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Abstract

The one-dimensional linear wave equation with a van der Pol nonlinear boundary condition is
one of the simplest models that may cause isotropic or nonisotropic chaotic vibrations (Trans. Amer.
Math. Soc. 350 (1998) 4265-4311, Internat. J. Bifur. Chaos 8 (1998) 423-445, Internat. J. Bifur.
Chaos 8 (1998) 447-470, J. Math. Phys. 39 (1998) 6459-6489, Internat. J. Bifur. Chaos 12 (2002)
535-559). In this paper, we characterize nonisotropic chaotic vibration by means of the total variation
theory. We obtain the classification results on the growth of the total variation of the snapshots on
the sépatial interval in the long-time horizon with respect to two parameters entering different regimes
in R<.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

There has been increasing interest in the phenomena of chaos in mechanics and physics
in the last two decades. Chaos has been observed in many mechanics and electronic circuits
systems, but it is challenging to give rigorously mathematical proofs, especially for the
systems governed by partial differential equations. In their series of papers [4-7], Chen et
al. first studied chaotic vibrations of one-dimensional (1D) wave equation on a bounded
interval with a van der Pol boundary condition. They have rigorously proven the existence
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of isotropic chaotic vibrations when a parameter enters a certain regime. Recently, Chen et
al. [8] discussed nonisotropic spatiotemporal chaotic vibrations of the 1D wave equation
with mixing energy transport and a van der Pol boundary condition. The aforementioned
works are all for the simplest infinite-dimensional systems that may admit chaos. However,
those works can provide some motivation and directions for the future study of chaos for
more general partial differential equation systems and for the recently emerged study of
anticontrol (cf. [3,11-13] and references therein).

We point out that there are several alternative definitions of chaos, each of which reflects
its own background in its appropriate setting. Recently, Chen et al. [9] first characterized
the chaotic oscillation of the same 1D wave equation as in [5] by means of the unbounded
growth of total variations. In an earlier work [14], the author classified the growth rates of
total variations of the snapshots of the Riemann invariants for the same system.

In this paper, we consider the initial-boundary value problem
Wyex (X, 1) —vwy(x, 1) —wu(x,1) =0, O<x<1, >0,
wy(0,1) =0, >0,
wye(1, ) =aw;(1,1) — ,3w,3(1, 1), «B>01t>0,
wx,0) =wo(x), w/(x,0)=wi(x), O<x<l

We will study the dynamical behavior of this system by means of total variation theory as
the two parameter®, «) vary in[0, +00) x [0, +00).

This paper can be viewed as a continuation of the earlier work [14]. But the difference
here is twofold: (i) we will classify the growth of the total variations of the snapshots of
the Riemann invariants of (1.1) in the long time horizon as the two parametersvary
in the plane instead of just varying one parameter; (ii) the mixed partial derivative linear
energy transport term in Eq. (1.1) can lead to strong mixing of waves and nonisotropic
spatiotemporal chaos, contrary to the isotropic case in [14].

As in [8], we let

(1.1)

() = %\/44-—1;2 .
p2(v) = L\/ZA'_'_—UZ .
We then have
p1P2) =1, pa(0) — p1(W) =1 >0, p1(V) + p2(v) = A+ 12, (1.4)
Letting
: u= L [pp(vywy +w], -
V= oy e ws — wl,

we can convergl.1); into the equivalent uncoupled first order hyperbolic system

O [ulx,0)| _ | p1(v) 0 9 [u(x,n)

El:v(x,t):|_|: 0 o) | 3% | v | O<x<1 r>0. (1.6)
The initial conditions fow andv are

{ u(x, 0) = uo(x) = sor=rs [P2Vwp(x) + wix)],

_ _ 1 , 2.7)
v(x,0) = vo(x) = m[pl(v)wo(x) — w1 (x)].
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The boundary condition at=0 is

v(0,1) = —u(0,1) = G(u(O, t)), t>0, (1.8)
and the boundary condition at=1 is

u(l,1)=Fyqo(v(1,1)). (1.9)
For givenx € R,

Fya(x) = p2 p2x + gu.a (1)], (1.10)
wherey = g, ,(x) is the unique real solution of the cubic equation

BY3 + (02— @)y + (05 +1)x =0, (1.11)
provided that

O<a<p (: pz(v)). (1.12)

Since the parametgrin the equation only plays the role of “scaling” (see [8]), it does not
affect the properties of the functions , and F, ,. Thus we can viewg, , and F, , as
functions only dependent on the two parameteaside.

