## Note

# The energy of graphs and matrices 

Vladimir Nikiforov<br>Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA

Received 24 March 2006
Available online 27 April 2006
Submitted by William F. Ames


#### Abstract

Given a complex $m \times n$ matrix $A$, we index its singular values as $\sigma_{1}(A) \geqslant \sigma_{2}(A) \geqslant \cdots$ and call the value $\mathcal{E}(A)=\sigma_{1}(A)+\sigma_{2}(A)+\cdots$ the energy of $A$, thereby extending the concept of graph energy, introduced by Gutman. Let $2 \leqslant m \leqslant n, A$ be an $m \times n$ nonnegative matrix with maximum entry $\alpha$, and $\|A\|_{1} \geqslant n \alpha$. Extending previous results of Koolen and Moulton for graphs, we prove that


$$
\mathcal{E}(A) \leqslant \frac{\|A\|_{1}}{\sqrt{m n}}+\sqrt{(m-1)\left(\|A\|_{2}^{2}-\frac{\|A\|_{1}^{2}}{m n}\right)} \leqslant \alpha \frac{\sqrt{n}(m+\sqrt{m})}{2} .
$$

Furthermore, if $A$ is any nonconstant matrix, then

$$
\mathcal{E}(A) \geqslant \sigma_{1}(A)+\frac{\|A\|_{2}^{2}-\sigma_{1}^{2}(A)}{\sigma_{2}(A)} .
$$

Finally, we note that Wigner's semicircle law implies that

$$
\mathcal{E}(G)=\left(\frac{4}{3 \pi}+o(1)\right) n^{3 / 2}
$$

for almost all graphs $G$.
© 2006 Elsevier Inc. All rights reserved.
Keywords: Graph energy; Graph eigenvalues; Singular values; Matrix energy; Wigner's semicircle law

Our notation is standard (e.g., see [3,4,9]); in particular, we write $M_{m, n}$ for the set of $m \times n$ matrices with complex entries, and $A^{*}$ for the Hermitian adjoint of $A$. The singular values

[^0]$\sigma_{1}(A) \geqslant \sigma_{2}(A) \geqslant \cdots$ of a matrix $A$ are the square roots of the eigenvalues of $A A^{*}$. Note that if $A \in M_{n, n}$ is a Hermitian matrix with eigenvalues $\mu_{1}(A) \geqslant \cdots \geqslant \mu_{n}(A)$, then the singular values of $A$ are the moduli of $\mu_{i}(A)$ taken in descending order.

For any $A \in M_{m, n}$, call the value $\mathcal{E}(A)=\sigma_{1}(A)+\cdots+\sigma_{n}(A)$ the energy of $A$. Gutman [7] introduced $\mathcal{E}(G)=\mathcal{E}(A(G))$, where $A(G)$ is the adjacency matrix of a graph $G$; in this narrow sense $\mathcal{E}(A)$ has been studied extensively (see, e.g., [2,8,10-14]). In particular, Koolen and Moulton [10] proved the following sharp inequalities for a graph $G$ of order $n$ and size $m \geqslant n / 2$ :

$$
\begin{equation*}
\mathcal{E}(G) \leqslant 2 m / n+\sqrt{(n-1)\left(2 m-(2 m / n)^{2}\right)} \leqslant(n / 2)(1+\sqrt{n}) . \tag{1}
\end{equation*}
$$

Moreover, Koolen and Moulton conjectured that for every $\varepsilon>0$, for almost all $n \geqslant 1$, there exists a graph $G$ with $\mathcal{E}(G) \geqslant(1-\varepsilon)(n / 2)(1+\sqrt{n})$.

In this note we give upper and lower bounds on $\mathcal{E}(A)$ and find the asymptotics of $\mathcal{E}(G)$ of almost all graphs $G$. We first generalize inequality (1) in the following way.

