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A sequential machine is said to be k-controllable if there exists a minimum 
integer k such that every state transition can be achieved by an input sequence 
of length k. In this paper properties of controllable sequential machines are 
discussed. The main results are as follows: (1) An efficient procedure for 
controllability test is given. (2) It is shown that every uncontrollable strongly 
connected machine has an autonomous component machine. (3) The upper 
bound of k in a controllable machine containing a loop of length l is given. 
(4) The upper and lower bounds of k in k-eontroUable machines are shown. 
(5) It is shown that any sequential machine can be realized by a controllable or 
uncontrollable machine. 

1. INTRODUCTION 

Recently several fundamental  investigations have structured on a unified 
basis for sequential machines and continuous systems. For  example, the 
studies by  Kalman and Arbib  (1969), Massey and Sain (1967) and Arimoto 
(1968) are concerned with such similar properties.  We  made a study on the 
controllabili ty of sequential machines which is defined on analogy of the 
controllabili ty of continuous systems. 

A sequential machine is said to be controllable if there exists an integer k 
such that  every state transit ion can be achieved by  an input  sequence of  
length k. Properties of controllable linear sequential machines were discussed 
by  Cohn (1962) and Toda  (1966). In  this  paper,  we discuss properties of 
controllable nonlinear sequential machines. Some of  the discussions are 
contained in our previous paper (1968). 

In  Section 2, basic definitions including a definition of k-controllabil i ty are 
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given. Every controllable sequential machine is strongly connected, but the 
inverse of this statement is not always true. 

In  Section 3, basic properties of controllable sequential machines are 
discussed. As a resuk an efficient procedure to determine whether or not 
a sequential machine is controllable is given. 

In  Section 4, it is shown that every strongly connected uncontrollable 
sequential machine contains a strongly connected autonomous sequential 
machine as a component.  

In  Section 5, we discuss the controllability of a strongly connected graph 
which contains a loop of length l and the controllability of a graph which 
contains only two loops. Using these properties, the best upper  and lower 
bounds of k in a k-controllable sequential machine are obtained. 

Several relevant topics are discussed, such as (a) realizations of  arbitrary 
sequential machines by controllable or uncontrollable machines and (b) 
controllable components of sequential machines in Section 6. 

2. DEFINITIONS 

A Mealy-type sequential machine M can be defined as a system consisting 
of S, X, IT, ~, and A, i.e., M = (S, X, Y, ~, A), where S is the set of a finite 
number  of states, i.e., S ~ {s I , s 2 ,..., s~}; X is the set of a finite number  of 
input symbols, i.e., X = {x I , x~ ,..., x~}; Y is the set of a finite number  of 
output symbols, i.e., Y ---- {Yl, Y2 ..... y~}; and 8 is the next state function 
and A is the output function defined by the following equations: 

s(t  + 1) = ~(s(t) ,  x ( t ) ) ,  (1)  

y(t)  = A(s(t), x(t)), (2) 

where s(t), x(t) and y(t)  are the state, the input and the output at t ime t 
(which is an integer). I f  we extend the state function 3 and the output function 

over the set X *  of all the input sequences (including the input sequence of 
length 0) and the set Y* of all the output sequences (including the output 
sequence of length 0), respectively, then we have the following: 

$i,  Sj ~ S,  to E X >~, $i : 3(S~, tO), (3) 

Sj ~ S, ~, ~ X*,  v ~ Y*, v : )~(sj, to), (4) 

where 

II o~ ]1 = IJ v II, 

and the notation If to ]1 designates the length of the sequence to. 
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In  continuous system, a machine is controllable if  there exists an input 
segment which causes a transition from an arbitrary state at t ime t to an 
arbitrary state at t ime t + t i (t i > 0). In  the corresponding definition, a 
sequential machine is said to be controllable if there exists a nonnegative 
integer k such that every state transition can be achieved by an input sequence 
of length k. 

DEFINITION 1. A sequential machine M is weakly k-controllable if there 
exists a nonnegative integer k such tha t  

Vsi, Vs~ ~ S, 3~, ~ X*,  It co II = k, s, = 3(s~, o,) (5) 

M is controllable if it is weakly k-controllable for some finite k. 
From Definition 1, 

LEMMA 2. Every controllable machine is strongly connected. 

LEMMA 3. When a sequential machine M is weakly k-controllable, it is 
also weakly (k + i)-controllable for any nonnegative integer i. 