If (1.12) is violated, therg, (x) is multi-valued. From now on, we always assume
that «, 8, v > 0 satisfy condition (1.12). By the method of characteristics, the solution
u andv of (1.6)—(1.9) can be expressed explicitly as follows: fet k(p1 + p2) + 1,
k=0,1,2,...,0< 1t < p1+ p2,and 0< x < 1,

(Fu.a 0 G uo(x + p17)), 7 < p2(l—x),

Fyq 0 (G o Fyo)*(vo(1+ p3 — p3(x + p17))),

u(x,t)= pz(l—x)<t<p2(l+pf—x), (1.13)
(Foo 0 G) Huo(x + p17 — 1= p})),

p2(1+ p7 —x) <1 < p1+ P2,
and
(G o Fya)*(vox — p21)), T < pux,

G o (Fy 4 0 G)(uo(—pf(x — p21))),
v(x,t) = px <1< p1(x + ,03), (1.14)
(Fo.a 0 ) Hvo(x — p2t + 1+ p3)),

p1(x + p3) < T < p1+ p2.

Here, for example(G o Fw)" denotes thé-fold iterative composition 06 o F), 4.

From these explicit representations, we can estimate the growth rates of the total varia-
tions ofu(-, t) andu(-, t) on[0, 1] ast goes to infinity by means of the estimation of those
of (G o F, )" (-) and(F, )" (-) on some spatial intervals agyoes to infinity.

The organization of the paper is as follows. In Section 2, we list some basic properties
of the mapG o F, , and find invariant intervals o o F, 4 (-) when the parametetsand
a vary in R, In Section 3, we first estimate the growth rate of the total variations of the
iterates(G o F, 4)"(-) asn — oo and further obtain an estimate of the total variation of
u(-, 1) and ofv(-, 1) on[0, 1] ast goes to infinity. In the final Section 4, some numerical
simulations are given.
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2. Propertiesof themap G o F, o

Most of the basic properties of the mépo F, , have been established by Chen et al.
in [8]. But they only studied the properties 6fo F, , when the parametervaries buix
andg were held fixed. Contrary to this, we will regard betland« as varying parameters
and discuss the basic propertiesdé F, .

Let

S:{(v,a)eR2|0<v<+oo, 0<a<p2(v)}, (2.1)
where p2(v) is given by (1.3). Since, , is well defined if and only if(v, @) € S, we
always assume thab, «) € S throughout this paper.

Lemma2.1. Let 8 > 0. Then the ma o F, o has the following properties

(i) Go Fy4(-)is odd
(i) G o F,, has exactly three fixed poin@s vo and —vg, where

1 o
_ - |z 2.2
vo = vo(v, &) p1(v) + p2(v) Y B’ (22)

and the origin is a repelling fixed point
(iiiy —G o Fy o (= Fy ) has exactly three fixed pointsv1, 0 andv, where

1 1 — 1 /1
vi=vi(v,a) = talpe—p) 1 ﬂ, (2.3)
p2—p1\  B(o2— p1) vy Bv

where the last equality i(2.3)follows from(1.4);
(iv) The equatiorG o F, ,(v) = 0 has exactly three root3, v; and—v;, where

