�x)

(
1 0
0 �w

)

+exp(2�0 + 2��
x �x + 2��

x �x�x)(e
��
x �u�x − 1)

×
(

1 ��
x �w

�w�x �w�x�
�
x �w + �w

)

+exp(2�0 + 2��
x �x + 2��

x �x�x)
(
0 0
0 �u�x�

�
x �u

)
. (20)

Here we used the identity(
1 0
g I

)(
1 h�
h hh� +H

)(
1 g�
0 I

)
=
(

1 (g + h)�
g + h (g + h)(g + h)� +H

)
. (21)

3.6. Final expression for�cor

From (4), (17), and (19) we have

R�corR
� = A−1

1 B1A
−1
1

and hence, by (18) and (20),

R�corR
� = e−(�0+��

x �x+1
2��

x �x�x)
(
1 0
0 �−1

x �w�−1
x

)

+(e��
x �w�x − e��

x �x�x )

(
1 ��

x �w�−1
x

· · · �−1
x �w�x�

�
x �w�−1

x +�−1
x �w�−1

x

)

+e��
x �x�x

(
0 0
0 �−1

x �u�x�
�
x �u�−1

x

)
. (22)

4. A simple structural estimator

4.1. The estimator

The corrected score estimator is constructed without using the distribution ofX. (In the
previous section we used the distribution ofX only in order to evaluate the asymptotic
covariance matrix of the corrected score estimator�̂cor.) There is, however, a completely
different approach to theconstructionof consistent estimators,whichutilizes thedistribution
ofX, here specifically the fact thatX ∼ N(�x,�x).The idea is to set up unbiased estimating
equations with the help of the conditional mean and possibly also the conditional variance
of Y givenX. We call estimators originating as the solution to such estimating equations
structural estimators because, in the theory of measurement error models, a model with a
well-specified distribution for the variableX is often called a structural model.
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A simple structural estimator can be defined via the following criterion function. Denote
the conditional expectation ofYgivenWby

E(Y |W) =: m(W,�) (23)

and replace�(Xi, b) in (1) with m(Wi, b), then

Qs(b) =
n∑
i=1

[Yi ln m(Wi, b)−m(Wi, b)] (24)

can be used as a criterion function, which yields a consistent structural estimator as a
measurable solution to

�̂s ∈ arg max
b∈�

Qs(b).

Asby assumption� is an interior point of�, themaximum is eventually (i.e., for sufficiently
largen) found by solving the equation

�Qs(b)

�b
=

n∑
i=1

Yi −m(Wi, b)
m(Wi, b)

�m(Wi, b)
�b

= 0. (25)

This is an unbiased estimating equation. Indeed, owing to (23),

E

(
�Qs(b)

�b

∣∣∣∣W1, . . . ,Wn

)
= 0

for b = �.Consistency of̂�s can be inferred from the general theory of unbiased estimating
equations, see, e.g.,[8]. However, a simpler proof can be given via the criterion function
(24) along similar lines as the conventional consistency proof for the ML estimator in an
error-free model, see also[11].
The structural estimator is also asymptotically normal:

√
n(�̂s− �) −→ N(0,�s)

with anasymptotic covariancematrixwhich canbe computedby a sandwich formula similar
to (4). To this purpose, we denote a typical term of (24) by

qs(W, Y, b) = Y ln m(W, b)−m(W, b), (26)

where the indexi has been dropped, and define the structural estimating function for�̂s by

Ss(W, Y, b) = Y −m(W, b)
m(W, b)

�m(W, b)
�b

. (27)

Let Ss := Ss(W, Y,�) and let

As = −E
�Ss
��� , Bs = covSs. (28)
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ThenAs is nonsingular and

�s = A−1
s BsA

−�
s . (29)

Before we are going to evaluate this matrix we have to determinem(W,�).

4.2. The conditional mean

As X andU are Gaussian, the conditional distribution ofX givenW = X + U is also
Gaussian:

X |W ∼ N(�(W), T ),

where

T = �x − �x�−1
w �x = �u − �u�−1

w �u (30)

and

�(W) = �u�−1
w �x + �x�−1

w W. (31)

Obviously,�(W) is a normal random vector:

�(W) ∼ N(�x,�x�
−1
w �x). (32)

Now we consider the conditional mean ofYgivenX. We first have

E(Y |W) = E[E(Y |W,X) |W ] = E[E(Y |X) |W ] = E[�(X,�) |W ].
Applying Lemma1with b = � toX |W in place ofW, we finally get

m(W,�) = exp(�0 + ��
x �(W)+ 1

2�
�
x T �x). (33)

