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Abstract

Modern economy and society are constantly highly dependent on a variety of critical infrastructures (CIs) over the last decades. 
However an observation and review of the extreme events that occurred during the last two decades reveal that while the 
interdependencies between the CIs are growing and getting more complex there is an increasing gap between the growing risk 
and the actual preparedness. Therefore, there is an utmost importance to ensure reliable and robust performance of critical 
infrastructures on a continuous basis, particularly during and after the occurrence of extreme events. A decision support tool for 
decision makers to appraise and mitigate the risk of CIs after the occurrence of seismic events is developed. The methodology 
analyzes the damage of critical infrastructure components by Fault-Tree-Analysis, Decision Trees and Fragility Curves. Though 
the methodology is suitable for a variety of critical infrastructures, this study will focus on critical Oil and Gas Network Systems, 
which are vital to the energy supply infrastructure of Israel. In order to assess the risk that Oil and Gas Critical Infrastructures are 
exposed to in case of seismic extreme events, fragility curves are derived and adjusted to different components of the Oil and 
Natural Gas systems. Subsequently, a variety of possible seismic scenarios are examined and analyzed in order to determine the
damage of the components. The overall expected damage of the Oil or Gas system is assessed by considering the damage state of 
all components of the system. The expected damage states of the components disclose and emphasize the most vulnerable parts 
of the system. Also discussed are guiding principles for decision makers for risk informed mitigation on benefit-cost-ratio
analysis.
© 2015 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of the Creative Construction Conference 2015.
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1. Introduction

Critical Infrastructures (CIs) play a crucial role in the normal performance of the economy and society. Over the 
last decades the amount and the variety of critical infrastructures grew rapidly, and the interdependency between 
them increased constantly; consequently more and more essential services depend on the continuous performance of 
one, two or even more critical infrastructures such as power and water supply, communications, etc. An observation 
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and review of the extreme events occurred during the past two decades reveal that while the interdependencies 
between the CIs are growing rapidly and getting more complex there is a large gap between the increasing risk and 
the actual preparedness of critical infrastructures to extreme events [1-3]. After the Izmit earthquake in 1999, the 
electricity power supply failed for several days within minutes of the earthquake, few highway bridges collapsed, 
and water distribution system was interrupted. A fire that broke out at refineries of Turpas, which were responsible 
for the refining of major part of Turkey's oil, endangered industrial sites in the area for days until it was turned off 
[4-7]. The Indian Ocean earthquake and tsunami at 2004 and the Haiti earthquake in 2010 demolished most of the 
CIs in those areas, beyond the high death toll. CIs such as educational facilities, medical centers, government 
facilities, and water distribution system were completely destroyed and arduous the rescue and rehabilitation efforts 
[8-11]. The Fukushima- Daiichi event exhibited insufficient preparedness of the Nuclear Power Plant (NPP) in 
aspects such as robustness (height of breakwater walls), resilience, and redundancy (power supply) [12-15] and 
demonstrated the failure in the hazardous scenarios detection. 

The review of extreme events over the last two decades shows that loss and damage of CIs that developed 
countries suffer from, is significantly higher than the damage developing countries witness. This trend is stimulated 
by the density of critical infrastructures and the growing consequences of events due to higher risks. Therefore, there
is an utmost importance to ensure reliable and robust performance of critical infrastructures on a continuous basis, 
particularly during and after the occurrence of extreme events.

2. Methodology and Objectives

This manuscript presents a preliminary probabilistic methodology that examines the preparedness of critical 
infrastructures through an appraisal of the risk CIs are exposed to in case of seismic extreme event. The goal of this 
research is to establish a quantified model to assess the total risk of CIs to extreme earthquake events and allow the 
decision makers to manage the course of actions in order to mitigate the risk. The methodology will include risk 
assessment of CIs components and guiding principles to mitigate the risk using benefit-cost-ratio analysis. The 
methodology analyzes the damage of infrastructures components by fragility curves, fault-tree-analysis, and 
decision trees. Though the methodology is suitable for a variety of critical infrastructures, this research will focus on 
critical Oil and Gas Network Systems, which are vital to the energy supply infrastructure.

The proposed methodology is composed of seismic hazard identification, components seismic vulnerability 
function adjustment, damage assessment due to seismic extreme events of different components, and a risk appraisal 
procedure.

3. Seismic Scenarios

The first step of the risk appraisal process is the definition of the threat scenarios (Hazardous scenarios) that 
Critical Infrastructures (CIs) components are exposed to. The main effects of an earthquake are ground shaking and 
faulting which are the major causes of failure of gas and oil infrastructure during an earthquake event [16, 17].
When computing the risk of critical infrastructures, there is an upmost importance of the ground shaking intensity 
and site effects across different areas, as opposed to standard structures in which resilience will be determined 
according to its local ground shaking and site effect. Critical infrastructure components such as oil and natural gas 
systems deployed on a wide range area and distances of hundreds of kilometers from each other. Therefore the 
resistance of critical infrastructures systems to seismic events will be determined in accordance with the site effects 
and ground shaking measures of each component at different locations which are obtained by different soil 
conditions that affect on site response and at different distances from the epicenter.

