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Algebraic models are proposed for the description of the shell-like quarteting of the nucleons both on 
the phenomenologic and on the semimicroscopic levels. In the former one the quartet is considered as a 
structureless object, while in the latter one its constituents are treated explicitly. The excitation spectrum 
is generated by the SU(3) formalism in both cases. An application to the 20Ne nucleus is presented.
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Quarteting is an important phenomenon in several branches of 
physics [1,2]. In nuclear physics it appears in a straightforward 
way due to the fact that the exclusion principle allows two (spin 
1
2 ) protons and neutrons to occupy a single-particle state, and the 
short-range attractive nucleon–nucleon forces prefer this arrange-
ment. Therefore, it has long been known, and recently a conjecture 
was put forward, about the importance of quarteting also in nuclei 
away from the line of stability [3].

A well-known signature of quarteting is that the separation en-
ergy of a nucleon in an even–even N = Z nucleus is much larger 
than that of an α-particle. The fact that the nuclear mass of 4n
nuclei is approximately a linear function of n, while the masses of 
4n + x nuclei are a quadratic function of x, was already the motiva-
tion for Wigner’s supermultiplet theory [4]. (Much work has been 
done on the binding energies and quarteting later on, too, see e.g. 
[5].)

A nuclear quartet model was formulated in [6] (based on the 
stretched scheme), and then it was generalized in several steps. 
In [7], quartet excitations were considered from one major shell to 
the other, and the corresponding energies were determined from 
mass relationships. In this generalized interpretation a quartet is 
not related to a specific angular momentum coupling scheme: it 
is made of 2 protons and 2 neutrons, occupying a fourfold degen-
erate single-particle state (l, m orbit in L–S coupling, or j, m and 
j, −m orbits in j– j coupling). The internal binding of a quartet 
is strong, while the quartet–quartet interaction is relatively weak. 
Arima and Gillet took into account [8] also pairs of nucleons, as 
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further building blocks, extending the description to even–even 
nuclei of different Z and N .

In [9] intrashell quartet excitations have been introduced in ad-
dition to the intershell excitations of [7]. This concept leads to 
a quartet shell model, i.e. one assumes the existence of a self-
consistent quartet potential well, and its states are used to describe 
the quartet states in 4n nuclei. The 0s, 0p, 1s–0d, . . . oscillator 
shells of the nucleon-shell model are replaced by 0s, 0p, 1s–0d, . . .
quartet shells, having 1, 3, 6, . . . single quartet states, respectively. 
The corresponding energies were determined empirically, too.

A further extension was presented in [10] by incorporating 
any number of particle–hole excitations (in the language of the 
nucleon-shell-model), contrary to the quartet-shell-model of [7,9]
which had only 0, 4, 8, . . . excitation quanta (in terms of nucleon-
shell-model). This considerable extension of the quartet model 
space appeared due to the conceptual generalization of a quar-
tet. Harvey defined [10] it as 2 protons and 2 neutrons having 
a quartet-symmetry: permutational symmetry of [4], and spin–
isospin symmetry of [1, 1, 1, 1].

Interacting boson type quartet models were invented [11,12]
for the description of quarteting in heavy nuclei. In [11] the ba-
sic building block quartets are treated as l = 0 (s) and l = 2 (d) 
bosons, and the model has a U(6) group structure, like the inter-
acting boson model of the quadrupole collectivity [13]. This model 
describes a spectrum of positive parity states. In [12] the alpha-like 
correlation is treated in terms of bosons of nucleon-pairs, but in 
addition to the s and d bosons another set of basic building blocks 
of l = 0 (s∗) boson and l = 1 (p) boson is included, therefore, 
negative parity states are also involved. These phenomenological 
models have the efficiency and elegance of the algebraic methods 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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in generating the spectrum. E.g. they have dynamical symmetries 
as limiting cases, which provide us with exact solutions for the 
eigenvalue problem.

In [14] a BCS-like study was carried out for bosons of the 
proton-neutron interacting boson model [13] and it was concluded 
that the superfluid condensate is more of a quartet type, rather 
than separate superfluid phases of proton and neutron pairs. Re-
cent investigations [15,16] show that the isovector pairing in self-
conjugate nuclei are of quartet type and can be well described by 
a quartet condensation model.

