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Abstract 

Woess, W., Topological groups and infinite graphs, Discrete Mathematics 95 (1991) 373-384. 

We show how results concerning infinite, locally finite, vertex-symmetric graphs can be related 
with the structure theory of topological groups, when the latter is applied to automorphism 
groups of the graphs. In particular, we discuss polynomial growth, bounded automorphisms 
and infinite expanders. In an appendix, we present three problems on infinite graphs, not 
necessarily linked with topological considerations. 

1. Introduction 

The automorphism group of an infinite, locally finite graph is a topological 
group with the topology of pointwise convergence. In this note we show how the 
structure theory of topological groups can be applied to prove results concerning 
vertex-symmetric graphs. In particular, we discuss a series of results due to 
Trofimov [ 19-211. 

After presenting preliminaries and basic facts (Section 2), we show in Section 3 
how Trofimov’s theorem on graphs with polynomial growth [20] can be easily 
proved by combining Gromov’s famous theorem on discrete groups with 
polynomial growth [6] with a result of Losert [ll] concerning topological groups 
with this property. In Section 4, we discuss the connection of another theorem of 
Trofimov [19], concerning lattice-type graphs, with the thecry of FC-groups of 
Grosser and Moskowitz [7]. However, deriving Trofimov’s characterization of 
lattices directly from the results of [7] includes a difficulty which seems hard to 
overcome. On the other hand, one obtains from [19] that the group of bounded 
automorphisms of a vertex-symmetric graph is closed [21] and hence an 
FC-group. Applying [7] we get that the bounded automorphisms of finite order 
constitute a closed group in the topology of pointwise convergence: this 
completes partial results by Godsil et al. [5]. 
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Finally in Section 5, We 0 report a result of Soardi and Woess [16] which 
characterizes infinite vertex-symmetric expanders in terms of properties of the 
automorphism group, viewed as a topological group. The properties in question 
are amenability and unimodularity, and the result can be applied to show that 
every vertex-symmetric graph with infinitely many ends is an expander. 

It should be pointed out that the spirit of this note is mainly that of an 
introductory survey with the aim to illustrate the use of topological groups in the 
study of infinite graphs. As this paper is principally addressed to readers working 
in the field of discrete mathematics, some space is given to the explanation of the 
relevant topological prerequisites. 

2. Basic facts 

In the sequel, r(X, E) will always denote an infinite, connected, locally finite 
graph with vertex set X and (unoriented) edge set E. The automorphism group 
AUT(Q of r is the group of isometries of the vertex set X with respect to the 
discrete metric d: d(x, y) is the smallest number of edges on a path in r 
connecting x and y. We shall always assume that r is vertex-symmetric, i.e., 
ALIT(r) acts transitively on the vertex set. 

We introduce pointwise convergence of a sequence (g,) in AUT(T): 

g, + g E AUT(T) 3 if for every x E X, g,x = gx for all n 2 n,. 

Recall that a topological group is a group G equipped with a topology such that 
the maps (g, h) wgh and g -g-l are continuous on G x G and on G, 
respectively. A good introduction to the fundamentals of topological groups is 
given, for example, by Hewitt and Ross [lo]. The topology of a topological group 
is completely determined by a neighbourhood base at the identity, see [lo, (4.5)]. 
For the topology of pointwise convergence in G = AUT(T), a neighbourhood 
base at the identity is given by the family of pointwise stabilizers of finite subsets 
of X. We write Gx for the stabilizer of x. In other words, if we fix a reference 
vertex o and, for every x E X, an automorphism g, such that g,o = x (here we use 
transitivity!), then the family of subgroups 

gx AUT(r), g;l, x, y E x 

is a subbasis of the topology. Thus, AUTO is a Hausdorff group with countable 
base, and it is locally compact, as the following well-known lemma shows. 