Proof. For an arbitrary state s~- 0 and an arbitrary input sequence 
%(~ X*,  l] % I1 = i), there exists a state sjl satisfying 

sji = ~(sj0, ~l)-  

As M is weakly k-controllable, 
i 

Vs~x, Vsj2 ~ S ,  3~o2 E X * ,  ti o,~ II = k, sj~ = 8(sj0, ~o~). 

Combining these equations we have 

Vsj0, Vsj2 ~ S, 3~oaco 2 ~ X*,  I1 OJl~O~ [[ - -  k + i, s~.~ = 8(sj0, %oJ2). 

Thus  M is weakly (k + / ) -cont ro l lab le  for any nonnegative integer i. 
Q.E.D. 

DEFINITION 4. A sequential machine M is h-controllable if and only if it 
is weakly h-controllable but not weakly ( k -  1)-controllable, i.e., k is the 
least integer for which M is controllable. 

Figure I shows an example of a 3-controllable sequential machine. When 
two arbitrary states s~ and sj are given, there exists at least one input sequence eo 
of length 3 such that 

st = ~(s~, o~). 
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FIG. 1. 3-controllable sequential machine. 

For example, 

S 1 = 8(,81 , 010 ) ,  

$ 3 = (](Sl , 011), 
s2 = a ( s 2 , 0 0 1 ) ,  

S1 = (]($3, 110) ,  

s~ = a( ,~ ,  111). 

s~ = 8(sa, 001), 
sl = 8(s2,010), 
s 3 = 8(s2,011), 
s~ = 8(sa, 101), 

The  sequential machine in Fig. 2 is strongly connected but not controllable, 
for the transition from s 1 to s 2 cannot be achieved by an input sequence of 
even length and the transition from s I to s 3 cannot be achieved by an input 
sequence of odd length. 

FIG. 2. Uncon t ro l l ab l e  s t rongly  connec ted  machine .  

A typical example of a sequential machine which is strongly connected 
but not controllable is a strongly connected autonomous sequential machine 
(for example see Fig. 3). 
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FIG. 3. Strongly connected autonomous sequential machine. 

Crudely stated, machines of autonomous type are n o t  controllable because 
they have no terminals for inputs of control signals. In  Section 4, it will be 
shown that  every strongly connected sequential machine which is not 
controllable contains a strongly connected autonomous sequential machine 
as a component.  Thus  the difference between strongly connectedness and 
controllability is due to whether or  not  a sequential machine contains an 

autonomous component.  

3. BASIC PROPERTIES OF CONTROLLABLE SEQUENTIAL MACHINES 

DEFINITION 5. A set Tm(s i ,  st) of integers for a sequential machine M is 

defined by 

TM(Si,  sj) = {[I ~o III st - -  ~(s i ,  ,o), o~ ~ x * } .  (6) 

I t  should be noted that TM(Si,  st) contains 0. I f  there exists no sequence 
which cause a transit ion from s t to s t then TM(s i , st) is an empty set. 

An infinite sequence { .... z i  ,...} of elements is said to be ul t imately periodic 
if there exist integers k and h such that z~. = zj+~ for every integer j ~ h. 
A set T = {zi} (z~ > z~ for i > j )  of nonnegative integers is said to be 
ult imately periodic if either T is finite or z 1 , z 2 - -  z I ,..., zi+ 1 - -  z i ,... is an 
ul t imately periodic sequence. 

The  following lemma is obtained from the proper ty  of regular sets. 

LEMMA 6. For any states si and sj in a sequential machine M ,  TM(St , sj) is 
either an ult imately periodic set of  nonnegative integers or an empty set. 

THEOREM 7. For an n-state sequential machine M the fol lowing four  

statements are equivalent. 



CONTROLLABLE MACHINES 311 

(a) 
(b) 

(c) 
s i ~ S .  

(d) 

M is controllable. 
n 

For every si ~ S there exists k i such that 0~=1 Tu(s~ , s~) ~ k, . 
n 

M is strongly connected and there exists k o ~ ~J=l TM(Si, sj) for  some 

M is strongly connected and ko,  k o + 1,... are contained in some 
TM(Si , Sj) (si and s~ may be identical). 

Proof. W e  prove  these s ta tements  in the order  (a) - +  (b) - +  (c) ---* (d) - +  (a). 

(a) --+ (b): I f  M is contro l lable  then  M is k-cont ro l lab le  for  some  k, so 
n 

N~=I T u ( s i ,  s~) contains  k for  every state s i ~ S (it is a special  case of (b) such 

tha t  every k i = k). 

(b) --~ (c): I f  (b) is satisfied, every TM(Si,  sj) is a n o n e m p t y  set, tha t  is, 
M is s t rongly  connected .  Therefore ,  (c) holds  (we can choose any s i and  

ko = ki). 

