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Abstract

The one-dimensional linear wave equation with a van der Pol nonlinear boundary condi
one of the simplest models that may cause isotropic or nonisotropic chaotic vibrations (Trans
Math. Soc. 350 (1998) 4265–4311, Internat. J. Bifur. Chaos 8 (1998) 423–445, Internat. J
Chaos 8 (1998) 447–470, J. Math. Phys. 39 (1998) 6459–6489, Internat. J. Bifur. Chaos 12
535–559). In this paper, we characterize nonisotropic chaotic vibration by means of the total va
theory. We obtain the classification results on the growth of the total variation of the snapsh
the spatial interval in the long-time horizon with respect to two parameters entering different re
in R2.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

There has been increasing interest in the phenomena of chaos in mechanics and
in the last two decades. Chaos has been observed in many mechanics and electronic
systems, but it is challenging to give rigorously mathematical proofs, especially fo
systems governed by partial differential equations. In their series of papers [4–7], C
al. first studied chaotic vibrations of one-dimensional (1D) wave equation on a bou
interval with a van der Pol boundary condition. They have rigorously proven the exis
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of isotropic chaotic vibrations when a parameter enters a certain regime. Recently, C
al. [8] discussed nonisotropic spatiotemporal chaotic vibrations of the 1D wave eq
with mixing energy transport and a van der Pol boundary condition. The aforemen
works are all for the simplest infinite-dimensional systems that may admit chaos. How
those works can provide some motivation and directions for the future study of cha
more general partial differential equation systems and for the recently emerged st
anticontrol (cf. [3,11–13] and references therein).

We point out that there are several alternative definitions of chaos, each of which r
its own background in its appropriate setting. Recently, Chen et al. [9] first charact
the chaotic oscillation of the same 1D wave equation as in [5] by means of the unbo
growth of total variations. In an earlier work [14], the author classified the growth rat
total variations of the snapshots of the Riemann invariants for the same system.

In this paper, we consider the initial-boundary value problem

wxx(x, t)− νwxt (x, t)−wtt (x, t) = 0, 0< x < 1, t > 0,
wx(0, t) = 0, t > 0,
wx(1, t) = αwt (1, t) − βw3

t (1, t), α,β > 0, t > 0,
w(x,0) = w0(x), wt (x,0)= w1(x), 0< x < 1.

(1.1)

We will study the dynamical behavior of this system by means of total variation theo
the two parameters(ν,α) vary in [0,+∞)× [0,+∞).

This paper can be viewed as a continuation of the earlier work [14]. But the diffe
here is twofold: (i) we will classify the growth of the total variations of the snapsho
the Riemann invariants of (1.1) in the long time horizon as the two parameters(ν,α) vary
in the plane instead of just varying one parameter; (ii) the mixed partial derivative
energy transport term in Eq. (1.1) can lead to strong mixing of waves and noniso
spatiotemporal chaos, contrary to the isotropic case in [14].

As in [8], we let

ρ1(ν) ≡ −ν + √
4+ ν2

2
, (1.2)

ρ2(ν) ≡ ν + √
4+ ν2

2
. (1.3)

We then have

ρ1(ν)ρ2(ν) = 1, ρ2(ν)− ρ1(ν) = ν > 0, ρ1(ν)+ ρ2(ν) =
√

4+ ν2. (1.4)

Letting{
u = 1

ρ1(ν)+ρ2(ν)
[ρ2(ν)wx +wt ],

v = 1
ρ1(ν)+ρ2(ν)

[ρ1(ν)wx −wt ], (1.5)

we can convert(1.1)1 into the equivalent uncoupled first order hyperbolic system

∂

∂t

[
u(x, t)

v(x, t)

]
=

[
ρ1(ν) 0

0 −ρ2(ν)

]
∂

∂x

[
u(x, t)

v(x, t)

]
, 0< x < 1, t > 0. (1.6)

The initial conditions foru andv are{
u(x,0)= u0(x) = 1

ρ1(ν)+ρ2(ν)
[ρ2(ν)w

′
0(x)+w1(x)],

v(x,0) = v0(x) = 1 [ρ1(ν)w
′ (x)−w1(x)]. (1.7)
ρ1(ν)+ρ2(ν) 0
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The boundary condition atx = 0 is

v(0, t) = −u(0, t) ≡ G
(
u(0, t)

)
, t > 0, (1.8)

and the boundary condition atx = 1 is

u(1, t) = Fν,α

(
v(1, t)

)
. (1.9)

For givenx ∈ R,

Fν,α(x) = ρ2
[
ρ2x + gν,α(x)

]
, (1.10)

wherey = gν,α(x) is the unique real solution of the cubic equation

βy3 + (ρ2 − α)y + (
ρ2

2 + 1
)
x = 0, (1.11)

provided that

0< α � ρ2
(= ρ2(ν)

)
. (1.12)

Since the parameterβ in the equation only plays the role of “scaling” (see [8]), it does
affect the properties of the functionsgν,α andFν,α . Thus we can viewgν,α andFν,α as
functions only dependent on the two parametersν andα.