1 /1
vy =vi(v, o) = — * ape, (2.4)
p2\ Bp2

(v) G o F, 4 haslocal extremal values

214+ ap2 [14 ap2
m=Go Fyqy(—v)=—= / : 2.5
hal=ve) 3p1+p2\ 3Bp2 (2.5)
214 ap2 [14ap2
M=GoPF,q,(v)== | ——m, 2.6
P T 3 o402\ 3Bp2 (2.6)

where

3p3 — 2 1 /1
Ve =V (v, o) = P2 (2sz+ +05,02’ (27)
3p2(p5 + 1) 3Bp2

v and —v, are critical points ofG o F, . Herem and M are, respectively, the local
minimum and maximum @f o F, ,. The functionG o F, , is strictly decreasing on
(—o0, —v.) and(v., +00), but strictly increasing ori—uvc, v.);
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) 241
(vi) (G 0 Fya) () = —p2 + pa’ 2=, 2.8)
6 2+ 12804
(GO Fu’a)//(v) — ﬂpz(pz D3) 8 s (U)’ (29)

where
D =3pg5,(v) +p2—a,
andg, o (-) is defined througl(1.11)

Proof. See Section 2in [8]. O

Now we need first to study the bounded invariant intervals of the GapF, . We
shall show that they depends heavily on the choice of the parameterda in S. First,
we divide the regime$ into three sub-domains in each of whicho F, , has different
invariant intervals.

Solving the simultaneous equations

o= p2(v),
_ 1 73/3 .33 11— (2.10)
 p2(v) [Zp%(v) + 2 1] =hi(v),
we obtain a pair of unique positive solutions
— /33
M=V (2.11)
V1 =01 — a—ll
By direct computation, we obtain that the equations
o= p2(v),
21tapp [ltapp _ 1 [ 1ta(p2—p1) (2.12)
3p1tp2Y 3Bo2 T p2—p1V  Blp2—p1)

have a pair of unique positive solutions

[ 27/4+/T/4)%+4
“2=y 2 : (2.13)

1
V2:a2—a—2.

For anyv > 0, by Cardan’s formula, we can deduce that the second equation in (2.12)
has a unique positive solution

+ p2

1
a=3 cosY — p1 = ha(v), (2.14)

where

1 1
0 = arccos——.
+ 05
From (1.2)—(1.4), we obtain

T,
9 " "6
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So
h1(v) < ho(v), Vv>0.
Itis easy to prove that

M®©w,a) >vi(v,a) if a>ha(v) (2.15)
and
% <hi(v) ifv> %2 (2.16)

HereM (v, @) andv1 (v, @) are, respectively, the local maximum value and the intersection
point with the diagonal line: + v = 0 of the mapG o F, , defined by (2.6) and (2.3) in
Lemma 2.1, respectively.

Define

Slz{(v,a)|0<v<v1, 0<a§p2(v)}

U{(v,a)|v1<v<+oo, 0<a<h1(v)}, (2.17)
So={(w,a) [v1<v <2, hi(v) <a<p2(v)}

U {(v, a) v <y <+oo, hi(v) <a < hz(v)}, (2.18)
Sz3={(W, @) [v2<v <+00, ha(v) <a < p2(0)}, (2.19)

wherev; andv; are given by (2.11) and (2.13), respectively.
A routine check shows that

M®©w,a) <vi(v,a) Iif (v,a) e Sy,
vy, ) KM, a) <vi(v,a) if (v,a) €Sy,
vv,a) <M, a) if (v,a)e S3,
whereM (v, @), vy (v, @) andv1(v, &) are given by Lemma 2.1. Thus, we have

Theorem 2.1 (Bounded invariant intervals of the m&po F, ).

@) If (v,@) € S1, thenly =[0,v;] and —I1 = [—wvy, 0] are bounded invariant intervals
of G o F, 4. FurthermoreG o F, o is unimodal only;
(i) If (v,a) € S2,thenl, =[—M, M]is a bounded invariant interval af o F,, 4;
(iii) If (v, @) € S3, then the magw o F, , has no any bounded invariant interval.