(c) --~ (d):  F o r  an a rb i t ra ry  state sj there  exist  states s~- = sj0, s n , sj~ ,... 
such tha t  

TM(Sjh, Sj) ~ h (h = 0, 1, 2,...). 

I f  (c) is satisfied, for every s,-h, 

T M ( s i  , sjh) ~ ko . 

T h u s  

T,,(s, ,  s3 ~ ko + h (h = 0, ~, 2,..). 

T h u s  (d) holds.  

(d) --+ (a): T h e  m i n i m u m  e lement  in Tm(sl~, sk) is deno ted  by  min  TM(s~, sk). 
F o r  two a rb i t ra ry  s tates  s ,  and  sb, as M is s t rongly  connected ,  

min  T u( s~ ,  si) <~ n - -  1 ,  

min  TM(sj , sb) ~ n - -  1. 

T h u s  

k o + 2n - -  2 - -  ra in  T u( sa ,  si) - -  min  TM(S~, Sb) >~ k o • 

I f  (d) is satisfied, 

TM(S~, sj) ~ k o + 2n - -  2 - -  rain TM(S~, s~) - -  min  TM(Sj,  s~). 
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By considering a path Sa -+ si -+ sj -+ sb 

TM(S~ , Sb) ~ rain TM(S~ , si) 

-[- {k o -[- 2n - -  2 - -  rain TM(Sa, si) - -  min TM(Sj, sb) } --}- rain TM(S~, Sb) 

= k o + 2n - -  2. 

As states Sa and s o are arbitrary, M is weakly (k o + 2 n -  2)-controllable. 
Therefore, (a) holds. Q.E.D. 

By the last part of the proof, the following corollary is obtained. 

COROLLARY 8. I f  an n-state sequential machine M is strongly connected 

and there exists a state s i such that 

3x ~ X ,  si = 3(si , x), (i.e., si is an equilibrium state), 

then M is weakly ( 2 n -  2)-controllable, and h-controllable for  some 

k ~ (2n - -  2). 

A sequential machine is said to be k-input memory, if h is the least integer 
satisfying 

y(t)  = f (x ( t ) ,  x(t  - -  1) ..... x(t  - -  k)) 

The following lemma is obvious. 

LEMMA 9. A reduced k-input memory sequential machine is k-controllable. 

DEFINITION 10. A transition matrix CM = {cis} 

sequential machine M is defined as follows. 

3x E X ,  sj = 8(si , x) ~ c u = 1, 

V x  ~ iV, st v ~ a ( h  , x) ~ cu = O. 

corresponding to a 

(7) 

The oriented graph corresponding to a transition diagram of a sequential 
machine M is denoted by GM. Figure 4 shows a transition diagram of M ,  
its corresponding G M and C u . 

I f  M is controllable, GM is said to be a controllable graph. For example, 
GM in Fig. 4 (b) is controllable. 

Let G be a graph with a node set N and an edge set E. A set EM of edges for 
M C N i s  

EM = {e ] e ~ E, e incidents out from a node x ~ M 
and incidents into a node y ~ M}. 
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FIG.  4. S e q u e n t i a l  m a c h i n e  M a n d  i ts  GM a n d  C M . 

A subgraph of a graph G is defined to be a graph with a node set M C N 
and an edge set F C EM. The following result is stronger than Corollary 8. 

COROLLARY 11. I f  a strongly connected graph G contains a controllable 
subgraph, G is controllable. 

D E F I N I T I O N  12. The  matrix product of ~M("(1) = {e~l}} and ~MC'(2) = {c~)} of 
order n is defined by 

M " ' M  ~ elk 
k 

(s) 

where • means a logical product and Uk means a logical summation over 

We designate CMCM by CM 2, etc. CM is convergent in its powers if there 
exists h such that 

C M  ]c = CkM +1 . . . .  , ( 9 )  
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CM is oscillatory with period t in its powers if it is not convergent and there 
exists an integer h and the least integer t ~ 2 such that 

CM k = C~ +t, (10) 

for all k /> h. As a number  of transition matrices of order h is at most 2 n~, 
C u is either convergent or oscillatory in its powers. 

A matrix whose elements are all l ' s  is denoted by L 

LEMMA 13. A necessary and sufficient condition that a sequential machine M 
is k-controllable is that 

~ M  k z I ,  

c~ ,  -~ =~ I ,  

such that k - -  j is nonnegative. 

j >/ 1 : integer 
(11) 

THEOREM 14. A necessary land sufficient condition that a sequential machine 
M is controllable is that M is strongly connected and that CM is convergent in 

its powers. 

