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and upregulation of widely expressed MAT2A, encoding MATII
isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellu-
lar carcinoma (HCC). Being inhibited by its reaction product,
MATII isoform upregulation cannot compensate for MATI/III
decrease. Therefore, MAT1A:MAT2A switch contributes to
decrease in SAM level in rodent and human hepatocarcinogene-
sis. SAM administration to carcinogen-treated rats prevents
hepatocarcinogenesis, whereas MAT1A-KO mice, characterized
by chronic SAM deficiency, exhibit macrovesicular steatosis,
mononuclear cell infiltration in periportal areas, and HCC
development. This review focuses upon the pleiotropic changes,
induced by MAT1A/MAT2A switch, associated with HCC
development. Epigenetic control of MATs expression occurs at
transcriptional and post-transcriptional levels. In HCC cells,
MAT1A/MAT2A switch is associated with global DNA hypomethy-
lation, decrease in DNA repair, genomic instability, and signaling
deregulation including c-MYC overexpression, rise in polyamine
synthesis, upregulation of RAS/ERK, IKK/NF-kB, PI3K/AKT, and
LKB1/AMPK axis. Furthermore, decrease in MAT1A expression
and SAM levels results in increased HCC cell proliferation, cell
survival, and microvascularization. All of these changes
are reversed by SAM treatment in vivo or forced MAT1A
overexpression or MAT2A inhibition in cultured HCC cells. In
human HCC, MAT1A:MAT2A and MATI/III:MATII ratios correlate
negatively with cell proliferation and genomic instability, and
positively with apoptosis and global DNA methylation. This sug-
gests that SAM decrease and MATs deregulation represent poten-
tial therapeutic targets for HCC. Finally, MATI/III:MATII ratio
strongly predicts patients’ survival length suggesting that
MAT1A:MAT2A expression ratio is a putative prognostic marker
for human HCC.
� 2013 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

Hepatocellular carcinoma (HCC) is a frequent and fatal human
cancer, with 0.25–1 million newly diagnosed cases each year
[1–3]. Major risk factors associated with HCC are chronic
HBV and HCV infections, alcoholic steatohepatitis (ASH), afla-
toxin B1, and some inherited metabolic disorders [2–4]. HCC
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Fig. 1. Methionine metabolism. SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; THF, tetrahydrofolate; MTHF, methyl-THF; DMTHF, dimethyl-THF; GN,
glycine; DMGN, dimethyl GN; GNMT, glycine N-methyltransferase; SN, sarcosine; Dec-SAM, decarboxylated SAM; SPR, spermine; SPD, spermidine; 50-MTA,
50-methylthioedenosine; MAT, methionine adenosyltransferase; MT, methyltransferase; SAHH, SAH hydrolase; CBS, cystathionine beta-synthase; BHMT, betaine-
homocysteine methyltransferase; MTHF-HMT, 5-methyltetrahydrofolate homocysteine methyltransferase; MTHFR, methyltetrahydrofolate reductase.; SDC, SAM
decarboxylase; SRS, spermine synthase; SDS, spermidine synthase; ODC, ornithine decarboxylase.
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incidence exhibits differences related to age, gender, ethnic
group, and geographic region [3–5], and shows differences
within the human population exposed to risk factors [6], suggest-
ing a pathogenetic role of environmental and/or genetic factors
[7–9].

Complex relationships between genetic, etiologic, and
environmental risk factors create genotypic and phenotypic het-
erogeneity within human HCC [2,9]. Consequently, evaluation of
pathogenetic mechanisms and identification of prognostic sub-
types of HCC are difficult. A valuable contribution to explore
HCC pathogenesis is provided by rodent models in which prema-
lignant and malignant lesions exhibit low heterogeneity, without
disturbing environmental influences. [10,11]. Studies performed
in HCC differently prone to progression, induced in transgenic
mice, rodent strains with different susceptibility to hepatocarci-
nogenesis, and human HCC subtypes, contributed to knowledge
of signaling pathways deregulation during hepatocarcinogenesis
[12].

Previous observations that ethionine, an antagonist of methi-
onine, causes cancer [13] and methyl-deficient diets (MDDs) [14–
16] cause steatohepatitis, followed by HCC development even in
absence of carcinogens administration, encouraged studies on
mechanisms regulating availability of the major methyl donor
S-adenosylmethionine (SAM) and its role in liver injury, including
hepatocarcinogenesis. This review provides an interpretive anal-
ysis of recent advances on deregulation of SAM metabolism in
liver injury predisposing to liver cancer and determining HCC
prognosis. We explore the molecular mechanisms involved in
SAM antitumor effect and their contribution to identify new
putative prognostic markers and opportunities for targeted
therapies.
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Metabolism of S-adenosylmethionine