Itis easy to check that the pair of equations

a = p2(v),

has the pair

Vo= —=,
0T V2 (2.20)
a0 =2,

as its unique solution with positive components.
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Fig. 1. The regimes is divided into four sub-regimes?, s, 55, andss.

We divide the regime; defined by (2.17) into the two parts

S?:{(v,a)|0<v<vo, 0<a<p20)}

1
U{(v,a)|v0<v<+oo,0<a§—}, (2.21)
v

1
S%:{(u,a)|vo<v<v1, —<Ol<;02(v)}
v

1
U{(u,a)|v1<v<+oo, —<a<h1(v)}. (2.22)
v

So we have divided the regintinto four sub—regime§8, Sll, S» and S3, see Fig. 1.
Figures 2-5 give examples of graphs®@f F, , when the parameter®, «) belong to
each of the sub-regimes, respectively. We shall see in the next section that the growth of
total variations of G o F, o)" asn goes to infinity depends on the parametersy) in the
different sub-regimes.

We need the following lemma from Block and Coppel [2, Proposition 1, Chapter VI].

Lemma 2.2. Let I be a compact interval and : I — I be a continuous map. If has no
periodic point of perio®, then, for every € I, f*(x) converges to a fixed point ¢f as
k — o0.

Theorem 2.2. Let > 0. Then

@) If (v,) e S?, thenG o F, 4, has no periodic point of period on the invariant inter-
val I;. Moreover,
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u=G° Fv‘a(v), B=1,v=1, a=1

0.8

0.6

0.4

0.2r

1 s L s ) ) s ' s
-1 -0.8 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
v

Fig. 2. Graph ofG o F,, o (v) when(v,a) = (1,1) € 5.

u=G°F_  B=1,v=1.24, a=1.15
v,
T T

0.8

0.6

0.4

0.2

1 L L L . . L L L
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
v

Fig. 3. Graph ofG o F,, ¢ (v) when(v, @) = (1.24, 1.15) € S3.

lim (G o Fyo)"(v) =vo, Yve(0,v) =1,
n—0o0

lim (G o Fya)" () = —vo, Vo€ (—v;,0) = —I;
n—>oo

85

(2.23)
(2.24)

(i) f (v,a) € S%, thenG o F, , has at least a periodic point on the invariant interval

with period greater than or equals @
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u=G°F

v,

B=1, v=3.33, 0:=0.5
0.4 : :

0.1+ 1

204 0.3 0.2 -0.1 0 0.1 0.2 0.3 0.4
v

Fig. 4. Graph ofG o F o (v) when(v, ) = (3.33,0.5) € So.

u=Gx F_ , B=1,v=5 0=1.33
v, o
0.8 T T

T T T

0.6

0.4

0.2

-0.6

08 L . L L . L
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Fig. 5. Graph ofG o Fy o(v) when(v, o) = (5,1.33) € S3.

(i) If (v,x) € S2, thenG o F, 4 has periodic points on the invariant interv# with
period not a power o (where we includd = 2° as a power oR);

(iv) If (v, ) € S3,thenG o F, 4 has an invariant Cantor set with measure zero an@ o
F, o is chaotic in the sense of Li-Yorke an Furthermore, for any small interval,
there isv € J, such that

lim (G o Fy¢)" (v) = 0.
n—>oo
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Proof. For (i), suppose that o F, , has a periodic point € I1 with period 2. That is
(GoFua)®(0)=v,  GoFya)#uv.