If (1.12) is violated, thengν,α(x) is multi-valued. From now on, we always assu
that α,β, ν > 0 satisfy condition (1.12). By the method of characteristics, the solu
u and v of (1.6)–(1.9) can be expressed explicitly as follows: fort = k(ρ1 + ρ2) + τ ,
k = 0,1,2, . . . , 0� τ � ρ1 + ρ2, and 0� x � 1,

u(x, t) =




(Fν,α ◦G)k(u0(x + ρ1τ )), τ � ρ2(1− x),

Fν,α ◦ (G ◦ Fν,α)
k(v0(1+ ρ2

2 − ρ2
2(x + ρ1τ ))),

ρ2(1− x) < τ � ρ2(1+ ρ2
1 − x),

(Fν,α ◦G)k+1(u0(x + ρ1τ − 1− ρ2
1)),

ρ2(1+ ρ2
1 − x) < τ � ρ1 + ρ2,

(1.13)

and

v(x, t) =




(G ◦Fν,α)
k(v0(x − ρ2τ )), τ � ρ1x,

G ◦ (Fν,α ◦G)k(u0(−ρ2
1(x − ρ2τ ))),

ρ1x < τ � ρ1(x + ρ2
2),

(Fν,α ◦G)k+1(v0(x − ρ2τ + 1+ ρ2
2)),

ρ1(x + ρ2
2) < τ � ρ1 + ρ2.

(1.14)

Here, for example,(G ◦Fν,α)
k denotes thek-fold iterative composition ofG ◦Fν,α .

From these explicit representations, we can estimate the growth rates of the tota
tions ofu(·, t) andv(·, t) on [0,1] ast goes to infinity by means of the estimation of tho
of (G ◦Fν,α)

n(·) and(Fν,α)
n(·) on some spatial intervals asn goes to infinity.

The organization of the paper is as follows. In Section 2, we list some basic prop
of the mapG ◦ Fν,α and find invariant intervals ofG ◦ Fν,α(·) when the parametersν and
α vary in R+. In Section 3, we first estimate the growth rate of the total variations o
iterates(G ◦ Fν,α)

n(·) asn → ∞ and further obtain an estimate of the total variation
u(·, t) and ofv(·, t) on [0,1] as t goes to infinity. In the final Section 4, some numeri
simulations are given.
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2. Properties of the map G ◦ Fν,α

Most of the basic properties of the mapG ◦ Fν,α have been established by Chen et
in [8]. But they only studied the properties ofG ◦ Fν,α when the parameterν varies butα
andβ were held fixed. Contrary to this, we will regard bothν andα as varying parameter
and discuss the basic properties ofG ◦ Fν,α .

Let

S = {
(ν,α) ∈ R2 | 0< ν < +∞, 0< α � ρ2(ν)

}
, (2.1)

whereρ2(ν) is given by (1.3). SinceFν,α is well defined if and only if(ν,α) ∈ S, we
always assume that(ν,α) ∈ S throughout this paper.

Lemma 2.1. Letβ > 0. Then the mapG ◦ Fν,α has the following properties:

(i) G ◦ Fν,α(·) is odd;
(ii) G ◦ Fν,α has exactly three fixed points0, v0 and−v0, where

v0 = v0(ν,α) = 1

ρ1(ν)+ ρ2(ν)

√
α

β
, (2.2)

and the origin is a repelling fixed point;
(iii) −G ◦Fν,α (= Fν,α) has exactly three fixed points−v1, 0 andv1, where

v1 = v1(ν,α) = 1

ρ2 − ρ1

√
1+ α(ρ2 − ρ1)

β(ρ2 − ρ1)
= 1

ν

√
1+ αν

βν
, (2.3)

where the last equality in(2.3) follows from(1.4);
(iv) The equationG ◦ Fν,α(v) = 0 has exactly three roots0, vI and−vI , where

vI = vI (ν,α) = 1

ρ2

√
1+ αρ2

βρ2
; (2.4)