For future reference, we also compute the conditional variance ofY givenW, denoted by
v(W,�), in a similar way.

v(W,�) = E[Y 2 |W ] −m2(W,�) = E[�(X,�)+ �2(X,�) |W ] −m2(W,�),

and, applying again Lemma1 and in addition Corollary2 (7) toX |W in place ofW , we
get

v(W,�) = m(W,�)+ (e��
x T �x − 1)m2(W,�). (34)

4.3. Evaluation ofAs

By (27) and (33) we have

Ss = (Y −m(W,�))
(

1
�(W)+ T �x

)
(35)
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and

− �Ss
��� = −(Y −m(W,�)) �

���

(
1

�(W)+ T �x

)
+
(

1
�(W)+ T �x

)
�m(W,�)

��� .

Because of (23) the first term vanishes when taking the conditional expectation givenW,
and, using again (33), we get

E

(
− �Ss

���

∣∣∣∣W
)

=m(W,�)

×
(

1 (�(W)+ T �x)
�

�(W)+ T �x (�(W)+ T �x)(�(W)+ T �x)
�
)
. (36)

In order to compute the expected value of (36), we need a further corollary of Lemma1.

Corollary 3. With the assumptions of Lemma1 and with�(W) as in(32) andm(W,�) as
in (33),

E[m(W,�)f {�(W)}] = exp(�0 + ��
x �x + 1

2�
�
x �x�x)

×E{f [�(W)+ �x�−1
w �x�x]} (37)

and

E[m(W,�)2f {�(W)}] = exp[2�0 + 2��
x �x + ��

x (�x + 2�x�−1
w �x)�x]

×E{f [�(W)+ 2�x�−1
w �x�x]}. (38)

Proof. Apply Lemma1with �(W) in place ofWandwithb0 = �0+ 1
2�

�
x T �x andbx = �x

for (37) and withb0 = 2�0+��
x T �x andbx = 2�x for (38), respectively. Finally substitute

T from (30). �
Now we can take the expectation of (36) and get, because of (28) and again using (30)

and (31),

As= e�0+��
x �x+1

2��
x �x�x

×
(

1 (�x + �x�x)
�

�x + �x�x (�x + �x�x)(�x + �x�x)
� + �x�−1

w �x

)
. (39)

4.4. Evaluation ofBs

By (35) we have

SsS
�
s = [Y −m(W,�)]2

(
1 (�(W)+ T �x)

�
�(W)+ T �x (�(W)+ T �x)(�(W)+ T �x)

�
)
.

BecauseE{[Y −m(W,�)]2 |W } = v(W,�), we get with (34)

E[SsS�
s |W ] = [m(W,�)+ (e��

x T �x − 1)m2(W,�)]
×
(

1 (�(W)+ T �x)
�

�(W)+ T �x (�(W)+ T �x)(�(W)+ T �x)
�
)
,
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where the term withm(W,�) is the same as the right-hand side of (36). Then, using (37)
and (38) of Corollary3, we get by (28) and (30)

Bs = As+ (1− e−��
x T �x )e2�0+2��

x �x+2��
x �x�x

(
1 z�
z Z

)
(40)

with z = �x + (�x + �x�−1
w �x)�x andZ = zz� + �x�−1

w �x .

4.5. Change of basis

We use the same matrixRas in Section3.6in order to simplifyAs andBs from (39) and
(40), respectively. We have, see (21),

As = R�A2R (41)

with

A2 = e
�0+��

x �x+1
2��

x �x�x

(
1 0
0 �x�−1

w �x

)
(42)

and

Bs = R�B2R (43)

with

B2 =A2 + (1− e−��
x T �x )e2�0+2��

x �x+2��
x �x�x

×
(

1 ��
x �x�−1

w �x
�x�−1

w �x�x �x�−1
w �x�x�

�
x �x�−1

w �x + �x�−1
w �x

)
. (44)

4.6. Final expression for�s

From the sandwich formula (29) and from (41) and (43), we haveR�sR
� = A−1

2 B2A
−1
2

and hence, by (42) and (44),

R�sR
� = e−(�0+��

x �x+1
2��

x �x�x)
(
1 0
0 �−1

x �w�−1
x

)

+e��
x �x�x (1− e−��

x T �x )

(
1 ��

x

�x �x�
�
x + �−1

x �w�−1
x

)
. (45)

5. Comparison of corrected score estimator and structural estimator

After having derived explicit expressions for the asymptotic covariance matrices of�̂cor
and�̂s, we can now compare the relative (asymptotic) efficiencies of these two estimators.
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We have from (22) and (45)

R(�cor−�s)R
�

= e�
�
x �x�x (e�

�
x �u�x − 1)

(
1 ��

x �w�−1
x

�−1
x �w�x �−1

x �w�x�
�
x �w�−1

x + �−1
x �w�−1

x

)

+ e��
x �x�x

(
0 0
0 �−1

x �u�x�
�
x �u�−1

x

)

− e��
x �x�x (1− e−��

x T �x )

(
1 ��

x

�x �x�
�
x + �−1

x �w�−1
x

)
.