Another condensate, namely the alpha-particle condensate at-
tracts much attention these years [17]. For the first sight it is very 
different from the quartet condensate. The latter one was shown 
to be important in the ground state, while the Bose–Einstein con-
densate (BEC) of alpha particles was invented for the description 
of the gas-like dilute structure near the alpha-threshold. However, 
later calculations revealed that the THSR wavefunction, which is 
applied in the alpha-condensate studies have a very large over-
lap with the (resonating group method) wavefunction of ground 
state [18], indicating that the overlap with the quartet condensate 
is considerable, too. The non-localized nature of clustering in the 
BEC also shows in this direction. The exact relation of these two 
condensates still remains to be understood. In the present work 
we do not investigate the condensates, rather we concentrate on 
the “individual” quartet-excitations, in the sense of [7,9,10].

We propose algebraic quartet models based on the concepts of 
shell-model-like quarteting of [7,9,10]. Our main purpose is the 
description of the excitation spectrum. We propose two models: 
the simpler one is called phenomenologic algebraic quartet model 
(PAQM), which has the building blocks very similar to that of the 
quartet-shell model of [9], i.e. the composite nature of the quartet 
do not appear explicitly. The second one is the semimicroscopic 
algebraic quartet model (SAQM), based on the quartet concept of 
[10], in which each of the four nucleons of the quartet is treated. 
The novel feature in comparison with the works [7,9,10] is that 
an algebraic framework is formulated for the description of the 
detailed spectrum, like in the group theoretical approach of the 
works [11–13]. On the other hand, the new models are differ-
ent from the interacting boson type models of [11,12], because of 
the nature of their building blocks, and shell-like structure of the 
model spaces.

We apply Elliott’s SU(3) scheme [19,20] for generating the spec-
trum both in the phenomenological and in the semimicroscopical 
descriptions. In the former case structureless quartets are sup-
posed to occupy the single-particle levels of the harmonic oscilla-
tor shells, while in the latter model nucleons do so. Therefore, the 
phenomenological model space has only a spatial part, while the 
semimicroscopical one contains a space and a spin–isospin compo-
nents. In fact, this latter model space is a truncation of that of the 
L–S coupled no-core shell model [21], based on the spin–isospin 
formalism. The physical operators are expressed in terms of the 
group generators, thus algebraic techniques can be applied in cal-
culating the matrix elements.

1. The phenomenologic algebraic quartet model

In this approach an excitation quantum (h̄ω)q between the ma-
jor shells is expected to be approximately 4 times that of the 
nucleon shell model: (h̄ω)q ≈ 4(h̄ω). All the shells have positive 
parity, due to their quartet nature. If a single quartet state is oc-
cupied, then no other particle can be put there, therefore, the 
permutational symmetry of the quartets has to be that of a single-
columned Young diagram: [1, 1, . . .].

The building blocks of the description are the nine opera-
tors, Âαβ = 1 (â†

αâβ + âβ â†
α), α, β = x, y, z, âα = ∑

j âα( j), â†
α =
2
Table 1
SU(3) quantum numbers of the states of 20Ne for the 0 and 1 major shells in the 
phenomenologic and semimicroscopic algebraic quartet model. The superscripts in-
dicate multiplicity.

Model h̄ω SU(3)

PAQM 0 (2,0)

1 (2,2), (3,0)

SAQM 0 (8,0), (4,2), (0,4), (2,0)

1 (8,2), (9,0), (6,3), (7,1)2, (4,4), (5,2)4, (2,5), (6,0)

(3,3)4, (1,4)2, (4,1)3, (2,2)4, (0,3)2, (3,0)3, (1,1)2

∑
j â†

α( j), j = 1, . . . , N (here N is the total number of particles), 
which are number-conserving bilinear products of the creation and 
annihilation operators of oscillator quanta. They can be rewrit-
ten into three spherical tensors: a scalar operator n̂, which is the 
number of oscillator quanta, five components of the quadrupole 
momentum Q̂ m (acting in a single major shell), and three compo-
nents of the angular momentum L̂m . The nine operators n̂, Q̂ m, ̂Lm

generate the U(3) group, the eight operators Q̂ m, ̂Lm generate the 
SU(3) group, and the three L̂m are generators of the SO(3) group.

The basis states are characterized by the representation labels 
of the group-chain:

U (3) ⊃ SU(3) ⊃ SO(3) ⊃ SO(2)

|[n1,n2,n3], (λ,μ) , K , L , M 〉. (1)

Here n = n1 +n2 +n3 is the eigenvalue of the n̂ operator. The angu-
lar momentum content of a (λ, μ) representation is as follows [19,
20]: L = K , K + 1, . . . , K + max(λ, μ), K = min(λ,μ), min(λ, μ) −
2, . . . , 1 or 0, with the exception of K L = 0, for which L =
max(λ, μ), max(λ, μ) − 2, . . . , 1 or 0. The SU(3) content is given 
by the U(k) ⊃ SU(3) decomposition [22], where k = 3, 6, 10, . . . for 
the major shell with 1, 2, 3, . . . quartet excitations. The irreducible 
representation (irrep) of U(k) is the same as that of the permu-
tational group in the major shell in question. The U(3) symmetry 
of the whole nucleus is obtained as a direct product of the major 
shell U(3) irreps. The irreps of the spurious center of mass ex-
citations can be determined easily, due to the fact that the c.m. 
excitation operator is fully symmetric in particle indices, and has 
an [1, 0, 0] U(3) irreducible tensor character [23–25].