(v) G ◦ Fν,α has local extremal values

m = G ◦ Fν,α(−vc) = −2

3

1+ αρ2

ρ1 + ρ2

√
1+ αρ2

3βρ2
, (2.5)

M = G ◦ Fν,α(vc) = 2

3

1+ αρ2

ρ1 + ρ2

√
1+ αρ2

3βρ2
= −m, (2.6)

where

vc = vc(ν,α) = 3ρ2
2 − 2αρ2 + 1

3ρ2(ρ
2
2 + 1)

√
1+ αρ2

3βρ2
, (2.7)

vc and−vc are critical points ofG ◦ Fν,α . Herem andM are, respectively, the loca
minimum and maximum ofG ◦ Fν,α . The functionG ◦ Fν,α is strictly decreasing on
(−∞,−vc) and(vc,+∞), but strictly increasing on(−vc, vc);



82 Y. Huang / J. Math. Anal. Appl. 288 (2003) 78–96

2.12)
(vi) (G ◦ Fν,α)
′(v) = −ρ2

2 + ρ2
ρ2

2 + 1

D
, (2.8)

(G ◦ Fν,α)
′′(v) = 6βρ2(ρ

2
2 + 1)2gν,α(v)

D3
, (2.9)

where

D = 3βg2
ν,α(v)+ ρ2 − α,

andgν,α(·) is defined through(1.11).

Proof. See Section 2 in [8]. ✷
Now we need first to study the bounded invariant intervals of the mapG ◦ Fν,α . We

shall show that they depends heavily on the choice of the parametersν andα in S. First,
we divide the regimeS into three sub-domains in each of whichG ◦ Fν,α has different
invariant intervals.

Solving the simultaneous equations{
α = ρ2(ν),

α = 1
ρ2(ν)

[ 3
√

3
2ρ2

2(ν)
+ 3

√
3

2 − 1
] ≡ h1(ν),

(2.10)

we obtain a pair of unique positive solutions
α1 =

√
3
√

3
2 ,

ν1 = α1 − 1
α1
.

(2.11)

By direct computation, we obtain that the equations{
α = ρ2(ν),

2
3

1+αρ2
ρ1+ρ2

√
1+αρ2
3βρ2

= 1
ρ2−ρ1

√
1+α(ρ2−ρ1)
β(ρ2−ρ1)

,
(2.12)

have a pair of unique positive solutions

α2 =

√
27/4+

√
(27/4)2+4
2 ,

ν2 = α2 − 1
α2
.

(2.13)

For anyν > 0, by Cardan’s formula, we can deduce that the second equation in (
has a unique positive solution

α = 3
1+ ρ2

1

ν
cosθ − ρ1 ≡ h2(ν), (2.14)

where

θ = 1

3
arccos

1

1+ ρ2
2

.

From (1.2)–(1.4), we obtain
π � θ � π

.

9 6
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So

h1(ν) < h2(ν), ∀ν > 0.

It is easy to prove that

M(ν,α) > v1(ν,α) if α > h2(ν) (2.15)

and
1

ν
< h1(ν) if ν >

1√
2
. (2.16)

HereM(ν,α) andv1(ν,α) are, respectively, the local maximum value and the intersec
point with the diagonal lineu + v = 0 of the mapG ◦ Fν,α defined by (2.6) and (2.3) i
Lemma 2.1, respectively.

Define

S1 = {
(ν,α) | 0< ν < ν1, 0< α � ρ2(ν)

}
∪ {

(ν,α) | ν1 � ν < +∞, 0< α � h1(ν)
}
, (2.17)

S2 = {
(ν,α) | ν1 < ν < ν2, h1(ν) � α � ρ2(ν)

}
∪ {

(ν,α) | ν2 � ν < +∞, h1(ν) � α � h2(ν)
}
, (2.18)

S3 = {
(ν,α) | ν2 � ν < +∞, h2(ν) < α � ρ2(ν)

}
, (2.19)

whereν1 andν2 are given by (2.11) and (2.13), respectively.
A routine check shows that

M(ν,α) < vI (ν,α) if (ν,α) ∈ S1,

vI (ν,α) � M(ν,α) � v1(ν,α) if (ν,α) ∈ S2,

v1(ν,α) <M(ν,α) if (ν,α) ∈ S3,

whereM(ν,α), vI (ν,α) andv1(ν,α) are given by Lemma 2.1. Thus, we have

Theorem 2.1 (Bounded invariant intervals of the mapG ◦Fν,α).