Proof. I f  M is not strongly connected, it is not controllable by L e m m a  2. 
I f  CM is not convergent in its powers, there exists no k such that CM k -~ 

(~k+l I.  
This  implies that M is not controllable by L e m m a  13. 
Conversely, if M is strongly connected and CM is convergent in its powers, 

Thus  

CM U CM 2 t_) ... ~3 CM n ~ I 

C M  le = C~ l  4-1 . . . . .  V 

(strongly connectedness), 

(convergent). 

v - C ,  ~ u C ~  +~ u ... u C ~  +~-~ 

= C~, - f fCM u c M  ~ u . , .  u c ~  ~) = c~,-'~r = z .  

As M is strongly connected, every row of C ~  -1 contains at least one nonzero 
element. This  implies 

C~I-1I  = I .  

Thus  
V = 1 - -  CM ~. 

From L e m m a  13, M is controllable. Q.E.D. 
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A path in a graph is a sequence (e 1 , e~ ,...) of edges such that the terminal 
node of each edge coincides with the initial node of the succeeding edge. 
A closed path is a finite path in which the initial node of the first edge coincides 
with the terminal node of the last edge. A loop is a closed path and every 
vertex which it meets is distinct apart from the coincident initial and terminal 
vertices. A self-loop is a loop consisting of only one edge. 

THEOREM 15. A sequential machine M is controllable i f  and only i f  it is 
strongly connected and a greatest common divisor d of lengths of all loops in GM 
i s l .  

Proof. If CM is oscillatory with period t in its powers, by a proper 
permutation matrix P 

i Cm 0 0 CM~ 
PUMP' = • . 

0 0 
CMt 0 0 

where P '  is a transposition of P. 

::: °0) 

This implies that d is a multiple of t. If M is strongly connected and d = 1, 
t must be 1. By Theorem 14, M is controllable. Conversely, if M is 
controllable, it is strongly connected and from Theorem 7 TM(Si, ss) contains 
k i and h i @ 1 for an arbitrary s i . Thus there exist two closed paths Q1 and Q~ 
such that 

L(Qa) + 1 = L(Q2), (i) 

where L(Q) is a length of a path Q. If d is a greatest common divisor of 
lengths of all loops in GM, it can be easily verified that every closed path Q 
in GM satisfies 

L(Q) ~ O(mod d). 

If there exist two paths Q1 and Qz satisfying (i), 

L(Q1) ~- O(mod d) 

L(Q2) ~ r(Q1) + 1 ~ O(mod d). 

This implies d = 1. Q.E.D. 

In an n-state machine the upper bound of length of loops is n, so a greatest 
common divisor of lengths of all loops is 1 if and only if a greatest common 

643/2I[4-2 
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divisor of lengths of all closed paths of lengths not greater than n is 1. We  
have the following procedure of controllabili ty test: 

Procedure 16. Controllabil i ty test 

(i) r = 1, a = 0, b -~ 0, B 0 = 0 (a matrix of order n whose elements 
are all 0). 

(ii) Calculate C ~ , ' =  CMC~I= {c~?}. I f  a = 0 go to step (iii), 
otherwise go to step (iv). 

(iii) B ~ = C M  *UB,"  a . I fB~ ~ - I s e t a =  1. I f b  = 1 go to s tep(v i ) ,  
otherwise go to step (iv). 

(iv) g,  = 0,~1 c~'. I f  g ,  = 1 go to step (v), otherwise go to step (vii). 

(v) I f  b = 0, set b = r otherwise set a new value of b to be a greatest  
common divisor of b and r. I f  b = 1 go to step (vi) otherwise go to step (vii). 

(vi) I f  a = 0 go to step (vii), otherwise go to step (ix). 

(vii) I f r  < n  set a new value o f t  to be r +  1 and go to step (ii). 
Otherwise go to step (viii). 

(viii) The  given sequential machine M is not  controllable. 

(ix) The  given sequential machine is controllable. 

Here, 

Br B r = C M ~ U C ~ I u ' " U C M  • 

a I fB~  = I t h e n a  ~ l o t h e r w i s e a = O ,  s o i f a =  1 t h e n M i s  
strongly connected. 

gr gr ~ 1 if and only if there exists at least one closed path of 
length r. 

b A greatest common divisor  of lengths of closed paths whose 
lengths are not greater than r. 

I f a  = 1 and b = 1 for some r (1 ~ r ~ n) then M i s  controllable. 

4. DECOMPOSITION OF A STRONGLY CONNECTED 

UNCONTROLLABLE MACHINE 

In  this section it will be shown that  a strongly connected uncontrollable 
machine contains an autonomous component.  