Let

2=GoFyu(v) = —,02[,021) + gv,oc(v)]- (2.25)
Then

V=G o Fy4(2) = —p2[p22 + g0 ()] (2.26)
Thus

8va(V) =—p1z — p2v = —w, (2.27)

8va(z) = —p1v — p2z=—)y. (2.28)

Sincev € I1 andv # z, w andy are all positive and

w#y. (2.29)
By the definition ofg, o, w andy satisfy the equations

—Bw® — (p2 — )w + (1+ p2)v =0 (2.30)
and

—By3 — (b2 — )y + (1 + p2)z =0. (2.31)
It follows from (2.27) and (2.28) that

1
v=———(p2w — p1y) (2.32)
P2 — P71
and
1
2= ————(p1w — p2y). (2.33)
P2 —P1

Substituting (2.32) and (2.33) into (2.30) and (2.31), respectively, after simplifying by
(1.4), we obtain

vBw — 1+ ve)w+y=0 (2.34)
and

vByS — (1 +va)y +w =0. (2.35)
From the last two equations and (2.29), we have

vB(w? + wy +y%) — 2+ va) =0 (2.36)
and

vB(w? — wy 4+ y?) —va =0. (2.37)
Thus

2vwy —2=0,



88 Y. Huang / J. Math. Anal. Appl. 288 (2003) 78-96

SO
1
w=—"-. (2.38)
vBy
From (2.38) and (2.35), we have
1
vBy* — (L+va)y? + — =0. (2.39)

vp
Since(v, a) € 9, we have
O<va <1.

So
2 1
1+va)c—4p— <O.
vB

Thus Eg. (2.39) has no real solution, a contradiction. That meansGthak, , has no
periodic point of period 2 irf.
On the other hand, singe, «) € 52, we have

va < 1. (2.40)
By (iv) in Lemma 2.1,
2 2
o5 +1 p5+1
2 = _1022 + 02 2 2 .
D 3885 (o) + p2 —a
Sinceuo is a fixed point ofG o F, 4, from (1.10), we have

(G o Fyy) (v0) = —p2 + p2

—v0 = F),o (v0) = p2[ p2v0 + &v.a(v0)].

vo
&v,a(V0) = —— — p21o
P2

1 o
— b .
p1+p2\ B y(23)

=—(p1+ p2)

o
5
So

;03 +1 11— 2002
3a+pp—a 142apr’
Here we have used the relation thatv)p2(v) = 1in (1.4). From (2.40), we have

—1<(GoFya)(v0) <0 if (v,a) € 8Y. (2.42)

(G o F,0) (vo) = —p3 + p2 (2.41)

Thus theyg is the unique attracting fixed point 6fo F, , onI1 = [0, v/]. (0 is a repelling
fixed point of G o F, o by (ii) in Lemma 2.1.) From Lemma 2.2, we get (2.23). Since
GoF,q(—v)=—G o F, 4(v), we have (2.24).

For (ii), if (v, @) € S1, then, from (2.41), we get

(GoFyq) (v0) <—1. (2.43)
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Setting
foa@) = (G o Fyo)*(v) — v,
we obtain
fr.(wo) >0 and f,q(vo)=0. (2.44)

Thus, by the smoothness ¢f ., there is a point’ in the small left neighborhood afy
such that

fv,a(v/) <0. (2.45)

On the other hand, sina&o F, ,(-) is strictly increasing ir(0, v.), whereuv, is the local
maximum point given by (2.7) in Lemma 2.1. Also
1 1
<—-<uwa

p2(v)
impliesv, < M, so there exists a point’ with 0 < v” < v, such that

V' <GoF,a() =0,
Thus

(GoFyo)’W)y=M>"

or
fo.a@) = (G o Fyo)?(") —v" > 0. (2.46)
From (2.45) and (2.46), therei$’ with v < v < v’ such that
fr.a(@”)=0.

This implies that” is a periodic point of5 o F, , with period 2.

For (iii), if (v, @) € S2, thenM > v;. This shows thaG o F, , has a homoclinic point
in the invariant setf; = [—v1, v1]. ThusG o F, , has a periodic point with period not a
power of 2 (see [1]).