(i) If (ν,α) ∈ S1, thenI1 ≡ [0, vI ] and−I1 ≡ [−vI ,0] are bounded invariant interval
of G ◦ Fν,α . Furthermore,G ◦ Fν,α is unimodal onI1;

(ii) If (ν,α) ∈ S2, thenI2 ≡ [−M,M] is a bounded invariant interval ofG ◦Fν,α ;
(iii) If (ν,α) ∈ S3, then the mapG ◦Fν,α has no any bounded invariant interval.

It is easy to check that the pair of equations{
α = ρ2(ν),

α = 1
ν
,

has the pair{
ν0 = 1√

2
,

α0 = √
2,

(2.20)

as its unique solution with positive components.
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wth of

I].
Fig. 1. The regimeS is divided into four sub-regimesS0
1, S1

1, S2, andS3.

We divide the regimeS1 defined by (2.17) into the two parts

S0
1 = {

(ν,α) | 0< ν < ν0, 0< α � ρ2(ν)
}

∪
{
(ν,α) | ν0 � ν < +∞, 0< α � 1

ν

}
, (2.21)

S1
1 =

{
(ν,α) | ν0 < ν < ν1,

1

ν
< α � ρ2(ν)

}

∪
{
(ν,α) | ν1 � ν < +∞,

1

ν
< α < h1(ν)

}
. (2.22)

So we have divided the regimeS into four sub-regimesS0
1, S1

1, S2 andS3, see Fig. 1.
Figures 2–5 give examples of graphs ofG ◦ Fν,α when the parameters(ν,α) belong to
each of the sub-regimes, respectively. We shall see in the next section that the gro
total variations of(G ◦Fν,α)

n asn goes to infinity depends on the parameters(ν,α) in the
different sub-regimes.

We need the following lemma from Block and Coppel [2, Proposition 1, Chapter V

Lemma 2.2. Let I be a compact interval andf : I → I be a continuous map. Iff has no
periodic point of period2, then, for everyx ∈ I , f k(x) converges to a fixed point off as
k → ∞.

Theorem 2.2. Letβ > 0. Then

(i) If (ν,α) ∈ S0
1, thenG ◦ Fν,α has no periodic point of period2 on the invariant inter-

val I1. Moreover,
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Fig. 2. Graph ofG ◦ Fν,α(v) when(ν,α)= (1,1) ∈ S0
1.

Fig. 3. Graph ofG ◦ Fν,α(v) when(ν,α) = (1.24,1.15) ∈ S1
1.

lim
n→∞(G ◦ Fν,α)

n(v) = v0, ∀v ∈ (0, vI ) = I1, (2.23)

lim
n→∞(G ◦ Fν,α)

n(v) = −v0, ∀v ∈ (−vI ,0) = −I1; (2.24)

(ii) If (ν,α) ∈ S1
1, thenG ◦ Fν,α has at least a periodic point on the invariant intervalI2

with period greater than or equals to2;
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Fig. 4. Graph ofG ◦ Fν,α(v) when(ν,α)= (3.33,0.5) ∈ S2.

Fig. 5. Graph ofG ◦ Fν,α(v) when(ν,α) = (5,1.33) ∈ S3.

(iii) If (ν,α) ∈ S2, thenG ◦ Fν,α has periodic points on the invariant intervalI3 with
period not a power of2 (where we include1 = 20 as a power of2);

(iv) If (ν,α) ∈ S3, thenG ◦Fν,α has an invariant Cantor set∧ with measure zero andG ◦
Fν,α is chaotic in the sense of Li–Yorke on∧. Furthermore, for any small intervalJ ,
there isv ∈ J , such that

lim (G ◦ Fν,α)
n(v) = ∞.
n→∞
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g by
Proof. For (i), suppose thatG ◦Fν,α has a periodic pointv ∈ I1 with period 2. That is

(G ◦ Fν,α)
2(v) = v, G ◦ Fν,α(v) �= v.

Let

z = G ◦ Fν,α(v) = −ρ2
[
ρ2v + gν,α(v)

]
. (2.25)

Then

v = G ◦ Fν,α(z) = −ρ2
[
ρ2z + gν,α(z)

]
. (2.26)

Thus

gν,α(v) = −ρ1z− ρ2v ≡ −w, (2.27)

gν,α(z) = −ρ1v − ρ2z ≡ −y. (2.28)

Sincev ∈ I1 andv �= z, w andy are all positive and

w �= y. (2.29)

By the definition ofgν,α , w andy satisfy the equations

−βw3 − (ρ2 − α)w + (1+ ρ2)v = 0 (2.30)

and

−βy3 − (ρ2 − α)y + (1+ ρ2)z = 0. (2.31)