A parti t ion ~ on S is a collection of disjoint subsets of S whose set union is S. 
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DEFINITION 

machine M = (S, X, Y, 8, A) 
(S.P.) if and only if 

implies that 

17 [7]. A partition w on the set of states of a sequential 
is said to have the substitution property 

Sl - s~(~) 

V x s X ,  8(s , ,  x) ~ 8(s~, x)(=),  (12) 

where s 1 ~ s2(zr ) means that s I and s 2 are contained in the same block of 7r. 
The  product of two partitions ~r and r is defined as follows: 

if and only if 

,1 - s~(~ - , ) ,  

sl - s2(=), s~ ~- s2(,). 

I f  every block of a partition 7r contains only one element, ~r is said to be 
0 partition denoted by 0. A partition 7r is nontrivial if it is composed of at 
least two blocks. A partition ~r with the substitution property is said to be 
input independent if 

Vs e s ,  Vxl , Vx2 ~ x ,  8(,, x~) _= 8(, ,  x2)(~) (13) 

LEMMA 18. I n  a strongly connected uncontrollable sequential machine 

M = (S, X, Y, 8, A), there exists a non t r i v ia l inpu t  independentpart i t ion  rr on S 

wi th  S.P. 

Proof .  As M is strongly connected but not controllable, the greatest 
common divisor of lengths of all loops in GM is d =/= 1. We divide S into the 
following blocks by the distances from the state s 1 . 

B 1 ~ {s 

B 2 = {s 

Ba  = {s 

The partition 

co ~ X * ,  co [ = 0 (mod d), 8(s l ,  co) = s}, 

co ~ X * ,  co ] = 1 (mod d), 8(si , co) = s), 

co ~ X*, co I = d - -  1 (mod d), 8(sl, co) = s}. 

7r = { B  1; B2 ; ' ' '  ; Ba} 

is input independent and nontrivial because d :~ 1. 

(14) 

Q.E.D. 
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It two partitions ~r and r on S satisfy the following condition, M can be 
realized by a serial connection of the corresponding machines M= and M~. 

(i) ~ r - r  = 0  (ii) ~rhasS.P.  

In  the case when rr is nontrivial input independent partition, M~ is an auto- 
nomous machine with at least two states. 

The  partition 7r given in the proof of Lemma 18 satisfies the above 
conditions. ~ is determined in the following manner: 

We denote the j - th  element of B i by b~j (if the number of element in Bi 
(denoted by [Bi  1) is less than j, b~ = ¢ ) .  

T~ = {bli , b~j .... , bat} ( j  = 1,..., h), 

= {T1; T2; ""; Th}. (15) 

Using these rr and 7, the following theorem is obtained. 

THEOREM 19. A strongly connected uncontrollable sequential machine M 
can be realized by a serial connection of an autonomous strongly connected 
sequential machine M s with at least two states and a controllable sequential 
machine M~ (see Fig. 5). 

FIG, 5. Decomposition of a strongly connected uncontrollable machine. 

M ,  is controllable because the greatest common divisor of lengths of all 
loops in GM is 1. This result means that tile difference between a strongly 
connected sequential machine and a controllable sequential machine is due 
to whether or not a machine contains an autonomous component (i.e., an 
autonomous component can not be controlled by the input ) . As in autonomous 
linear sequential machines the next state of the state (0, 0 ..... 0) is also itself, 
there exist no strongly connected linear autonomous sequential machines 
with at least two states. I f  a linear sequential machine is realized by a diagram 
is Fig. 5 and M~ is an autonomous linear sequential machine with at least two 
states, the whole machine is not strongly connected. This implies that there 
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exist no linear sequential machines which is strongly connected but not 
controllable, i.e., in linear sequential machines strongly connectedness and 
controllability are equivalent (it was shown by Cohn (1962) by a different 
way). 

An example of a sequential machine which is strongly connected but  not  
controllable is shown Table  I(a). As the greatest common divisor of lengths 
of all loops in GM is 2, the partition 7r is 

7r = {1, 3; 2, 4} = {B, ; B2} , 

TABLE I 

Input 

State 0 1 

1 2 4 
2 3 3 
3 4 4 
4 1 3 

Next state 
(a) 

0 1 

B1 B2 B2 
B2 B1 B1 

(c) 

0 1 

(Bx, 7"1) (B~, 7"1) (B2, T2) 
(B2, 7"1) (B~, 7"2) (B~, T~) 
(Bt, T~) (B~, 7"2) (Bz, T2) 
(B2, 7"2) (B1, T1) (B~, 7"2) 

(b) 

B1 , 0 B 1 , 1  B~ , 0 B2 , 1 

7"1 T~ T~ T~ T~ 
T~ T2 7"2 7"1 T~ 

(d) 

and the partition T is 

= {1, 2; 3, 4} = {T1 ; T2}. 