Theorem 1. If $m \leqslant n, A$ is an $m \times n$ nonnegative matrix with maximum entry $\alpha$, and $\|A\|_{1} \geqslant n \alpha$, then

$$
\begin{equation*}
\mathcal{E}(A) \leqslant \frac{\|A\|_{1}}{\sqrt{m n}}+\sqrt{(m-1)\left(\|A\|_{2}^{2}-\frac{\|A\|_{1}^{2}}{m n}\right)} . \tag{2}
\end{equation*}
$$

From here we derive the following absolute upper bound on $\mathcal{E}(A)$.
Theorem 2. If $m \leqslant n$ and $A$ is an $m \times n$ nonnegative matrix with maximum entry $\alpha$, then

$$
\begin{equation*}
\mathcal{E}(A) \leqslant \alpha \frac{(m+\sqrt{m}) \sqrt{n}}{2} . \tag{3}
\end{equation*}
$$

Note that Theorems 1 and 2 improve on the bounds for the energy of bipartite graphs given in [11].

On the other hand, for every $A \in M_{m, n}(m, n \geqslant 2)$, we have $\sigma_{1}^{2}(A)+\sigma_{2}^{2}(A)+\cdots=$ $\operatorname{tr}\left(A A^{*}\right)=\|A\|_{2}^{2}$, and so

$$
\|A\|_{2}^{2}-\sigma_{1}^{2}(A)=\sigma_{2}^{2}+\cdots+\sigma_{m}^{2} \leqslant \sigma_{2}(A)\left(\mathcal{E}(A)-\sigma_{1}(A)\right) .
$$

Thus, if $A$ is a nonconstant matrix, then

$$
\begin{equation*}
\mathcal{E}(A) \geqslant \sigma_{1}(A)+\frac{\|A\|_{2}^{2}-\sigma_{1}^{2}(A)}{\sigma_{2}(A)} . \tag{4}
\end{equation*}
$$

If $A$ is the adjacency matrix of a graph, this inequality is tight up to a factor of 2 for almost all graphs. To see this, recall that the adjacency matrix $A(n, 1 / 2)$ of the random graph $G(n, 1 / 2)$ is a symmetric matrix with zero diagonal, whose entries $a_{i j}$ are independent random variables with $E\left(a_{i j}\right)=1 / 2, \operatorname{Var}\left(a_{i j}^{2}\right)=1 / 4=\sigma^{2}$, and $E\left(a_{i j}^{2 k}\right)=1 / 4^{k}$ for all $1 \leqslant i<j \leqslant n, k \geqslant 1$. The result of Füredi and Komlós [6] implies that, with probability tending to 1 ,

$$
\begin{aligned}
& \sigma_{1}(G(n, 1 / 2))=(1 / 2+o(1)) n \\
& \sigma_{2}(G(n, 1 / 2))<(2 \sigma+o(1)) n^{1 / 2}=(1+o(1)) n^{1 / 2}
\end{aligned}
$$

Hence, inequalities (1) and (4) imply that

$$
(1 / 2+o(1)) n^{3 / 2}>\mathcal{E}(G)>(1 / 2+o(1)) n+\frac{(1 / 4+o(1)) n^{2}}{(1+o(1)) n^{1 / 2}}=(1 / 4+o(1)) n^{3 / 2}
$$

for almost all graphs $G$.
Moreover, Wigner's semicircle law [15] (we use the form given by Arnold [1, p. 263]), implies that

$$
\mathcal{E}(A(n, 1 / 2)) n^{-1 / 2}=n\left(\frac{2}{\pi} \int_{-1}^{1}|x| \sqrt{1-x^{2}} d x+o(1)\right)=\left(\frac{4}{3 \pi}+o(1)\right) n
$$

and so $\mathcal{E}(G)=\left(\frac{4}{3 \pi}+o(1)\right) n^{3 / 2}$ for almost all graphs $G$.
Proof of Theorem 1. We adapt the proof of (1) in [10]. Letting $\mathbf{i}$ to be the all ones $m$-vector, Rayleigh's principle implies that $\sigma_{1}^{2}(A) m \geqslant\left\langle A A^{*} \mathbf{i}, \mathbf{i}\right\rangle$; hence, after some algebra, $\sigma_{1}(A) \geqslant$ $\|A\|_{1} / \sqrt{m n}$. The AM-QM inequality implies that

$$
\mathcal{E}(A)-\sigma_{1}(A) \leqslant \sqrt{(m-1) \sum_{i=2}^{n} \sigma_{i}^{2}(A)}=\sqrt{(m-1)\left(\|A\|_{2}^{2}-\sigma_{1}^{2}(A)\right)}
$$