A main issue related to the seismic risk analysis of CIs components is the selection of the earthquake intensity 
measure (IM) which correlates the best with the response of each component. In most cases for aboveground 
structures, the PGA is directly correlated to the expected damage, because of its proportionality with inertial effects 
due to the seismic loadings. On the other hand, when in case of pipelines or underground structures, the damage
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effects are generally proportional to the Peak Ground Velocity (PGV) which is related to ground strain that is the 
main cause of pipeline damage [18-22]. The most commonly used intensity measures for Oil and Gas systems are; 
Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak/Permanent Ground Displacement (PGD), 
and Peak ground strain [22, 23].

4. Oil and natural gas systems

In general Oil and Gas transportation and distribution system components can be divided into three main 
groups[24]: the first group consists of pipelines elements (buried or above ground), the second group consists of 
storage structures (Tank Farms) and the third group consists of processing/operational facilities (i.e. Pressure
control, pumping).

4.1. Pipelines 

Pipelines are categorized as transportation/transmission network that are generally used to transfer from the 
production site to the industrial plants or urban distribution system or to distribution network for urban users. 
However, for the research approach the difference between transportation and distribution systems is essentially 
related to the nominal diameter of pipelines. According to the HAZUS methodology [25] pipelines can be 
categorized according to their diameter (D)
400mm for distribution and low pressure transmission systems. Damage patterns in pipelines are largely dependent 
on the material and joint type and many possible combinations of material and joints were divided by  in two 
categories [18, 26]; continuous pipelines (CP) and segmented pipelines (SP). A similar approach has been proposed 
by [25], where the pipelines are categorized into brittle (SP) and ductile (CP).

4.2. Storage facilities

Modern oil storage tanks included in lifeline systems vary from 12m to 76m in diameter with heights that are 
nearly always less than the diameter. Storage tanks are designed as elevated, partly buried or underground and 
mostly are circular cylindrical. [17, 27]. The most common classification of storage tanks is based on the following 
features [27-29]:

Material: steel or reinforced concrete
Construction type: underground, at grade or elevated
Anchored or unanchored subcomponents
Roof type: fixed-roof, floating roof
Shape factor: height-on-diameter ratio (H/D)
Amount of content in the tank: full, half-full, empty

Finally, it should be noted that tanks are just part of the storage facilities, and that most of those facilities are 
composed of several storage tanks which includes also components such as inlet/outlet pipelines or mechanical 
equipment.

4.3. Processing plants/stations

Processing stations such as compression, metering or pressure reduction and pumping plants are located along the 
pipelines to maintain the flow over long distances. Most of these plant/stations are housed in low-rise buildings and 
often classified as anchored or unanchored subcomponents [25] or within low-rise buildings, made of masonry or 
reinforced concrete structure [24].
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5. Damage assessment  

Several uncertainties regarding to earthquake events are still exist; the exact location and timing of the upcoming 
earthquake isn’t known, as well as the full scope and the magnitude of the event. Therefore, in this research, a 
probabilistic approach is put forward and probabilistic technics are implemented. This methodology is intended to 
assess the expected damage of different components of the gas and oil system with multiple Fragility 
Curves/Functions and by Fault-Tree-Analysis for complex systems.

5.1. Fragility Curves

In our methodology fragility functions represent the probability that a component will be damaged or disrupted 
to a given or worse damage state as a function of an intensity parameter. Fragility functions for Oil and Gas system
components other than pipelines are modeled as a lognormal cumulative distribution function (CDF) that expresses 
the probability of reaching or exceeding different damage states for a given level of ground motion (quantified in 
terms of PGA, PGV, and PGD) [30-32] as presented in Eq. 1.

 [ | = ] = ( )    ; {1,2, … } (1) 

[ | = ] Represents a conditional probability of being at or exceeding a particular Damage State (DS) 
for a given seismic intensity x defined by the earthquake Intensity Measure. Where,

 Uncertain damage state of a particular component. {0,1,... Nn};

 A particular value of DS;

 Number of possible damage states;

 Uncertain excitation, the ground motion intensity measure (i.e. PGA, PGD, or PGV);

 A particular value of IM;

 Standard cumulative normal distribution function.;

 Median capacity of the asset to resist damage state ds measured in terms of IM;

 Logarithmic standard deviation of the uncertain capacity of the asset to resist damage state ds.

In sequential damage states, the damage states are ordered in ascending order and the probability of being in the 
specified damage state is calculated as follows: 

 ( = | ) = 1 ( | )( | ) ( | ) ( | )       = 01 1=  (2) 

Another way to present the damage function, that is important to notice, is by Damage Probability Matrices 
(DPM). The DPM presents the probability of a level of damage being reached at a specific intensity measure level
for a given component [23].
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Figure 1 - Fragility curve Figure 2 - Illustration of PDM

For pipelines components the fragility functions are described as the expected Repair Rates (RR) due to ground 
motion (quantified in terms of PGV) or ground failure (quantified in terms of PGD). The RR function represents the 
expected number of repairs needed per a determined length of pipe, it is usually defined as a power function as 
described in Eq. 3 below, where and represent coefficients set using the standard linear least squares method.