We illustrate here the construction of the model space with 
the lowest-lying states of the 20Ne nucleus. The ground state con-
tains the filled-in 0 and 1 h̄ωq major shells, and 1 quartet in 
the 2 h̄ωq major shell: (0)1(1)3(2)1. The permutational symme-
tries in the three subsequent major shells are: [1] ⊗ [1, 1, 1] ⊗ [1], 
which give the [1, 1, 1, 1, 1] symmetry of the five-quartet-state. 
The corresponding U(3) symmetries are unique and simple in these 
cases, and they result in a single U(3) irrep: [0, 0, 0] ⊗ [1, 1, 1] ⊗
[2, 0, 0] = [3, 1, 1]. The 1h̄ωq excitations are obtained in two differ-
ent ways: 1a: (0)1(1)2(2)2, or 1b: (0)1(1)3(3)1. The permutational 
symmetries are: 1a: [1] ⊗ [1, 1] ⊗ [1, 1] = [1, 1, 1, 1, 1] ⊕ . . . , and 
1b: [1] ⊗ [1, 1, 1] ⊗ [1] = [1, 1, 1, 1, 1] ⊕ . . . . The corresponding 
U(3) symmetries, and their products are: 1a: [0, 0, 0] ⊗ [1, 1, 0] ⊗
[3, 1, 0] = [4, 2, 0] ⊕ [4, 1, 1] ⊕ [3, 2, 1]; 1b: [0, 0, 0] ⊗ [1, 1, 1] ⊗
[3, 0, 0] = [4, 1, 1]. In total the U(3) irreps are: [4, 2, 0] ⊕[4, 1, 1]2 ⊕
[3, 2, 1]. The spurious excitation of the centre of mass: [3, 1, 1] ⊗
[1, 0, 0] = [4, 1, 1] ⊕ [3, 2, 1]. Therefore, the real 1h̄ωq excitations 
are: [4, 2, 0] ⊕ [4, 1, 1].

Table 1 shows the model space of 20Ne for the 0–1 major shells 
(both for the phenomenologic and for the semimicroscopic ap-
proach). Note here the small angular momentum content of the 
PAQM space (limited by the SU(3) quantum numbers).

The operators of physical quantities are obtained in this de-
scription in terms of the generators of the U(3) group. In particular 
the Hamiltonian can be expanded in terms of the generators of the 
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Fig. 1. The spectrum of the semimicroscopic algebraic quartet model in compari-
son with the experimental data of the 20Ne nucleus. The experimental bands are 
labeled by the Kπ , and the model states by the n(λ, μ)Kπ quantum numbers. The 
spin–parity in parenthesis indicates uncertain band-assignment. The width of the 
arrow between the states is proportional to the strength of the E2 transition.

U(3) group, coupled to spherical scalars. The general solution of 
the eigenvalue problem than involves two steps: i) calculation of 
matrix elements of the Hamiltonian between the basis states, and 
ii) numerical diagonalization of the energy matrix. In the special 
case of the dynamical symmetry, i.e. when the Hamiltonian is ex-
pressed in terms of the invariant operators of the group-chain (1), 
an analytical solution is available.

The electromagnetic transition operators are obtained as Hermi-
tian combinations of group generators with appropriate tensorial 
character. The lowest-order transition operators are:

T̂ (E0) = e(0)n̂, T̂ (E2)
m = e(2) Q̂ (2)

m , T̂ (M1)
m = m(1) L̂(1)

m . (2)

These operators are diagonal in the SU(3) basis, i.e. they indicate 
no transitions between states of different SU(3) irreps. This is a 
typical situation in the algebraic models in the dynamical sym-
metry limit. Transitions between e.g. different major shells can 
be obtained either i) by applying symmetry-breaking interactions, 
which mix the SU(3) basis states, or ii) by constructing more com-
plex operators.

The PAQM states of Table 1 correspond to very highly ex-
cited states (due to the large excitation quantum of the quartets: 
(h̄ω)q ≈ 4(h̄ω)). Therefore, it is hard to find a well-established cor-
respondence between the experimental and model states. In case 
of the semimicroscopic description, on the other hand, it is much 
more straightforward.