If �u�x = 0, then�cor = �s. We shall prove that otherwise�cor > �s. We change the
basis once more. Let

D =
(
1 ��

x

0 I

)
.

Then

R(�cor − �s)R
� = e�

�
x �x�xD�FD, (46)

where

F = (e��
x �u�x − 1)

(
1 ��

x �u�−1
x

�−1
x �u�x �−1

x �u�x�
�
x �u�−1

x + �−1
x �w�−1

x

)

+
(
0 0
0 �−1

x �u�x�
�
x �u�−1

x

)

−(1− e−��
x T �x )

(
1 0
0 �−1

x �w�−1
x

)
.

To derive this formula, one may use (21) with g replaced with�x . Rearranging terms we
get

F =
(
e�

�
x �u�x − 2+ e−��

x �u�x (e�
�
x �u�x − 1)��

x �u�−1
x

(e�
�
x �u�x − 1)�−1

x �u�x e
��
x �u�x�−1

x �u�x�
�
x �u�−1

x

)

+
(
e−��

x T �x − e−��
x �u�x 0

0 (e�
�
x �u�x − 2+ e−��

x T �x )�−1
x �w�−1

x

)

=: F1 + F2. (47)

Let us first considerF1. As

F1 = e�
�
x �u�x

(
1− e−��

x �u�x

�−1
x �u�x

)
( 1− e−��

x �u�x , ��
x �u�−1

x , )

F1 is positive semidefinite, andF1 = 0 if �u�x = 0. As toF2, let us first note that because
of (30)

�u − T = �u�−1
w �u.



264 S. Shklyar, H. Schneeweiss / Journal of Multivariate Analysis 94 (2005) 250–270

Consider two cases: If�u�x = 0, then��
x �u�x = ��

x T �x = 0 andF2 = 0. If �u�x �= 0,
then��

x �u�x > ��
x T �x and hence

e−��
x T �x − e−��

x �u�x > 0.

Also, by the property thatex > 1+ x for x �= 0,

e�
�
x �u�x − 2+ e−��

x T �x > ��
x �u�x − ��

x T �x > 0.

ThereforeF2 is positive definite in this case, and so areF and�cor − �s. We thus have
proved the following main result of the paper.

Theorem 1. Let�u, �x , and�x > 0 be known. If�u�x = 0, then�cor = �s, otherwise,
if �u�x �= 0, then�cor − �s is a positive definite matrix.

Note. In general,�cor − �s is positive semidefinite. If all elements of the vectorX are
error-prone and the errors are linearly independent a.s., then�cor − �s is positive definite
if, and only if, �x �= 0. More generally, if some elements ofX are free of measurement
errors and the errors of the remaining elements are linearly independent a.s., then�cor−�s
is positive definite if, and only if, for at least one error-prone element ofX the regression
coefficient does not vanish. In this sense�̂s is more efficient than̂�cor.

6. The (structural) quasi-score estimator

The structural estimator̂�s defined in Section5 is a member of a wider class of linear
structural estimators, viz. those which are given as the solution to an unbiased estimating
equation that is linear in theYi . Indeed, the estimating function (27) for �̂s is linear in
Y. Within this class, an optimal estimating function can be constructed using not only the
conditional mean functionm(W, b) as in (27), but also the conditional variance function
v(W, b) of (34), see[8]. It is given by

Sqs(W, Y, b) = Y −m(W, b)
v(W, b)

�m(W, b)
�b

(48)

and is called (structural) quasi-score function. The corresponding quasi-score estimator�̂qs
is a measurable solution to

n∑
i=1

Sqs(Wi, Yi, b) = 0, b ∈ �.

Note that�̂qs is not defined via a criterion function. Nevertheless one can show that�̂qs is
consistent and asymptotically normal, see[10].

√
n(�̂qs− �) −→ N(0,�qs)
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with an asymptotic covariance matrix, which again is given by a sandwich formula. Let
Sqs := Sqs(W, Y,�) and

Aqs = −E
�Sqs
��� , Bqs = ESqsS

�
qs,

then

�qs = A−1
qs BqsA

−�
qs .