It follows from (2.27) and (2.28) that

v = 1

ρ2
2 − ρ2

1

(ρ2w − ρ1y) (2.32)

and

z = − 1

ρ2
2 − ρ2

1

(ρ1w − ρ2y). (2.33)

Substituting (2.32) and (2.33) into (2.30) and (2.31), respectively, after simplifyin
(1.4), we obtain

νβw3 − (1+ να)w + y = 0 (2.34)

and

νβy3 − (1+ να)y +w = 0. (2.35)

From the last two equations and (2.29), we have

νβ(w2 +wy + y2)− (2+ να) = 0 (2.36)

and

νβ(w2 −wy + y2)− να = 0. (2.37)

Thus

2νβwy − 2 = 0,
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ce
so

w = 1

νβy
. (2.38)

From (2.38) and (2.35), we have

νβy4 − (1+ να)y2 + 1

νβ
= 0. (2.39)

Since(ν,α) ∈ S0
1, we have

0< να < 1.

So

(1+ να)2 − 4νβ
1

νβ
< 0.

Thus Eq. (2.39) has no real solution, a contradiction. That means thatG ◦ Fν,α has no
periodic point of period 2 inI1.

On the other hand, since(ν,α) ∈ S0
1, we have

να < 1. (2.40)

By (iv) in Lemma 2.1,

(G ◦ Fν,α)
′(v0) = −ρ2

2 + ρ2
ρ2

2 + 1

D
= −ρ2

2 + ρ2
ρ2

2 + 1

3βg2
ν,α(v0)+ ρ2 − α

.

Sincev0 is a fixed point ofG ◦ Fν,α , from (1.10), we have

−v0 = Fν,α(v0) = ρ2
[
ρ2v0 + gν,α(v0)

]
,

gν,α(v0) = − v0

ρ2
− ρ2v0

= −(ρ1 + ρ2)
1

ρ1 + ρ2

√
α

β
by (2.3)

= α

β
.

So

(G ◦ Fν,α)
′(v0) = −ρ2

2 + ρ2
ρ2

2 + 1

3α + ρ2 − α
= 1− 2αρ2

1+ 2αρ1
. (2.41)

Here we have used the relation thatρ1(ν)ρ2(ν) = 1 in (1.4). From (2.40), we have

−1< (G ◦Fν,α)
′(v0) < 0 if (ν,α) ∈ S0

1 . (2.42)

Thus thev0 is the unique attracting fixed point ofG ◦Fν,α onI1 = [0, vI ]. (0 is a repelling
fixed point ofG ◦ Fν,α by (ii) in Lemma 2.1.) From Lemma 2.2, we get (2.23). Sin
G ◦ Fν,α(−v) = −G ◦ Fν,α(v), we have (2.24).

For (ii), if (ν,α) ∈ S1
1, then, from (2.41), we get

(G ◦ Fν,α)
′(v0) < −1. (2.43)
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Setting

fν,α(v) = (G ◦ Fν,α)
2(v) − v,

we obtain

f ′
ν,α(v0) > 0 and fν,α(v0) = 0. (2.44)

Thus, by the smoothness offν,α , there is a pointv′ in the small left neighborhood ofv0
such that

fν,α(v
′) < 0. (2.45)

On the other hand, sinceG◦Fν,α(·) is strictly increasing in(0, vc), wherevc is the local
maximum point given by (2.7) in Lemma 2.1. Also

1

ρ2(ν)
<

1

ν
< α

impliesvc <M, so there exists a pointv′′ with 0< v′′ < vc such that

v′′ <G ◦Fν,α(v
′′) = vc.

Thus

(G ◦ Fν,α)
2(v′′) = M > v′′

or

fν,α(v
′′) = (G ◦ Fν,α)

2(v′′)− v′′ > 0. (2.46)

From (2.45) and (2.46), there isv′′′ with v′′ < v′′′ < v′ such that

fν,α(v
′′′) = 0.

This implies thatv′′′ is a periodic point ofG ◦ Fν,α with period 2.
For (iii), if (ν,α) ∈ S2, thenM � vI . This shows thatG ◦ Fν,α has a homoclinic poin

in the invariant setI2 = [−v1, v1]. ThusG ◦ Fν,α has a periodic point with period not
power of 2 (see [1]).