States 1, 2, 3 and 4 are represented by combinations of blocks (B1,711) , 
(B 2 , 711), (B1, Te) and (B2 , Te), respectively. By replacing states in Table  I(a) 
by these combinations of blocks we can obtain Table  I(b). By removing T 1 
and Te from this table and simplify the resulting table, Table  I(c) for M~ is 
obtained. M~ in Table  I(d) can be obtained from Table I(b). For example, as in 
Table  I(b) an input 0 causes a transition from (Be, T1) to (B1, 7"2) , in M~ an 
input (B2 ,0)  causes a transition from T 1 to T~. M~ is a two-state autonomous 
sequential machine and M~ is a controllable sequential machine. 
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5. CONTROLLABILITY OF SEVERAL GRAPHS AND BOUNDS OF k IN 

k-CONTROLLABLE SEQUENTIAL ~V~ACHINES 

In  this section we discuss controllability of a graph which contains a loop 
of length l, that of a graph which contains only two loops l 1 and l 2 and the 
best bounds of k in k-controllable sequential machines. 

A function fi is defined by 

Sa = f(u), (16) 

where Sa is a set of  nodes to which there exist edges from node u. fi is 
generalized as follows. 

f(Sb) = {Sa ] Sa = f(u), ~tu @ Sb), (17) 

f i (&)  = f(3'-~(&)). 08)  

THEOREM 20. I f  an n-node graph G contains a loop of length l, and it is 
controllable, then G is weakly {(n - -  2) l + n + 1)-controUable, and k-con- 
trollable for some k <~ (n --  2) l + n + 1. 

Proof. Without loss of generality, we assume that names of nodes in L are 

u 1 , u 2 ,..., u~_ 1 and uz such that 

u~+ 1 Eft(u,) (1 ~< i ~< 1 - -  1), 

u~ e f(u~), 

and that names of nodes not in L are uz+ 1 ,..., un-x and u~. Consider the 
following sequence: 

ul = f0(ui ) ,  f ( ~ ) , . . . ,  f ~ ( ~ i )  = ( ~  ,..., ~ ) ,  

fii(ul) :/= fi~(ul) for i < k. 

Clearly, 
Ul E 3~(ul) .  

Thus  for any nonnegative integerj  ~ k - -  l 

tv+~(ul) = fJ(f~(ul)) ~ fJ(ul). (i) 

I f  fi(ul) : fl~(ul) for some i v ~: j,  the sequence f°(ul) , f(ux),..., f~(ul) will be 
convergent or oscillatory, which contradicts 

fli(ua) :~ fl~(ua) (i < k). 
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Thus  

~(ul)  =~ ~J(u:) for all i ¢ j ,  i , j  ~ k. (ii) 

F rom (i) and (ii) the following relation holds 

flJ(u:) _C flJ+~(u:), (iii) 

where j is an integer such that 0 ~ j ~ k - -  l. 
This  implies 

I ~(ul)l < I ~+~(ul ) /<  n, 0 ~ j < k - -  I. 

Thus  the number  of/3J(u:)'s which consist of i nodes (1 ~ i ~ n - -  1) is 
at most l. As I /~(u~) l  = n,  k satisfies 

k ..< ( n -  1 ) l +  1. 

As u~ may be replaced by any node in L, there exists a path of length at most 
(n - -  1) l -+- 1 f rom any node in L to any node in G. Clearly, there exists 
a path of length at most n - -  l f rom any node in G to some node inL.  Tha t  is, 
f rom Theorem 7, G is weakly { ( n - - 2 ) l +  n + 1}-controllable, and 
it follows from Definition 4 that it is also k-controllable for some 
k ~ ( n - - 2 )  1 4 - n +  1. Q.E.D. 

In  a controllable graph which contains more than two nodes there exist at 
least two loops. The  graph in Fig. 6 consists of two loops L 1 and L~ of lengths 
/1 and 12 with l~ succeeding nodes in common (l 1 /> /2). 

THEOREM 21. A graph GM in Fig. 6 is controllable if  and only i f  l: and l~ are 
relatively prime. I f  GM is controllable, it is {(/1 - -  1) 12 + l 1 -- la}-controllable 

(/1 ~>/2). 