Lemma I. The stabilizer AUT(r), is compact. 

roof. Let (gn) be a sequence in AUT(T),, and let {x0 =x, x1, x2, . . .} be an 
enumeration of X. As g,x =x for every n, and as r is locally finite and 
connected, the set {g,xk 1 n 2 0} is finite for every k. Hence there is a 
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subsequence (z,(n)) of (n) such that all g t,(n)~l coincide; write gx, for this 
common image. Repeating this argument inductively, we get a sub-subsequence 
(rk(n)) of the preceding subsequence (z&n)), such that all g,(,,, n 2 0, send 
xk to the same element of X, denoted gxk. Thus, g,(,,+g E AUT(T) 
pointwise. 0 

We now see that the identity has a neighbourhood base consisting of 
compact-open subgroups, so that AUT(T) is totally disconnected. Next, we 
describe compactness in AUT( r). 

Lemma 2. A subset U of AUT(T) has compact closure if and only if the orbit Ux 
is finite for every x tz X. 

Proof. If U is relatively compact then it is contained in a finite union of sets 
gi AUT(r),, i = 1, . . . , r. Hence, UX t {gix 1 i = 1, . . . , r}. 

Conversely, if Ux = { y,, . . l , Y,}, then there are gi E U such that gix = yi, 
i=l,..., r. But then 

U c fi gi AUT(I”),. 
i=l 

The latter set is compact by Lemma 1, so that A has compact closure. Cl 

Indeed, by local finiteness, in Lemma 2 it is enough to check finiteness of Ux 
for one x E X. Now let G be a closed subgroup of AUT(T) acting transitively on 
X. In the relative topology, G inherits all properties of AtUTrrrrrrrrrrrrrrrrrrr(r) discussed so far. 
Choose a reference vertex o E X, and define 

V = {g E G 1 d(go, o) s 1). 

For the following lemma, recall that V” = {g,g, = l l g, 1 gi E V}. 

Lemma 3. V is cl compact, symmetric neighbourhood of the identity in G. If g E G 

and n 3 0, then g E V” if and only if d(go, o) s n. 

Proof. Clearly, V = V-l. For every x E X with d(x, o) s 1 choose gx E G with 
g,o =x. Then 

V= u g,G,, d(x.o)S I 

and V is compact by local finiteness and Lemma 2. By definition of the topology, 
V is also open. 

The last statement is true for n = 1 by definition of V. Suppose it is true for n. 
Observe that V” c V’? Let g E G, go = y with d(y, o) = n + 1. Then there is a 
neighbour w of y such that d(w, o) = n. By transitivity, ho = w for some h E G, 
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and by the induction hypothesis, h E V”. NOW, d(h-‘go, o) = d(w, y) = 1, so that 

h-‘g E V and g E hV c V” I’. Conversely, if g E Vn+,, then obviously d(go, o) < 
n+l. 0 

3. Graphs with polynomial growth 

A famous theorem of Gromov [6] (in combination with a result of Wolf [27]) 
states that a finitely generated discrete group has polynomial growth if and only if 
it has a nilpotent subgroup of finite index. If one views a finitely generated group 
in terms of its Cayley graph with respect to some finite symmetric set of 
generators, then the question naturally arises if and how Gromov’s Theorem 
generalizes to an arbitrary locally finite, vertex-symmetric graph r with polyno- 
mial growth. Recall that r is said to have polynomial growth if 

for some finite C, d > 0. me answer to the above question is as follows. 

Theorem 1[20, Theorem 21. Let r(X, E) have polynomial growth, and let G be a 
group of automorphikms of r which acts transitively on X. Then there is an 
imprimitivity system o of G on X with finite blocks, such that G” is a finitely 
generated nilpotent-by-finite group with finite vertex stabilizers on P. 

For the understanding of this remarkable theorem, recall that an imprimitivity 
system of G on X is a partition of X into subsets called blocks, which is preserved 
by the action of G. By .P we denote the block of x E X. The factor graph P has 
vertex set x’“= {x”]x~X} and edge set E”={[x”,y~I[x,y)~E}. In other 
words, two blocks are adjacent in the factor graph if and only if they have some 
pair of representatives which are adjacent in r. The induced action of G gives 
rise to a homomorphic image G u in AUT(P), which acts transitively on X4 

For a detailed survey on graphs with polynomial growth, see the article by 
Imrich and Seifter in this volume. 