Finally, we prove (iv). The first part of (iv) follows from Theorem 3.3 in [8]. Sin
(ν,α) ∈ S3, G ◦ Fν,α does not have any invariant bounded intervals. Thus, for any i
val J , if J ∩ (−v1, v1) = φ, wherev1 is defined by (iii) in Lemma 2.1, then

lim
n→∞(G ◦ Fν,α)

n(v) = ∞
for anyv ∈ J by (v) in Lemma 2.1. IfJ ∩ (−v1, v1) �= φ, then there exist a positive integ
k and a pointv2 ∈ J ∩ (−v1, v1) such that

(G ◦ Fν,α)
k(v2) = M.

Thus, again by (v) in Lemma 2.1, we have

lim
n→∞(G ◦ Fν,α)

n(v2) = ∞. ✷
Remark 2.1. The mapG ◦Fν,α has a period-doubling cascade when only one parameν
varies butα is fixed, see Theorem 3.1 in [8].
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Remark 2.2. From Theorem 2.2, for the discrete dynamical system{(G ◦ Fν,α)
n}n∈N+

bifurcation occurs on the curveΓ := {(ν,α) ∈ S | να = 1}.

3. The growth rates of the total variation of u(·, t) and of v(·, t) as t → ∞

First, we study the growth rate of total variations of(G ◦ Fν,α)
n asn goes to infinity

when the parameters(ν,α) vary in the regimeS. We shall obtain the following results: th
growth of the total variation of the map(G ◦Fν,α)

n

(1) remains bounded onI1 if (ν,α) ∈ S0
1, (Lemma 3.1);

(2) is unbounded onI1 if (ν,α) ∈ S1
1, (Lemma 3.3);

(3) is exponential onI2 if (ν,α) ∈ S2, (Lemma 3.5)

asn → ∞. It is meaningless to consider the case that(ν,α) ∈ S2, since the map has n
bounded invariant intervals ofG ◦Fν,α by Theorem 2.1.

Let f be a continuous map from an intervalJ into itself. Throughout this section, w
denote byVJ (f ) the total variation off onJ .

For simplicity and clarity, write

fν,α ≡ G ◦Fν,α.

Lemma 3.1. Letβ > 0. If (ν,α) ∈ S0
1, then

V[−vI ,vI ]
(
(fν,α)

n
)
� C, ∀n = 1,2, . . . , (3.1)

for some constantC.

Proof. Sincefν,α is odd and unimodal, it suffices to prove that

VI1

(
(fν,α)

n
)
� C, ∀n = 1,2, . . . , (3.2)

for some constantC. If

(ν,α) ∈
{
(ν,α) ∈ S

∣∣∣ 0< α � 1

2ρ2(ν)

}
⊂ S0

1,

then we can deduce that the local maximum valueM of fν,α on I1 satisfies

M = f (vc) � vc,

and the fixed pointv0 of fν,α satisfies

0< v0 � vc.

Let

J1 = [0, v0], J2 = [v0, vc], J3 = [vc, ṽ0], and J4 = [ṽ0, vI ],
whereṽ0 ∈ (vc, vI ) is the unique point with

fν,α(ṽ0) = v0.
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Sincefν,α is monotone onJi , i = 1,2,3,4, and

fν,α(J1) = J1, fν,α(J2) ⊂ J2, (3.3)

fν,α(J3) = J2, fν,α(J4) = J1, (3.4)

we have

VJ1

(
(fν,α)

n
) = v0

for any positive integern, and

lim
n→∞VJ2

(
(fν,α)

n
) = 0.

Thus

VI1

(
(fν,α)

n
) =

4∑
i=1

VJi

(
(fν,α)

n
) → 2v0 asn → ∞.

When

(ν,α) ∈ S0
1 −

{
(ν,α) ∈ S

∣∣∣ 0< α � 1

2ρ2(ν)

}
,

a direct computation shows that

vc < v0 <M.

Different from the case above in whichf n
ν,α(vc) decreases tov0, f n

ν,α(vc) tends in an
oscillatory manner to the fixed pointv0 asn → ∞. Thus,f n

ν,α is piecewise monotone wit
2n− 1 extremal points inI1, with the corresponding extremal values being

M = fν,α(vc), f
2
ν,α(vc), . . . , f

n−1
ν,α (vc), f

n
ν,α(vc), f

n−1
ν,α (vc), . . . ,

f 2
ν,α(vc), fν,α(vc) = M,

from left to right inI , respectively. Therefore

VI

(
f 2n
ν,α

) = 2

[
M +

n∑
k=1

(
f 2k−1
ν,α (vc)− f 2k

ν,α(vc)
) +

n∑
k=2

(
f 2k−1
ν,α (vc) − f 2k−2

ν,α (vc)
)]

(3.5)

and

VI

(
f 2n+1
ν,α

) = 2

[
M +

n∑
k=1

(
f 2k−1
ν,α (vc)− f 2k

ν,α(vc)
) +

n+1∑
k=2

(
f 2k−1
ν,α (vc)− f 2k−2

ν,α (vc)
)]

.