Fro. 6. Graph GM. 
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Proof. F r o m  T h e o r e m  15, GM is controllable if and only if l 1 and l 2 
are relatively prime. N o w  we show for any j (0  ~<.j ~< l 1 - -  1), there exist 
nonnegative integers i 1 and i s such that  

(11 - 1) 12 = id l  + id~ + j .  

W h e n  a multiple of l 2 is subtracted f rom (l 1 - -  1)la, the difference is 

(i) 

0 when (l 1 - -  1)l~ is subtracted, 
l~ (11 - -  2)12, 

(/1 - -  1 ) l  2 O. 

and l s are relatively prime, each difference belongs to a different As /i 
residue class of modulus/i, that is, when divided by l I , the remainders are 
0, 1 ..... l a - - 2  and l 1 - -  1. 

Thus ,  (i) is proved, and the same statement is not  true for any l < (l 1 - -  1)l 2 . 
This  implies that  there exists a path of  length (l 1 - -  1)l 2 f rom the node u~ 
(1 ~ i ~ la) to an arbitrary node. 

T h e  distance f rom the node uza+l to the node u 1 is 11 - -  l~ and it is the 
longest path f rom a node in GM to some node ui (1 ~ i ~ l~). T h u s  GM is 
{(l 1 - - 1 ) / 2 +  l 1 - - la}-control lable  f rom the fact that  (l 1 - -1 ) l~  is the 
m i n i m u m  number  which satisfies (i). Q.E.D.  

COROLLARY 22. There exists an n-state (n 2 - -  2n + 2)-controllable 
sequential machine for any n >/2. 

Proof. W h e n  l 1 = n and l~ = l~ = n - 1, the value of  {(l 1 - 1) la -}- l 1 - 13} 
is n t - -  2n + 2, which is m a x i m u m  as easily verified. Q.E.D.  

THEOREM 23. I f  an n-state sequential machine with p input symbols and q 
output symbols is k-controllable, k satisfies, 

q o g ~ n  q ~ < k ~ < n  2 - 2 n + 2  ( n > / 2 )  
(19) 

k = o (n  = 1) 

Proof. As the n u m b e r  of  all possible sequences of  length k is pC, 

p~ ~ n .  

This  implies the lower bound.  
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If  a graph G M contains a loop of length at most n -  2(n > /3) ,  by 
Theorem 20 it is weakly (n ~ - -  3n + 5)-controllable. I f  a controllable graph 
GM contains no loop of length less than n - -  1, it must  contain two loops of 
length n and n - -  1. By Corollary 22 such a graph is (n 2 - -  2n + 2)-con- 
trollable. For  n >~ 3, 

n z -  2n + 2 >~ n z -  3n + 5. 

Thus  the upper  bound is proved for n / >  3. I t  can be easily verified that  this 
bound is also valid for n = 2. Obviously, one-state sequential machine is 
0-controllable. Q.E.D. 

The  existence of the machines which satisfy the upper  bound is shown in 
Corollary 22. The  existence of the machines which satisfy the lower bound is 
shown in the next theorem. 

THEOREM 24. For any n and any p ( ~  2), there ex#ts a k(=Qog~ nq)- 
controllable n-state sequential machine with p input symbols. 

Proof. Let  us consider a shift register machine shown in Fig. 7. As the 
length of the register is k, this machine is k-controllable. As each combination 

Combi nat iona I 
Circuit 

FIe. 7. 

> 

Output 

Minimum controllable machine. 

of variables in registers corresponds to each state, the number  of states is p~. 
As the output  of the r ightmost  register does not connected to the combinational 
circuit, each state has p -  1 equivalent states. There  are p~- i  equivalence 
classes such that each equivalence class consists o fp  states (a 1 , a 2 ,..., a ~ - i ,  0), 

( a l ,  a2 ..... a~_ 1 , 1) ..... (a 1 , a 2 ..... a~_l ,  p - -  1). I f  s i and s~ are in the same 
equivalence class then for all x in X, 

S(s , ,  x) = x), 

x)  = x). 
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So we can merge these two states. Thus  we can replace p states in the same 
equivalent class by p' states (1 ~< p '  ~ p) by combining equivalent states. 
For  any n (pk-1 < n ~< p~) we can obtain a sequential machine of n states by  
this method. The  n-node graph corresponding to such a machine is rlog~ n 7- 
controllable. 

An  example of transit ion graphs for p = 2 and h = 3 is shown in Fig. 8. 

\ \  

"-,7 
0~306\ \ 

0 \  

\ 
\ .  

\ t 

\ 

~ n = 8  

1 

"4,J2; "\ 

\ \ 

\ 

~ \  1 n=7 

~ ' \ \ \  

\ 

\~ I n=6 

\ (c) 

FIO. 8. Examples of minimum controllable machines. 