The purpose of this section is to provide a new, short proof of Theorem 1, 
using a result of Losert [ll] concerning topological groups with polynomial 
growth. To do so, we need more preliminaries. 

If G is any locally compact, Hausdorff topological group, then it carries a left 
Haar measure. This is a sigma-additive (Radon) measure il defined on the Bore1 
sigma-algebra of G (i.e., the sigma-algebra generated by the open sets), whose 
important features are the following: 

(1) A(K) c 00 if K c G is compact, 
(2) n(U) >O if U c G is open, 

(3) A(N) = A(U) f or every Bore1 set U c G and every g E G, and 
(4) A(G) < a if and only if G is compact. 



Topological groups and infinite graphs 377 

Up to multiplication with a positive constant, A is unique. Once more, a good 
introduction and all relevant properties of Haar measure can be found in [lo]. 

A compactly generated group G is said to have polynomial growth, if for some 
(equivalently, every) compact symmetric neighbourhood V of the identity, 

In the special case when G is a finitely generated discrete group, ii is the counting 
measure, and if V is chosen to be a finite symmetric set of generators containing 
the identity, then A(V*) is the size of the n-ball in the corresponding Cayley 
graph. Thus, the above definition is the direct extension to topological groups of 
the notion of polynomial growth. If G is the abelian group Rd, then A is the 
Lebesgue measure in the corresponding dimension, and the growth of G is 
polynomial with degree d. 

In a significant extension of Gromov’s Theorem, Losert [ 1 I] describes 
completely the structure of topological groups with polynomial growth. As an 
initial step, the following important proposition is proved. 

Proposition 1 [ll]. If G is a locally compact Hausdofl group with polynomial 
growth, then there is a compact normal subgroup K of G such that G/K is a Lie 
group. 

The topology on G/K is of course the one induced by the natural projection. As 
K is compact, G/K has the same polynomial growth as G. The Lie groups are a very 
important class of topological groups. In this paper, all we need to know is that 
every Lie group is locally homeomorphic with d-dimensional Euclidean space, 
d 3 0. We emphasize that in Proposition 1 the dimension d may be zero; the 
corresponding O-dimensional space has one point, so that G is discrete in this 
case. For the fundamentals concerning Lie groups, see e.g. Varadarajan [22]. 

We can use Proposition 1 to give a short and transparent proof of Theorem 1. 

Proof of Theorem 1. If the Theorem is true for the closure of G in AUT(T) then 
it is true for G. Hence, we may assume that G is closed and thus locally compact. 
As the stabilizer G, of our reference vertex o is open-compact, we may normalize 
the Haar measure of G such that A(G,) = 1. 

Let V be as in Lemma 3. Once more, for every x E X choose g, E G with 
g,o = X. Then, by Lemma 3, 

d(x,o)sn 

a disjoint union, and left invariance of A yields A(V”) = /3(n) for the growth 
coefficients /3(n) of r. Thus, the group G has polynomial growth. By Proposition 
1, G/K is a Lie group for some compact normal subgroup K of G. By Lemma 2, 
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a={K+EX} 

has finite blocks, and G” = G/K is a closed vertex-transitive subgroup of 
AUT(F’). Hence, in view of the properties of the automorphism group described 
in Section 2, G” is a compactly generated, totally disconnected Lie group: it must 
be zero-dimensional. In other words, G” is a finitely generated, discrete group 
with polynomial growth. I3y [6), it is nilpotent-by-finite. 

Furthermore, by Lemma 2, H = {g E G 1 go E Ko} is a compact subgroup of G. 
The stabilizer of o” is H” = W/K. This is a compact subgroup of G” and as such 
must be finite. 0 

At this point we remark that Trofimov did not have the result of [l l] (which 
was published later) at his disposal. We also remark that Trofimov uses the above 
Theorem 1 to deduce a slightly stronger result [20, Theorem 11: working with 
G = AUT(IJ, the imprimitivity system CT can be constructed such that not only 
AUT(r)“, but even the-possibly largerqoup AUT’P’) is discrete, nilpotent- 
by-finite and has finite vertex stabilizers on P. An important step in this 
deduction is [20, Proposition 2.31, see below. 