(3.6)

On the other hand, again since−1< f ′
ν,α(v0(η)) < 0 for (ν,α) ∈ S1 andf ′′

ν,α(v) < 0 in I1,
there existsu ∈ I1 such thatu > v0 and∣∣f ′

ν,α(v)
∣∣ < ∣∣f ′

ν,α(u)
∣∣ ≡ δ0 < 1, ∀v ∈ [vc, u]. (3.7)
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Moreover, since

lim
k→∞f k

ν,α(vc) = v0,

by (i) in Theorem 2.2, there exists a positive integerK, such that for anyk � K,

f k
ν,α(vc) ∈ [vc, u].

It follows from the mean value theorem that for any positive integerk,∣∣f k+K+1
ν,α (vc)− f k+K

ν,α (vc)
∣∣ � δk0

∣∣f K+1
ν,α (vc)− f K

ν,α(vc)
∣∣. (3.8)

Thus, the right-hand sides in (3.5) and (3.6) are dominated by the positive series

C

∞∑
k=0

δk0,

which is convergent for some positive constantC. Therefore, there exists a constantC′ > 0
such that

VI1

(
f n
ν,α

)
� C′, ∀n = 1,2, . . . .

Thus the proof of Lemma 3.1 is complete.✷
For the case that(ν,α) ∈ S1

1, we need the following results.

Lemma 3.2 [14, Lemma 3.1 and Remark 3.1].Let a > 0. Suppose thatg is unimodal map
from [0, a] to itself with a periodic pointp of period2. We have

lim
n→∞V[0,p](gn) = ∞.

For more general results about the total variations and periodic orbits for a m
interval, see [10].

Lemma 3.3. Letβ > 0. If (ν,α) ∈ S1
1, then for anyε0 > 0, we have

lim
n→∞V[0,ε0]

(
f n
ν,α

) = ∞ and lim
n→∞V[−ε0,0]

(
f n
ν,α

) = ∞. (3.9)

Proof. If (ν,α) ∈ S1
1, then the unimodal mapfν,α on I1 has a periodic point (denote

by p) with period 2 by (ii) in Theorem 2.2. Thus, from Lemma 3.2, we get

lim
n→∞V[0,p]

(
f n
ν,α

) = ∞. (3.10)

On the other hand, we know from the proof of (ii) of Theorem 2.2 that the periodic
p above belongs to the interval(0, v0). Sincefν,α increases strictly in[0, vc], for any given
ε0 > 0, there exists a positive integerK such that

[0,p] ⊂ f K
ν,α

([0, ε0]
)
.

Thus, by (3.10), we get the first equation of (3.9). The second equation of (3.9) fo
from the fact thatfν,α is odd. ✷

Finally, we discuss the case that(ν,α) ∈ S2.
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Lemma 3.4 [10]. Let J be a bounded closed interval and letf :J → J be a continuous
map. Iff has a periodic point whose period is not a power of2, then there exists a positiv
constantc such that

VJ (f
n) � O

(
exp(cn)

)
asn → ∞. (3.11)

Lemma 3.5. Letβ > 0. If (ν,α) ∈ S2, then for any sufficiently smallε0 > 0,

V[0,ε0]
(
f n
ν,α

)
� c1 exp(c2n) and V[−ε0,0]

(
f n
ν,α

)
� c1 exp(c2n),

∀n = 1,2, . . . , (3.12)

for some positive constantsc1 andc2.

Proof. If (ν,α) ∈ S2, from Lemma 2.1 and Theorem 2.2, we have thatfν,α has periodic
points in(−M,0) and(0,M), respectively, with the periods not a power of 2. Lemma
shows that

V[−m,0]
(
f n
ν,α

)
� O

(
exp(cn)

)
asn → ∞, (3.13)

V[0,M]
(
f n
ν,α

)
� O

(
exp(cn)

)
asn → ∞, (3.14)

for some positive constantc.
On the other hand, sincefν,α is strictly increasing in(−vc, vc) by Lemma 2.1, we have

for any smallε > 0, there exists a positive integerK such that

f K
ν,α

([−ε,0]) ⊃ [−M,0], f K
ν,α

([0, ε]) ⊃ [0,M]. (3.15)

Therefore, (3.12) follows from (3.13)–(3.15).✷
Lemma 3.6 [14, Lemma 2.4].Assume that

(1) g is a continuous function with bounded variation on a bounded intervalL1;
(2) φ is a piecewise monotone continuous function with finitely many extremal poin

a bounded intervalL2;
(3) The range ofφ onL2 is a subset ofL1.