The function $x \rightarrow x+\sqrt{(m-1)\left(\|A\|_{2}^{2}-x^{2}\right)}$ is decreasing if $\|A\|_{2} / \sqrt{m} \leqslant x \leqslant\|A\|_{2}$; hence, in view of

$$
\|A\|_{2}^{2}=\sum_{j=1}^{n} \sum_{k=1}^{m}\left|a_{k j}\right|^{2}=\sum_{j=1}^{n} \sum_{k=1}^{m} a_{k j}^{2} \leqslant \alpha \sum_{j=1}^{n} \sum_{k=1}^{m} a_{k j}=\alpha\|A\|_{1}
$$

we find that $\|A\|_{2} / \sqrt{m} \leqslant\|A\|_{1} / \sqrt{m n}$, and inequality (2) follows.
Proof of Theorem 2. If $\|A\|_{1} \geqslant n \alpha$, then Theorem 1 and $\|A\|_{2}^{2} \leqslant \alpha\|A\|_{1}$ imply that

$$
\mathcal{E}(A) \leqslant \frac{\|A\|_{1}}{\sqrt{m n}}+\sqrt{(m-1)\left(\alpha\|A\|_{1}-\frac{\|A\|_{1}^{2}}{m n}\right)} .
$$

The right-hand side is maximal for $\|A\|_{1}=(m+\sqrt{m}) \alpha n / 2$ and inequality (3) follows. If $\|A\|_{1}<n \alpha$, we see that

$$
\mathcal{E}(A) \leqslant \sqrt{m\|A\|_{2}^{2}} \leqslant \sqrt{m \alpha\|A\|_{1}} \leqslant \sqrt{m n} \alpha \leqslant \alpha \frac{(m+\sqrt{m}) \sqrt{n}}{2},
$$

completing the proof.

## Remarks.

(1) The bound (2) may be refined using more sophisticated lower bounds on $\sigma_{1}(A)$.
(2) Inequality (4) and the result of Friedman [5] can be used to obtain lower bounds for the energy of "almost all" $d$-regular graphs.

## References

[1] L. Arnold, On the asymptotic distribution of the eigenvalues of random matrices, J. Math. Anal. Appl. 20 (1967) 262-268.
[2] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287-295.
[3] B. Bollobás, Modern Graph Theory, Grad. Texts in Math., vol. 184, Springer-Verlag, New York, 1998, xiv+394 pp.
[4] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980, 368 pp .
[5] J. Friedman, A proof of Alon's Second Eigenvalue Conjecture, Mem. Amer. Math. Soc., in press.
[6] Z. Füredi, J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981) 233-241.
[7] I. Gutman, The energy of a graph, Ber. Math.-Stat. Sekt. Forschungszent. Graz 103 (1978) 1-22.
[8] I. Gutman, The energy of a graph: Old and new results, in: Algebraic Combinatorics and Applications, Gössweinstein, 1999, Springer, Berlin, 2001, pp. 196-211.
[9] R. Horn, C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985, xiii+561 pp.
[10] J.H. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 47-52.
[11] J.H. Koolen, V. Moulton, Maximal energy bipartite graphs, Graphs Combin. 19 (2003) 131-135.
[12] J. Rada, A. Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl. 289 (2004) 446-455.
[13] I. Shparlinski, On the energy of some circulant graphs, Linear Algebra Appl. 414 (2006) 378-382.
[14] D. Stevanović, I. Stanković, Remarks on hyperenergetic circulant graphs, Linear Algebra Appl. 400 (2005) 345348.
[15] E. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. of Math. 67 (1958) 325-328.


[^0]:    E-mail address: vnikifrv@memphis.edu.