An automorphism g of ris called bounded, if there is a constant M = M(g) < 00 
such that 

d(gx, x) e M for every x E X. 

It is obvious that the bounded automo~hisms constitute a normal subgroup of 
AID(r), denoted by B(T). 

An element g in a topological group G is called an FC-element , 3 its cc n jugacy 
class has compact closure: {gh 1 h E G}- is compact. (For a set P,, A- derotes its 
closure.) Recall that gh = h-‘g/z. An FC--group is a group consisting of 
FC--elements only. 

Proof. Let g E B(T), and let h E AUT(Q. Then d(g’x, x) = d(ghx, hx) s M for 
every x E X Thus, 

{g&x ) h E AUT(~)} c {y E X 1 d(y, x) d M}. 

By local finiteness, the latter set is finite, so that the conjugate class of g in 
AUT(Q is compact by Lemma 2. 

Conversely, suppose that {g” 1 h E AU?“(Q) has compact closure. By Lemma 
2, (g% 1 h E AUT(I”)) is finite. Hence, there is M s OQ such that d(gho, o) s M 
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for every h E AUT(T). If x E X, choose h E AUT(r) with ho =x. Then 

d&x, x) = d(gho, ho) s M. 0 

In his remarkable series of papers, Trofimov obtains the following two results. 

eorem 2 [19]. B(T) acts transitively on X if and on& if there is an imprimitivity 
system CF of B(I) on X, with finite blocks, such that ‘B(r)= is a free finitely 
generated abelian group. 

Theorem 3 [21]. If r is any vertex-symmetric graph, then B(T) is a closed 
subgroup of AUT(I). 

We remark that in Theorem 2, the factor graph I’” must be a Cayley graph of 

B(r)9 which is isomorphic with Zd for some d 2 1. 
One would hope that Theorem 2 could be deduced from Theorem 3 in a similar 

way as Theorem 1 was deduced from Proposition 1: if B(T) acts transitively on X 
and is closed, then by Lemmas 3 and 4 it is a locally compact FC-group; the 
structure theory of Grosser and Moskowitz [7, (3.13) and (3.17)] yields existence 
of a compact normal subgroup K of B(T) such that B(T)/K is discrete, 
torsionfree and abelian; as B(r) is compactly generated, B(T)/K is finitely 
generated, and the imprimitivity system CJ can be chosen to be the one induced by 
K as in the proof of Theorem 1. 

However, we cannot apply this simple argument, because Trofimov uses 
Theorem 2 in order to prove Theorem 3. (Indeed, I have spent-in vain--quite 
some time trying to find a more simple and direct proof of Theorem 3 which does 
not make use of Theorem 2.) In general, it is not true that the normal subgroup 
of FC-elements in a locally compact group is closed. 

Theorem 2 (whose proof is long and complicated, we refer to [19]) is used to 
deduce the following proposition, which is also of interest in itself and a key tool 
in deriving the stronger version of Theorem 1 mentioned at the end of Section 3. 

Proposition 2 [20, Proposition 2.31. Let r be any vertex-symmetric graph. Then 
there is an imprimitivity system u of AUT(r) with finite blocks, such that the 
stabilizer of a vertex of r” in AUT(I’“) contains no bounded automorphisrm 
different porn the identity. 

Thus, if g E B(T) stabilizes some x E X, then it permutes each block of 0. In 
particular, g has finite order. 

We now give an application of Theorem 3. Motivated by a problem raised by 
Watkins for strips (vertex-symmetric graphs with linear growth), Godsil et al. [5] 
show that the set BO(r) of bounded automorphisms with finite order is a 
subgroup of B(T) if r is a vertex-symmetric graph with polynomial growth, while 
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B,(T) = B(F) if r has infinitely many ends. As a byproduct of Theorem 3, one 
obtains the following completion of this result. 

Cwollaq 1. Let r be a vertex-symmetric graph. Then B,(r) is a closed normal 
subgroup of ALIT(r), and B(r)IB,(r) is a torsion free discrete abelian group. 