Then the compositiong ◦ φ is a continuous function of bounded variation onL2.

Theorem 3.1. Consider the initial-boundary value problem(1.1). Assume thatw0 andw1
in (1.1)4 are sufficiently smooth such thatu0 andv0 in (1.7)are continuous and piecewis
monotone and satisfy the compatibility conditions

v0(0) = −u0(0), u0(1)= fν,α
(
v0(1)

)
. (3.16)

Then, we have

(i) If (ν,α) ∈ S0
1 and∣∣u0(x)
∣∣ � vI ,

∣∣v0(x)
∣∣ � vI , ∀x ∈ [0,1],
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then, foru andv in (1.6), we have

V[0,1]
(
u(·, t)) � C and V[0,1]

(
v(·, t)) � C, ∀t � 0, (3.17)

for some positive constantC independent oft ;
(ii) If (ν,α) ∈ S1

1 and there is a small positiveε0 such that either

[0, ε0] ⊂ Rangeu0 ∩ Rangev0 or [−ε0,0] ⊂ Rangeu0 ∩ Rangev0, (3.18)

then, foru andv in (1.6), we have

lim
t→∞V[0,1]

(
u(·, t)) = ∞ and lim

t→∞V[0,1]
(
v(·, t)) = ∞; (3.19)

(iii) If (ν,α) ∈ S2 and there is a small positive constantε0 such that(3.18)holds, then,
for u andv in (1.6), the growth rates ofV[0,1](u(·, t)) andV[0,1](v(·, t)) are at least
exponential ast → ∞.

Proof. Part (i) follows from Lemmas 3.1 and 3.6 and the continuity of the total variat
V[0,1](u(·, t)) andV[0,1](v(·, t)) with respect to the variablet . For the same reason, pa
(ii) and (iii) follow from Lemmas 3.3 and 3.5, respectively.✷

Fig. 6. The profile ofu(x, t) andv(x, t), respectively, att ≈ 50× 2.353 with β = 1, ν = 1.24, α = 1.15, for
system (1.6)–(1.9).
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4. Numerical simulation results

We offer a few computer simulation results in this section as snapshots of the vibr
of a solution pairu(·, t) andv(·, t) of (1.6)–(1.9).

Throughout this section, we chooseβ = 1 and the initial conditions as

w0(x) = 0.2 sin

(
π

2
x

)
, w1(x) = 0.2 sin(πx), x ∈ [0,1].

Then, by (1.7), we have

u0(x) = 0.2

ρ1(ν) + ρ2(ν)

[
ρ2(ν)

π

2
cos

(
π

2
x

)
+ sin(πx)

]
, x ∈ [0,1], (4.1)

v0(x) = 0.2

ρ1(ν)+ ρ2(ν)

[
ρ1(ν)

π

2
cos

(
π

2
x

)
− sin(πx)

]
, x ∈ [0,1]. (4.2)

When the parameter pair(ν,α) = (1.24,1.1) ∈ S1
1, ρ1(ν) ≈ 0.556 andρ2(ν) ≈ 1.797.

The snapshots ofu(·, t) andv(·, t) at t = 50(ρ1+ρ2) ≈ 50×2.353 are displayed in Fig. 6
In this case, the mapG ◦ Fν,α seems to have a periodic point of period 4. Regarding
profiles ofu andv, we see that they are slowly oscillatory. There is no chaotic occurre
but the total variation of each of them still grows infinitely ast → ∞.

Fig. 7. The profile ofu(x, t) andv(x, t), respectively, att ≈ 50× 3.88 withβ = 1, ν = 3.33,α = 0.5, for system
(1.6)–(1.9).
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When the parameter pair(ν,α) = (3.33,0.5) ∈ S2, ρ1(ν) ≈ 0.277 andρ2(ν) ≈ 3.607.
The snapshots ofu(·, t) andv(·, t) at t = 50(ρ1+ρ2) ≈ 50×3.884 are displayed in Fig. 7
In this case, the mapG ◦ Fν,α has a periodic point with period not a power of 2 and
total variation ofu(·, t) and ofv(·, t) grow exponentially. From the profiles ofu andv, we
can see that they are extremely oscillatory at any interval in[0,1]. Moreover, in contrast to
Fig. 6, macroscopically coherent structures no longer exist.
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