Any pair  of states in the same region divided by  dotted lines are equivalent in 
Fig. 8(a), and we can regard any such pair as one state. Thus,  for instance, we 
have 3-controllable machines in Fig. 8(b) and (c) for n = 7 and n = 6, 
respectively. Q.E.D. 
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6. OTHER TOPICS 

In this section, realizations of arbitrary sequential machines by controllable 
or uncontrollable sequential machines and controllable components are 
discussed. 

DEFINITION 25. A sequential machine M = (S, X ,  Y, 8, A) is said to 
be realized by M'  = (S', X', Y', 8', h'), if there exist onto mappings 

~ : S " - +  S, ~b : X " - +  X and ~ : Y " - +  Y 

such that 

(i) 

(ii) 

(iii) 

S" C S',  X "  C X ' ,  Y"  C Y ' ,  

sl, s ~ S ,  x~X, ~(sl,x)=s2, 

so ~ ~ - l ( h ) ,  % ~ ~-1(s2), Vx' e ~- l (x) ,  
8'(s~, x') = sb, 

s a e S ,  x E X ,  y ~ Y ,  
~(sl , x) = y 

Vsa ~ 4,-~(sl), Vx' ~ ~,-l(x) 
~(;~(sa, x')) = y .  

THEOREM 26. For an arbitrary sequential machine M,  a controllable 
sequential machine M '  which realizes M can be constructed by adding one input 
symbol. 

Proof. We can construct GM' which contains a selfloop and a loop which 
passes through all nodes using edges labeled by a new input symbol and at 
least one edge to connect the node with selfloop to the new large loop. By 
Corollary 8, GM is controllable. Q.E.D. 

As a controllable sequential machine is strongly connected, by adding only 
one state which is isolated the resulting machine realizes the original one and 
is not controllable. 

THEOREM 27. For every controllable sequential machine M,  there exists a 
sequential machine M '  which is not controllable and realizes M such that 
[ S '  ] = I S I + 1. Here i S ] is the number of elements in the set S. 
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THEOREM 28. For every controllable sequential machine M,  there exists a 
strongly connected sequential machine M '  which is not controllable and realizes M 
such that ] S'  ] = 21 S ]. 

T h e  sequential machine M '  in this theorem is constructed by a direct 
product of M and a strongly connected autonomous two-state sequential 
machine (see Section 4). Theorem 28 shows that the controllability is not 
preserved under state splitting. But this property is preserved under state 
reducing (procedure for reducing equivalent states). 

THEOREM 29. Controllability of a sequential machine is preserved under 
state reducing. 

A collection of subsets ~r = {Bi} of S is called a cover on S if and only if 

U B, = S (20) 
Bi C Bj implies i : j .  

I f  ~r 1 and ~2 are covers on S, we write 

~rl >~ ~2 (21) 

if and only if for each Bj in ~r z there exists a Bh' in ~r, such that 

B~' D B~ . 

DEFINITION 30. A cover ~r on S is said to be a controllable component 
of a sequential machine M, if rr ~ {Bi} satisfies 

VBi, VB~, 3s~EBi, 3sb ~ B j ,  30, ~ X * ,  Ii"-'ll = k, 

s~ = ~(s~,  ~o). 

LEMMA 31. I f  ,r is a controllable component of M,  ~' (>/7r) is also a 
controllable component of M.  

A trivial e0ver ~- = {S} is always a controllable component of M. 

, 

CONCLUSION 

During the preparation Of this paper,' Mowle (1970) published a paper 
on controllable sequential machines. In  his paper, procedures of controllability 
test are given. Procedure I of his paper uses the properties o f  Corollary 8 
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and Lemma 13 of this paper. Procedure I I  of his paper requires searching for 
two closed paths with relative prime lengths. As the lengths of these closed 
paths are not bounded by the order of n, our procedure given in the last of 
Section 3 is easier. For example, the 15-node graph shown in Fig. 9 contains 

FIc. 9. Example. 

loops of lengths 6, 10 and 15. The  greatest common divisor of these integers 
is 1 so we can conclude the graph is controllable by Theorem 15. For an 
n-node graph we need not check closed paths of length greater than n. By the 
procedure proposed by Mowle (1970) we have to find two closed paths with 
relative prime lengths. In  this case we can find such paths of lengths 15 and 16. 
Usually the upper bound of lengths of such closed paths necessary to check is 
much greater than n. 

Properties of observable sequential machines are discussed in Kambayashi 
and Yajima (1971). 
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