Finally, we prove (iv). The first part of (iv) follows from Theorem 3.3 in [8]. Since
(v,@) € 83, G o F, o does not have any invariant bounded intervals. Thus, for any inter-
val J, if J N (—v1, v1) = ¢, wherevs is defined by (iii) in Lemma 2.1, then

lim (G o Fy.4)"(v) = 00
n—o0
foranyv € J by (v) in Lemma 2.1. If/ N (—v1, v1) # ¢, then there exist a positive integer
k and a poin; € J N (—v1, v1) such that
(Go Fyo)f(v2) =M.
Thus, again by (v) in Lemma 2.1, we have

lim (G o F, 4)" (v2) = o0. O
n—>oo

Remark 2.1. The mapG o F, o, has a period-doubling cascade when only one parameter
varies but is fixed, see Theorem 3.1 in [8].
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Remark 2.2. From Theorem 2.2, for the discrete dynamical sys{€6io F, 4)"},cn+
bifurcation occurs on the curié := {(v, @) € S | va = 1}.

3. Thegrowth rates of thetotal variation of u(-, t) and of v(-, ¢) ast - oo

First, we study the growth rate of total variations(6f o F, o)" asn goes to infinity
when the parameters, «) vary in the regime§. We shall obtain the following results: the
growth of the total variation of the majgr o F), o )"

(1) remains bounded oh if (v, «) € 9, (Lemma 3.1);
(2) is unbounded oty if (v, @) € SI, (Lemma 3.3);
(3) is exponential oy if (v, @) € S2, (Lemma 3.5)

asn — oo. It is meaningless to consider the case thaty) € S», since the map has no
bounded invariant intervals @ o F, , by Theorem 2.1.

Let f be a continuous map from an intenlinto itself. Throughout this section, we
denote byV, (f) the total variation off on J.

For simplicity and clarity, write

fv,a EGOFv,a-

Lemma3.1. Letg > 0. If (v,a) € S, then
V[fvl,w]((fv,a)n) <C, vn=12..., (3.2)

for some constant.

Proof. Sincef,  is odd and unimodal, it suffices to prove that
Vl]_((fl),a)n) g Cs Vn = 17 21 LR (32)

for some constant. If

1
(v,ot)e{(v,ot)eS‘O<ot< sz(v)}csf,

then we can deduce that the local maximum valtief f, , on I; satisfies
M = f(ve) < ve,
and the fixed pointyg of f, , satisfies
0<wvo<ve.
Let
J1 =10, vol, J2 = [vo, vcl, Ja=[vc,vol, and Js=/vo,vs],
wheretg € (v, vy) is the unigue point with

fr.a (Vo) = vo.
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Since f,  is monotone oy;, i =1, 2, 3,4, and

fv,a(-]l) =J1, fu,a(JZ) C Jo, (33)
fv,a(J3) =J2, fu,a(-]4) =Ji, (34)
we have

le ((fv,a)n) =0
for any positive integer, and

Jim Vi ((fre)") =0,

Thus

IN

Vi, ((foa)") =Y _ Vi ((fo.)") = 200 asn — oo.

i=1
When

(v,a)eSg—{(v,a)eS‘0<a< 2,03-(1))}’

a direct computation shows that
Ve <vg< M.

Different from the case above in whicfj, (v.) decreases tao, f,(vc) tends in an
oscillatory manner to the fixed poing asn — oo. Thus, f" , is piecewise monotone with
2n — 1 extremal points iffy, with the corresponding extremal values being

M= foa(Ve), f24(e). . fllg o), filg o). frate). ...
fvz,a (We)s foa(ve) =M,
from left to right in I, respectively. Therefore
V() = Z[M + 3 (FE ) — FE @) + (£ we) - ffg—z(vc))]
k=1

k=2
(3.5)

and
n n+1
V(e = Z[M + (A ) — [ W) + ) (FE e — E,f;—z(vc))}.
k=1 k=2
(3.6)

On the other hand, again sined. < f; , (vo(1)) <O for (v,a) € Sy andf;,(v) <0in Iy,
there exists € I1 such thatt > vg and

|fre@| <|fia@]=80<1 Vvelv,ul. (3.7)
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Moreover, since
Jm 5o (0e) = o,

by (i) in Theorem 2.2, there exists a positive integersuch that for any > K,
Fa(we) € [ve, ul.