The relation of the PAQM to the previous models is as follows. 
Its model space is identical with that of [9]. The main difference 
between the approach of [7,9] and the present one is that in [7,9]
the interaction matrix elements are obtained empirically from the 
binding energies, while here we construct all the physical opera-
tors algebraically. This enables us to calculate the complete spec-
trum in an easy way.

2. The semimicroscopic algebraic quartet model

On the semimicroscopic level we take into account the com-
position of the quartets explicitly. They are considered [10] as 2 
protons and 2 neutrons having permutational symmetry of [4], and 
spin–isospin symmetry of [1, 1, 1, 1]. Therefore, in this case the nu-
cleon shell model space is applied, and it is truncated according to 
these symmetries. Subsequent major shells have opposite parities.

The building blocks of this description are, again, the creation 
and annihilation operators of oscillator quanta (of the nucleon shell 
model).

The spectrum is determined by the U(3) spatial and the UST (4)

spin–isospin irreps. In this case, however, the particles are nucle-
ons, not structureless quartets, as in the phenomenologic model. 
Therefore, the groups describe the symmetries of the many-
nucleon-systems. Their relevant irreps are obtained in the follow-
ing way. In each major shell those U(k) (or permutational) sym-
metries has to be taken into account which result in the required 
quartet symmetry [4]Nq when calculating their outer product with 
those of the other major shells. (Equivalently, those UST (4) irreps 
are relevant, which result in the [1, 1, 1, 1]Nq quartet symmetry in 
the direct products.) These U(k) (or UST(4)) symmetries determine 
the relevant U(3) representations, and their direct products define 
the model space. The center of mass excitations can be removed 
in the same way, like in the previous case.

The model space is much richer than that of the phenomeno-
logical model, as shown by Table 1. Especially remarkable is the 
angular momentum content of the model space; already in the 
lowest-lying major shell L = 8 appears.

The physical operators are expressed in this case, too, in terms 
of the group-generators. Due to the restriction to the quartet sym-
metry only the scalar UST(4) part of the spin–isospin sector gives 
contribution to the Hamiltonian and to the transition operators. 
Therefore, the formulae of the phenomenologic quartet model are 
valid here, too, but the oscillator quanta in this case refer to those 
of the nucleon shell model.

As an application we show here the result of the semimicro-
scopic model for the 20Ne nucleus. The U(3) dynamical symme-
try approach is used; the interactions are written in terms of the 
invariant operators of group-chain (1), therefore, an analytical so-
lution is available.

The experimental data are taken from [26], but for the band-
assignment of the highly-excited alpha-cluster states also the con-
clusions of [27] are taken into account. The lower part of Fig. 1. 
shows the states with definite band-assignment. All the bands with 
K π values of [26] are included, except the one of the very uncer-
tain (and somewhat contradictory) 0+

7 band. In case of the 7− state 
of the 0− band, and the 6+ and 8+ states of the 0+

6 band, which 
have more than one experimental candidates, the average energies 
are indicated. (In [26] there are only three states, which are not 
included here, for not having corresponding states in the model 
spectrum: a 6+ state in the 0+

2 band, a 9− state in the 1− band, 
and a 8+ state in the 0+

6 band. Each of them have uncertain band-
assignment.)

We have tried a few phenomenological interactions, expressed 
in terms of the invariant operators of the U(3) ⊃ SU(3) ⊃ SO(3)

algebra-chain. Each of them contained a harmonic oscillator term 
(linear invariant of the U(3)), with a strength obtained from the 
systematics [28] h̄ω = 13.19 MeV, and a rotational term with a 
parameter to fit. The remaining parts were written in terms of 
the second (Ĉ (2)

SU3) and third order (Ĉ (3)
SU3) invariant of the SU(3). 

The former one accounts for the quadrupole–quadrupole interac-
tion, and the latter one distinguishes between the prolate and 
oblate shapes. The simple linear combination aĈ (2)

SU3 + bĈ (3)
SU3 con-

tains two parameters. Another two-parameter term can be written 
as g

2c exp(−cĈ (2)
SU3 − 1), which is very similar to the exp(−c Q̂ Q̂ −

1) term of the symplectic model Hamiltonian [29], accounting 
for a set of many-body interactions with well-defined relative 
weights. In order not to destroy the shell structure for the case 
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of large excitations, the major-shell-average of the quadratic in-
variant (〈Ĉ (2)

SU3〉) can be subtracted [30]. We have obtained the best 
description (from among the (2 + 1) parameter formulae) with

Ĥ = (h̄ω)n̂ + aĈ (2)
SU3 + (Ĉ (2)

SU3 − 〈Ĉ (2)
SU3〉) + bĈ (3)

SU3 + d
1

2θ
L̂2, (3)

where θ is the moment of inertia calculated classically for the rigid 
shape determined by the U(3) quantum numbers (for a rotor with 
axial symmetry) [31]. Note that the third term does not introduce 
new fitting parameter, but a constant coefficient of 1 MeV is qui-
etly understood here. The model spectrum of Fig. 1 was obtained 
with the parameters: a = −1,065 MeV, b = −0,000360 MeV,
d = 0,808 MeV.