Proof. By Theorem 3 and Lemma 3, B(T) is a locally compact FC-group. Thus, 
[7,3.13] applies and yields the result. Cl 

We remark that B(r) need not be compactly generated (if it does not act 
vertex-transitively), so that a priori B(T)/B,(r) is not necessarily finitely 
generated. It would be interesting to know whether this may really happen. 

5. Expanders, amenability and unimodularity 

In this final section, we present without proofs another result which links a 
structural property of vertex-symmetric graphs with their automorphism groups, 
seen as topological groups. 

If F is a finite subset of the vertex set X of r, then 3F denotes the set of 
vertices in F which have a neighbour in X\ F. The graph r is called an infinite 
expander if there is a number K > 0 such that 

laFl3 K l 1 F( for every finite F c X. 

See, for example, Bien [ 11, Dodzuik [2], and Gerl [4] for various reasons why 
expanders are of interest. A theorem of Soardi and Woess [ 161 characterizes 
infinite vertex-symmetric (non-)expanders in terms of their automorphism groups. 

A topological group G is called amenable, if there is a nonnegative measure ~1, 
defined on the Bore1 sets of G, with the following properties: 

(1) p(G) = 19 
(2) p is finitely additive, and 

(3) !&U) = CL(U) f or every Bore1 set U c G and every g E G. 
If G is compact, then we may take the Haar measure, but in general, not every 
group is amenable. Examples of amenable groups are abelian and solvable 
groups. Examples of (discrete) non-amenable groups are free groups with at least 
two free generators. The class of amenable groups is of interest in many respects, 
see the books by Pier [13] and Wagon [23]. 

Next, we turn to the Haar measure: the modular function A on a locally 
compact group G is defined by 

where U c G is open with compact closure (A is independent of such U). A 
group is called unimodular if A = 1. Discrete and abelian groups are unimodular, 
but there are non-unimodular solvable groups. For details, see e.g. [IO]. 
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Now consider a graph r, and let G be a closed subgroup of AYT(I*) which acts 
transitively on X. Then the modular function of G can be easily determined. 

Lemma 5 ([14,21]). Ifg E G and go =x then A(g) = ]GOx]/]GXo]. 

Non-expanders can be characterized as follows. 

Theorem 4 [la]. Let r be a vertex-symmetric graph. Then the following statements 
are equivalent: 

(a) ris a non-expander. 
(b) Some closed, vertex-transitive subgroup of AUT(T) is amenable and 

unimodular. 
(c) Every closed, vertex-transitive subgroup of AUT(r) is amenable and 

unimodular. 

To conclude, we point out that this theorem is applied in [16] to prove that 
every vertex-symmetric graph with infinit&y many ends is an infinite expander. 
For the definition and basic features of the space of ends, see Freudenthal [3], 
Halin [8] or Woess [25]. In [25], the relation between amenability of a closed 
group G of automorphisms of an arbitrary locally finite graph rand the action of 
G on the space of ends of I’ is described in full detail. This completes results by 
Tits [17] and Nebbia [12] for trees and by Seifter [15] for arbitrary graphs and 
nilpotent groups. Based on [25], the following is proved in [16]. 

Proposition 3 [16]. Assume that r has infinitely many ends and that G is a closed, 
vertex-transitive group of automorphisms of I’. Then G is amenable if and only if 
it fixes an end of r. In this case, G is non-unimodular. 

Appendix Three problems on infinite graphs 

The three problems presented here concern locally finite, infinite, connected, 
vertex-symmetric graphs. 

First problem 
“Are there any vertex-symmetric graphs which do not look like Cayley graphs?” 
First of all, let us recall the definition of a Cayley graph. If G is a finitely 

generated group and A is a finite symmetric set of generators, then the Cayley 
graph of G with respect to A has vertex set G; [g, h] is an (unoriented) edge if 
and only if h = ga for some a E A. By left multiplication, G acts on its Cayley 
graph(s) as a vertex-transitive group of graph automorphisms. 