It follows from the mean value theorem that for any positive intdger

| 5w = 1R o | < 8| A5 o = 15, @) (3.8)
Thus, the right-hand sides in (3.5) and (3.6) are dominated by the positive series

o
cy o
k=0
which is convergent for some positive const@niTherefore, there exists a constait- 0
such that
Vi(flly) <C. Vn=12...
Thus the proof of Lemma 3.1 is complete

For the case thaw, ) € SI, we need the following results.

Lemma 3.2[14, Lemma 3.1 and Remark 3.1Jeta > 0. Suppose that is unimodal map
from [0, a] to itself with a periodic poinp of period2. We have
. 0
nleoo Vio, p1(8") = oo.

For more general results about the total variations and periodic orbits for a map on
interval, see [10].

Lemma3.3.Letg>0.If (v,a) € S%, then for anyeg > 0, we have

nli_)moo V10,601 (fvna) =o0 and nli_)moo V[_go,o](f]ﬁa) = 00. (3.9)

Proof. If (v,a) € Sll, then the unimodal mag, , on I1 has a periodic point (denoted
by p) with period 2 by (ii) in Theorem 2.2. Thus, from Lemma 3.2, we get

nleoo V[O,p](ff)a) = 00. (3.10)

On the other hand, we know from the proof of (ii) of Theorem 2.2 that the periodic point
p above belongs to the intervéd, vp). Sincef, o increases strictly if0, v.], for any given
go > 0, there exists a positive integ&r such that

[0, rlc fv[,(a ([07 80])'
Thus, by (3.10), we get the first equation of (3.9). The second equation of (3.9) follows
from the fact thatf, , isodd. O

Finally, we discuss the case that o) € S».
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Lemma 3.4 [10]. Let J be a bounded closed interval and Igt J — J be a continuous
map. If f has a periodic point whose period is not a poweRpthen there exists a positive
constantc such that

Vi(f") = O(expicn)) asn — oco. (3.11)

Lemma 3.5. Let8 > 0. If (v, a) € So, then for any sufficiently smadp > 0,
V10,01 (flf’)a) > c1explcen) and V[_SO!O](f]_’Za) > c1explcan),
vn=12,..., (3.12)
for some positive constantés andcs.
Proof. If (v,@) € S2, from Lemma 2.1 and Theorem 2.2, we have tfiai has periodic

points in(—M, 0) and(0, M), respectively, with the periods not a power of 2. Lemma 3.4
shows that

Viemo (fila) = O(exp(cn)) asn — oo, (3.13)
Viom1(fly) = O(expicn)) asn — oo, (3.14)

for some positive constant
On the other hand, sincg  is strictly increasing if—v., v.) by Lemma 2.1, we have,
for any smalle > 0, there exists a positive integ&r such that

K, (1—e,01) > [-M, 0], 15,10, £1) > [0, M. (3.15)
Therefore, (3.12) follows from (3.13)—(3.15)0

Lemma 3.6 [14, Lemma 2.4]Assume that

(1) g is acontinuous function with bounded variation on a bounded intekyal

(2) ¢ is a piecewise monotone continuous function with finitely many extremal points on
a bounded interval.y;

(3) Therange ofp on L is a subset of 1.

Then the compositiogio ¢ is a continuous function of bounded variation by.