However, for a quasi-score estimator this reduces to

�qs = B−1
qs (49)

because

Aqs = Bqs = E

(
1

v(W,�)
�m(W,�)

��

m(W,�)

���

)
, (50)

as can be easily seen from (48).
According to[8], Sqs is optimal within the class of linear (inY) estimating functions. As

Ss belongs to this class, the difference�s − �qs is positive semidefinite. But we can say
more:

Theorem 2. Let�u, �x , and�x > 0 be known. If�u�x = 0, then�s = �qs; otherwise,
if �u�x �= 0, then�s− �qs is a positive definite matrix.

Proof. If �u�x = 0, then alsoT �x = 0 and, according to (34), v(W,�) = m(W,�), so
that, by (27) and (48), Sqs = Ss and hence�qs = �s.

Now suppose�u�x �= 0. According to (29) and (49) we have to prove

A−1
s BsA

−1
s > B−1

qs (51)

where, by (27) and (28),

As = E

(
1

m

�m
��

�m
���

)
, (52)

Bs = E

(
v

m2

�m
��

�m
���

)
, (53)

andBqs is given by (50). Here and in the sequel we abbreviatem(W,�) bymandv(W,�)
by v. (51) is equivalent to

A
− 1

2
s BsA

− 1
2

s > (A
− 1

2
s BqsA

− 1
2

s )−1. (54)

Let

w = A
− 1

2
s

1√
m

�m
��



266 S. Shklyar, H. Schneeweiss / Journal of Multivariate Analysis 94 (2005) 250–270

and

v0 = v

m
.

Then, by (50), (52), and (53), inequality (54) is equivalent to

E(v0ww
�) >

[
E

(
1

v0
ww�

)]−1

(55)

with v0 > 0 andE(ww�) = I.
According to the Matrix Inequality Lemma of the appendix, (55) is true if we can show

for any two vectorsx andy that if y�w = v0 x
�w a.s., thenx = 0.

From (33) we get

�m
��

= m

(
1

�(W)+ T �x

)

and therefore

w = As−
1
2
√
m

(
1

�(W)+ T �x

)
. (56)

From (34) it follows that

v0 = 1+ (e��
x T �x − 1)m. (57)

Now, by the definition ofT, (30), T �x = �x�−1
w �u�x and, as�x is nonsingular, the

assumption�u�x �= 0 impliesT �x �= 0. BecauseT is positive semidefinite, it follows that

e�
�
x T �x − 1> 0.

From the definition ofm, (33), we therefore get

v0 = 1+ ce��
x �(W)

with a constantc > 0.
Now suppose that for some vectorsx andy

y�w = v0x
�w a.s.

By (56) and (57) this can be written as

y�
0

(
1

�(W)+ T �x

)
=
(
1+ ce��

x �(W)
)
x�
0

(
1

�(W)+ T �x

)
a.s.

with y0 = As− 1
2
√
my andx0 = As− 1

2
√
mx. As �(W) has a density inRp, see (32), this

equality holds true for (Lebesgue measure) almost all� ∈ Rp in place of�(W) and by
continuity for all� ∈ Rp; i.e., we have, rearranging terms,

(y0 − x0)�
(

1
� + T �x

)
= ce�

�
x �x�

0

(
1

� + T �x

)
(58)
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for all � ∈ Rp. But since the left-hand side of (58) is linear in�, whereas the right hand
side is exponential, (58) can only hold true ifx0 = 0 and thusx = 0.
This shows that the condition of the Matrix Inequality Lemma is satisfied, which proves

the theorem. �

7. Comparison under small errors

Although, according to Theorem2, the quasi-score estimator�̂qsismore efficient than the

corrected score estimator�̂cor, it can be shown that their asymptotic covariancematrices are
approximately equal if the measurement errors are small. To be more precise, Kukush et al.
[9] showed for the scalar case, whereXwas a real-valued variable, that�cor = �qs+O(�4u)
for �2u → 0. This can be generalized to the vector case of the present paper. The question
then is whether this equality also holds true up to a higher order of�2u or whether the
difference of�cor and�qs shows up already at the order of�4u. It will be shown that the
latter is the case. We can also give an explicit formula for the difference of�cor and�qs up
to this order.
In order to be able to deal with the vector case, we split a common factor�2 from �u

writing

�u = �2�u

and let�2 tend to zero keeping�u fixed. (The factor�2 could be, e.g.,1p tr�u). To simplify
the notation, we introduce the abbreviations

	 := ��
x �u�x, 
 := �−1

x �u�x, � := ��
x �u�−1

x �u�x

and note that, due to (30) and because�−1
w = �−1

x +O(�2),
��
x T �x = �2	 − �4� +O(�6).