The crucial point in the above question is the definition of ‘look like’. Let 
G(X,, E,) and &(X2, E2) be connected, locally finite graphs, and let di be the 
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discrete metric on Xi induced by the respective graph structure, i = 1,2. We say 
that & and G are quasi-isometric if the following holds: there are maps 
‘p:X1+Xa and q:X, + X1 and constants C, D > 0 such that for every x1, y, E 

X1 and x2, y2 E X2 one has: 

Conditions (a) and (b) say that Q, and p are ‘quasi Lipschitz’, while (c) and (d) 
say that they are ‘quasi inverse’ to each other. Thus, the two graphs are metrically 
equivalent up to bounded deviation. Now we can formulate our problem more 
precisely. 

Problem 1. Is there a vertex-symmetric graph which is not quasi-isometric with 
some Cayley graph? 

We remark that by [20], every vertex-symmetric graph with polynomial growth 
is quasi-isometric with the Cayley graph of a nilpotent-by-finite group in a rather 
strong sense, see Theorem 1 above. Furthermore, the non-Cayley graphs 
exhibited in [18] and [16] are quasi-isometric with homogeneous trees. 

Second problem 
This and the third problem regard vertex-symmetric graphs with infinitely many 

ends. We recall the definition of the space of ends of an infinite graph I7 an 
infinite path in r is a sequence n = [x0, xl, x2, . . .] of successively adjacent 
vertices in r without repetitions. Two infinite paths are equivalent if there is a 
third one which meets each of the two infinitely often. An end cc) is an 
equivalence class of infinite paths under this relation. For more details, see [3, 81. 
Let Q denote the space of ends. Every automorphism (isometry) of r acts on S2 
in an obvious way. If r is vertex-symmetric, then it is easy to see that r has one, 
two or infinitely many ends [3]. From the structural viewpoint, the first case is the 
most difficult and the second the simplest one. We are interested in the third. 

Problem 2. Classify all vertex-symmetric graphs r with infinitely many ends, for 
which the automorphism group AUT(T) acts transitively on the space of ends Q. 

Typical examples are homogeneous trees and more generally, infinite distance- 
regular graphs. If r is a graph where AUT(r) acts transitively on 52, then this is 
also true for rk (the graph -with the same vertex set, where two vertices are 
connected by an edge if their distance in r is bounded by k) and for r x r1 
(Cartesian product), where G is a finite, vertex-symmetric graph. In particular, 
all ends of r must have the same finite size (maximal number of disjoint 
equivalent paths, see [9]) and diameter (see [25] for the definition), so that F is 
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quasi-isometric with a tree by [24]. Of course there are many examples of 
vertex-symmetric graphs whose automorphism group does not act transitively on 
Q (for example, take the Cayley graph of the free product of two one-ended 
groups). 

Third problem 
The homogeneous tree T with degree at least three has another interesting 

property. Let o. be an end of T and let G be the group of automorphisms of T 
which fix oo. Then G acts transitively on the vertex set. 

In general, if r has infinitely many ends and G s AUT(T) acts transitively on 
the vertex set, then it is not hard to see that either jGoj = 00 for every o E 52 or G 
fixes an end ao, and ]Gw I= 00 for every other end o. The second case is quite 
particular and of interest in various contexts, see e.g. [12,24,25]. 

Problem 3. Classify all vertex-symmetric graphs r with infinitely many ends with 
the following property: there is a vertex-transitive group of automorphisms of r 
(not necessarily the whole automorphism group) which fixes an end of r. 

Once more, every infinite distance-regular graph has this property. If r admits 
a vertex-transitive group of automorphisms which fixes an end, then so do rk 
(k 3 1) and r x &, where G is finite and vertex-symmetric. My impression is that 
one cannot get far beyond these possibilities. In particular, I conjecture that 
every such graph is quasi-isometric with a tree. 

Notes added in proof 

(1) G. Schlichting (Munchen) has told me that he has found a direct 
‘topological’ proof of Theorem 3, as discussed in Section 4. 

(2) V.I. Trofip?ov (Sverdlovsk) has informed me that group theorists have 
well-known examples of discrete groups (Cayley graphs) with B(T)/B,(r) not 
finitely generated. 

(3) Problem 2 has been solved recently and independently by R. Mijller 
(Oxford) and A. Nevo (Jerusalem). 

(4) More recently, R. Miiller has also given a solution of Problem 3. 
(5) Problem 1 remains open and seems to be difficult. 
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