We note here that the experimentally identified bands are de-
scribed by the lowest-lying models bands with the appropriate 
spin–parity content, i.e. the other model bands of the same char-
acter are all higher-lying.

The intraband E2 transition rates were calculated with the op-
erator of Eq. (4). The B(E2) value is given by the formula [32]:

B(E2, Ii → I f )

= 2I f + 1

2Ii + 1
α2|〈(λ,μ)K Ii, (11)2||(λ,μ)K I f 〉|2C(λ,μ), (4)

where 〈(λ, μ)K Ii, (11)2||(λ, μ)K I f 〉 is the SU(3) ⊃ SO(3) Wigner 
coefficient [33], and α is a parameter fitted to the experimental 
value of the 2+

1 → 0+
1 transition of 20.3 W.u. The interband transi-

tion rate is zero.
The relation of the SAQM to the approach of [10] is similar to 

that between the PAQM and the previous models of [7,9]. In partic-
ular, the two model spaces are identical, but the physical operators 
are not.

3. To sum up

In this paper we have introduced two algebraic models for the 
shell-like quarteting of nucleons. The simpler one is based on the 
quartet-concept of Arima et al. [7,9], which does not treat explicitly 
the degrees of freedom of the constituent nucleons. Nevertheless, 
the Pauli-principle is not violated in this phenomenological de-
scription, either: the quartets of four nucleons occupy different 
single-particle space-states. The semimicroscopic model is more 
detailed. It is based on the definition of quartets in terms of two 
protons and two neutrons of [4] permutational symmetry [10]. 
This model is able to take into account 0, 1, 2, 3, 4, . . . (nucleonic) 
major shell excitations, as opposed to the “giant” quartet excita-
tions of the phenomenologic approach [7,9], which correspond to 
4q, q = 0, 1, 2, . . . nucleon excitation quanta. For both description 
the U(3) formalism of Elliott [19,20] is applied for the calcula-
tion of the spectrum. The semimicroscopic model is practically a 
symmetry-dictated truncation of the L–S coupled no-core shell 
model, focusing on the spin–isospin-zero sector, and multiple ex-
citations. It can be considered as an effective model in the sense 
of [34]: the bands of different quadrupole shapes are described 
by their lowest-grade U(3) irreps without taking into account the 
giant-resonance excitations, built upon them, and the model pa-
rameters are renormalized for the subspace of the lowest U(3) 
irreps.

From the viewpoint of their group-theoretical formalism these 
models are similar to the fully algebraic interacting-boson-like 
quartet models of the 1980’th [11,12], but they are different con-
cerning the physical nature of the quartets.

Both of these models are easy to apply, yet the semimicroscopic 
approach seems to be detailed enough to account for a consider-
able amount of the experimental spectrum, as illustrated by the 
application to the 20Ne nucleus. We expect that in addition to its 
applicability to the s–d shell nuclei it can also be extended to the 
mass region of A = 92–100 of current experimental interest.

Further generalizations are possible by applying symmetry-
breaking interactions, which result in e.g. nonvanishing interband 
transitions. Since the shell-truncations scheme of the semimicro-
scopic approach is based on the nucleonic degrees of freedom it 
could be exported also to non-alpha-like nuclei.

As for the connection to other models, the transparent symmetry 
properties of the present approach is very helpful. Via its obvi-
ous shell-model relation, the connection of the quartet model to 
the cluster and collective models is also well-defined (see e.g. [31,
35], and references therein for a recent discussion). In this respect 
the models with algebraic structure are relevant, in particular, the 
microscopic cluster model applying U(3) basis [36,37], and the 
semimicroscopic algebraic cluster model [38], as well as the sym-
plectic shell model [39], and the contracted symplectic model [40]
of the quadrupole collectivity.

Especially promising can be the application of the present 
semimicroscopic quartet model in combination with the concept 
of the multichannel dynamical symmetry [41], when the spectra 
of different cluster configurations are obtained from the quartet 
spectrum by simple projections.
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