 =    (3) 

In general, four types of fragility curves are proposed [30, 31, 33]: Empirical, Analytical, Expert judgment, and 
Hybrid. The empirical method is based on recorded data of past earthquakes and an observation of actual damage on 
exposed components, the analytical method is based on structural simulation and examination of the component’s 
response to different seismic ground motion, the Expert judgment method is based on the experts opinion that 
estimated the damage probabilities for different levels of seismic loading, and the Hybrid method combines the 
above-mentioned techniques in order to compensate for their respective drawbacks. The process and the approach of 
the fragility curves development is based mainly on the type, the quantity, and quality of the available data. It should 
be noted, that fragility functions can be derived with high reliability when there is a large quantity of appropriate test 
data available on the behavior of the component of interest at varying levels of intensity.

5.2. Fault Tree Analysis

In case of complex systems, such as pumping station and tank farm, several components of the system are 
essential for proper functionality. Thus, a failure of one component can lead to a total failure of the entire system. 
Thus, each component in these systems affects directly the overall performance of the entire system. For these 
complex components, Fault-Tree-Analysis (FTA) is a more suitable tool to estimate the expected damage as a result 
of the seismic event. The FTA presents the functional interrelationships between the sub-components of the system, 
and describes the contribution of the sub-component to top components by “AND”, “OR”, and other gates 

For example, a pumping station is composed of four main sub-components: electrical and mechanical equipment, 
pump, power supply, and the structure of the station. In the case that one of those components is damaged, the 
functionality of the station will be disrupted. The FTA enables to derive the vulnerability of the system from the 
fragility curve of each component (Gehl et al. 2014; NIBS 2004). Figure 3 below shows a scheme of possible fault 
tree of a basic pump station.
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Figure 3 - Example of possible fault tree analysis for Pumping station

6. Damage and risk assessment 

In this framework, the damage is calculated in terms of the expected cost as a result of the seismic event. 
Therefore, the direct economic losses are computed based on three main values: 

The probability that the component exceeded a certain damage state i, defined as P [Ds dsi]. 
The replacement value of the component which represent the 100% replacement cost of the component, 
defined as RV.
The damage ratios  for each damage state that represent the percentage of the total RV of the component, 
defined as DRi when 0<DRi<1.

After the definition of those values, the direct losses of certain damage state are evaluated by multiplying the 
damage ratio (DRi) by the replacement value of the component (RV). Additionally, the compounded damage ratio 
(DRc), that expresses all defined damage states, is computed as the probabilistic combination of the damage ratios 
and the probabilities of exceedance for a given IM, as follows [25].

 = ( | ) (4) 

Where, DR Damage rate of damage state i( | ) The probability of being in damage state i given a seismic event at Intensity
Measure IM

The total damage of seismic scenario can be calculated with reference to expected indirect losses that iare 
composed of potential loss due to the shutdown of the service. Furthermore, the total consequences will consider 
possible environmental impacts and the expected results of them. The risk of seismic event is the product of the 
occurrence probability and the estimated consequences; therefore the occurrence probability must be defined. In this 
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research, the occurrence probability of different earthquakes intensity, is defined as the annual rate of exceeding 
function for different potential IMs.

According to the fragility functions (Figure 4) that were developed for CIs components, the damage ratio of 
components (DRc), and the repair cost (RC) of the system, one can calculate the repair cost as a function of the 
intensity measure (Figure 5). Subsequently, combined with the annual rate of exceedance function (Figure 6), the 
development of the annual risk function can be acquired. The total annual risk of the scenario can be computed as 
the product of the total damage and the annual probability of the seismic event. One can see that by using the 
described methodology, it is feasible to calculate the total annual seismic risk that critical infrastructures are exposed 
to, and integration of this function gives the annual risk expectancy (Figure 7).

Figure 4 - Fragility Curves Figure 5 - Repair cost as a function of PGA

Figure 6 - Annual rate of exceedance function Figure 7 - Annual Risk of Component

7. Conclusion 

A significant gap between the level of preparedness of critical infrastructures in case of extreme events and the 
risk that those infrastructures are exposed is evident. The last decade’s extreme events emphasize the importance of 
proper and suitable preparedness of CI in terms of resilience, robustness and redundancy; most of government, 
economics, and social services are highly dependent on the continuous and stable performance of CI such as electric 
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power supply, and communication. This research intends to develop a risk appraisal and mitigation methodology for 
CIs (highlighting oil and gas systems), which will help to optimize the courses of actions for increasing the 
preparedness of critical infrastructures for seismic extreme events. The presented methodology analyzes the damage 
of critical infrastructures components using fragility curves and annual rate of exceedance function. This method 
allows calculating the total annual seismic risk that critical infrastructures are exposed to, and integration of this 
function gives the expectancy of the total annual risk. Based on those findings, the optimal mitigation strategy may 
be developed. Further research is needed to investigate the applicability and the effectiveness of various risk 
mitigation strategies such as robustness, resilience, and redundancy on the preparedness of C.I.s for extreme events 
at different intensities.
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