Theorem 3.1. Consider the initial-boundary value problefh.1). Assume thaig and wq
in (1.1)4 are sufficiently smooth such thag andvg in (1.7)are continuous and piecewise
monotone and satisfy the compatibility conditions

vo(0) = —uo(0),  uo(D) = fi.(vo(D)). (3.16)
Then, we have

(i) If (v,@) € s?and

luo(x)| <vr, Jvo(x)| <wvr, Vxe[0,1],



94 Y. Huang / J. Math. Anal. Appl. 288 (2003) 78-96

then, foru andv in (1.6), we have

Vioy(u(.0)<C and Vioy(v(-,1))<C, V=0, (3.17)

for some positive constant independent of;
(i) If (v, ) € S} and there is a small positive such that either

[0, 0] € Rangeip N Rangeyg or [—eo, 0] C Rangeip N Rangayg, (3.18)

then, foru andv in (1.6), we have
timoo Vio.yy(u(-, 1)) =00 and tIergo Vio.yy(v(-, 1)) = 00; (3.19)

(i) If (v, ) € S2 and there is a small positive constadit such that(3.18) holds, then,
for u andv in (1.6), the growth rates o¥jo,1;(u(-, ¢)) and Vjo,17(v(-, 1)) are at least
exponential as — oo.

Proof. Part (i) follows from Lemmas 3.1 and 3.6 and the continuity of the total variations
Vio,n(u (-, 1)) and Vjo,1;(v(-, t)) with respect to the variable For the same reason, parts
(i) and (iii) follow from Lemmas 3.3 and 3.5, respectivelys

u(-t), B=1, v=1.24, a=1.15, at t=50x 2.35
08 T T T T T T T

0.7r .
061
0.5F
0.4r
031

0.1 | I 1 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6

x-axis

v(-1), B=1, v=1.24, a=1.15, at t=50x 2.35
1 T T T T T T T

0.5H 4

9 1 I | 1 1 1 I I 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x—axis

Fig. 6. The profile ofu(x,t) andv(x, t), respectively, at ~ 50 x 2.353 withg =1, v =1.24, « = 1.15, for
system (1.6)—(1.9).
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4. Numerical simulation results

We offer a few computer simulation results in this section as snapshots of the vibrations
of a solution paiu(-, ¢) andv(-, t) of (1.6)—(1.9).

Throughout this section, we chooge= 1 and the initial conditions as

wo(x) =0.2 sin(%x>, wi(x) = 0.2sin(x), xel[0,1].

Then, by (1.7), we have

up(x) = m [pz(v)% COS(%x) + Sin(nx)], x €[0,1], (4.2)
.2 b4 b4 .
UO()C) = m |:,01(1))E CO{EX) — Sln(nx)i|, X € [O, 1] (42)

When the parameter paip, o) = (1.24,1.1) € Sll, p1(v) = 0.556 andp2(v) ~ 1.797.
The snapshots of(-, ) andv(-, t) atr = 50(p1 + p2) ~ 50 x 2.353 are displayed in Fig. 6.
In this case, the mag o F, , Seems to have a periodic point of period 4. Regarding the
profiles ofu andv, we see that they are slowly oscillatory. There is no chaotic occurrence,
but the total variation of each of them still grows infinitelyras- co.

u(-,t), B=1, v=3.33, 0=0.5, at t=50x 3.88
0.3 T T T T T T T

ol |
ol

ol |
|

02 |

-0.3

0.4 | I 1 1 1 | I I 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X—axis

v(-1), B=1, v=3.33, 0=0.5, at t=50x 3.88
T T

0.3 T

_04 1 I 1 1 1 1 I I 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X—axis

Fig. 7. The profile ofu(x, t) andv(x, t), respectively, at ~ 50 x 3.88 with § = 1, v = 3.33,« = 0.5, for system
(1.6)—(1.9).
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When the parameter paiv, o) = (3.33,0.5) € Sz, p1(v) ~ 0.277 andp2(v) ~ 3.607.
The snapshots of(-, 1) andv(-, ¢) atz = 50(p1 + p2) ~ 50 x 3.884 are displayed in Fig. 7.
In this case, the mag o F, , has a periodic point with period not a power of 2 and the
total variation ofu(-, r) and ofv(-, t) grow exponentially. From the profiles afandv, we
can see that they are extremely oscillatory at any intervdl,ith]. Moreover, in contrast to
Fig. 6, macroscopically coherent structures no longer exist.
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