We then find from (47)

F = F1 + F2 =

 e�2	 − 2+ e−�2	 �2

(
e�

2	 − 1
)


�

�2
(
e�

2	 − 1
)


 �4e�
2	

�


+

(
f11 f12
f21 f22

)

with

f11= e−�2	+�4�+O(�6) − e−�2	,

f21= f�
12 = 0,

f22=
(
e�

2	 − 2+ e−�2	+�4�+O(�6)) (�−1
x + �2�−1

x �u�−1
x ).

Using the expansion

ea�
2 = 1+ a�2 + 1

2a
2�4 +O(�6),
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we finally get with some algebra

F = �4
[(

	



)(
	



)�
+
(

� 0
0 (� + 	2)�−1

x

)]
+O(�6)

=: �4F0 +O(�6). (59)

Under the assumption�u�x �= 0, we have� > 0, and henceF0 is positive definite. In the
following theorem the relative (asymptotic) efficiencies of�̂cor and�̂s are compared to each

other for the case of small error variances. LetG0 = e�
�
x �x�xR−1D�F0DR−�, whereR

andD are defined in Sections3.6and5, respectively.

Theorem 3. Let�u = �2�u. Then, when�2 → 0with�u fixed,

�cor − �s = �4G0 +O(�6)
andG0 is positive definite if�u�x �= 0. (OtherwiseG0 = 0).Also

�cor − �qs = �4G1 +O(�6)
with a positive semidefinite matrixG1, which is positive definite if�u�x �= 0.

Proof. The first part follows immediately from (46) and (59) using the definition ofG0.
The second part is a consequence of Theorem2 and the previous result of[9] mentioned at
the beginning of this section, which can be generalized to the vector case.�

Note. The fact that all three covariance matrices become identical with vanishing�2 is
trivial, as the corresponding estimators become identical when there is no measurement
error. But Theorem3 says more: The covariance matrices differ by the order of�4. This
means that these differences are extremely small and almost negligible if the measurement
errors are small.

8. Conclusion

Wecompared three consistent estimators of the parameters of a Poisson regressionmodel
with measurement errors. The asymptotic covariancematrices of the estimators (but not the
estimators themselves) are equal if, and only if,�u�x = 0. In the typical case, where the
error variables are linearly independent, this conditionmeans that the regression coefficients
corresponding to error-prone covariates are all zero. Otherwise, if at least one error-prone
variable has a non-vanishing regression coefficient, the covariance matrices are strongly
ordered with regard to the Loewner ordering such that

�cor > �s > �qs.

The corrected score estimator�̂cor is constructed without regard to the distribution of the
regressor variableX. It is therefore robust against any misspecification of that distribution.
On the other hand, botĥ�s and�̂qs depend on the distribution ofX. If X is not Gaussian,
these estimators will be asymptotically biased, just as the naive estimator. It is only when



S. Shklyar, H. Schneeweiss / Journal of Multivariate Analysis 94 (2005) 250–270 269

the assumption of normality forX is correct that̂�s and�̂qs are consistent. In that case they

are more efficient than̂�cor, and, in fact,�̂qs is the most efficient one. Still̂�cor might be
the preferred estimator in all cases where one cannot be sure about the distribution ofX.
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AppendixA. A matrix inequality

Lemma 2. Letv be a positive random variable and w a random column vector inRm with
E(ww�) = Im.AssumeE( 1vw

�w) < ∞ andE(vw�w) < ∞, then(in the Loewner order)

E(vww�)�
[

E

(
1

v
ww�

)]−1

. (A.1)

Assume further that, for any two vectorsx, y ∈ Rm, the equalityy�w = vx�w a.s. implies
x = 0 (and therefore alsoy = 0), then the� sign in(A.1) can be replaced by the> sign.

Proof. First note thatE( 1
v
ww�) is p.d. and therefore invertible. Indeed,x�E( 1

v
ww�)x�0

for anyx ∈ Rm, andx�E( 1
v
ww�)x = 0 impliesw�x = 0 a.s., but thenE(x�ww�x) =

x�x = 0 and thusx = 0. Now let

q :=
[

E

(
1

v
ww�

)]−1
w√
v

− √
vw.

Then

E(qq�) = E(vww�)−
[

E

(
1

v
ww�

)]−1

which is p.s.d..
Now suppose there is anx ∈ Rm such that

x�E(vww�)x = x�
[

E

(
1

v
ww�

)]−1

x.

Thenx�E(qq�)x = 0 and consequentlyx�q = 0 a.s. or equivalently

x�
[

E

(
1

v
ww�

)]−1

w = vx�w a.s.

By assumption this impliesx = 0 and thus the� sign in (A.1) can be replaced
with >. �
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