Liver is the main source of SAM, synthesized from methionine
and ATP in a reaction catalyzed by methionine adenosyltransfe-
rases (MATs) [17] (Fig. 1). SAM may be decarboxylated and then
channeled into polyamine synthesis, or converted to S-adenosyl-
homocysteine (SAH) during transmethylation reactions. A revers-
ible reaction catalyzed by SAHH converts SAH to homocysteine
and adenosine. Homocysteine may be channeled into the trans-
sulfuration pathway leading to cystathionine and GSH synthesis.
Alternatively, BHMT catalyzes methionine and dimethylglicine
synthesis from homocysteine plus betaine. Homocysteine plus
5-methyltetrahydrofolate leads to methionine and tetrahydrofo-
late synthesis in a reaction catalyzed by MTHF-HMT. SAH and
50-MTA, a product of polyamine biosynthesis, may inhibit
transmethylation reactions. Interestingly, low SAM levels favor
homocysteine re-methylation, whereas high SAM levels activate
CBS, whose Km for SAM is 1.2–2 mM, much higher than that of
MTHF-HMT (60 lM).

Liver-specific MAT1A encodes for the isozymes MATI and
MATIII, tetramer and dimer of the subunit a1, respectively [18]
(Fig. 1). MAT2A encodes for a a2-subunit, the widely distributed
enzyme MATII isoform. MAT2A expression prevails in fetal liver
and is substituted by MAT1A in adult liver [18,19]. MATI and
MATIII isozymes have intermediate (23 lM–1 mM) and high
(215 lM–7 mM) Km for methionine, respectively. Thus, physio-
logical liver SAM level (�60 lM) has low inhibitory effect on
MATI and stimulates MATIII activity [18,19]. MATII has the low-
est Km (�4–10 lM) and may be inhibited by the reaction product
[18]. A third gene, MAT2B, encodes for a b-subunit without
catalytic action, which regulates MATII by lowering its Km for
3 vol. 59 j 830–841 831
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methionine and Ki for SAM [19]. Therefore, b association with the
a-subunit renders MATII more susceptible to inhibition by SAM
[19].

Noticeably, the recent discovery of correlations between
GNMT, the main enzyme involved in hepatic SAM catabolism
(Fig. 1), and MAT1A, and GNMT and BHMT hepatic proteins, sup-
ports a coordinate regulation of methionine cycle enzymes as
SAM level determinants [20].
Effects of variations of SAM:SAH ratio

Treatment of rats with MDD causes pronounced liver SAM
decrease and reduced SAM:SAH ratio [21], lipid peroxidation
[15], and fall in phosphatidycholine synthesis because of choline
lack and decrease in phosphatidylethanolamine transmethyla-
tion. Consequent reduction of lipoprotein assembly and synthesis
of membranes involved in lipoprotein secretion leads to steato-
hepatitis [22]. Lipid peroxidation and SAM decrease also contrib-
ute to steatohepatitis by affecting mitochondrial function
necessary for fatty acids oxidation. SAM contributes to the stabil-
ity of PHB1 [23], crucial for maintenance of normal mitochondrial
function. SAM pathogenetic role in steatohepatitis is confirmed
by the observation that SAM treatment of hepatocytes isolated
from MDD-fed rats induces phosphatidycholine synthesis, VLDL
and LDL secretion, and decrease in cytoplasmic triacylglycerol
[24].

Changes in SAM levels are also involved in ASH pathogenesis.
In the pre-fibrotic stage of alcoholic rat liver injury, increase of
MATII activity, without change of MATI/III activity, is associated
with low SAM/SAH ratio, global DNA hypomethylation, c-Myc
upregulation, and DNA strand break [25]. SAM administration
protects from ASH [26–28]. Studies on human ASH were incon-
clusive [29], but long-term treatment with SAM improves sur-
vival or delays liver transplantation in patients with alcoholic
liver cirrhosis, especially in those with less advanced disease
[30]. As concerns chronic hepatitis C, SAM addition with/without
betaine to standard therapy with PegIFNa and ribavirin enhances
treatment efficacy [31,32]. Further, a biological basis for HCC pre-
vention by SAM in hepatitis B is proposed by the observation that
HBx upregulates MAT2A and MAT2b, and reduces MAT1A expres-
sion and SAM production in hepatoma cells in vitro [33]. More-
over, parenterally administered SAM protects rodents against
D-galactosamine [34], acetaminophen [35], and CCl4 [36,37]
toxicity.

Different researches showed low SAM/SAH ratio, global DNA
hypomethylation, and c-Myc overexpression 0.5 h after partial
hepatectomy (PH) in rats fed adequate diet [38,39]. These
changes reached a peak at 5–12 h and then progressively
returned to pre-PH levels. Maximum c-Ha-Ras and c-Ki-Ras
expression occurred 24–30 h after PH, roughly coincident with
DNA synthesis peak [38]. Notably, significant decrease in SAM
level and SAM/SAH ratio also occurs in the liver of rats fed ade-
quate diet, during hepatocarcinogenesis induced by different car-
cinogens and experimental models [40–43], and persists in
dysplastic nodules (DN) and HCC several weeks after arresting
carcinogen administration [38,43,45]. Furthermore, SAM
decrease, with no change in SAH, occurs in human HCC and at
a lower extent in the cirrhotic liver surrounding tumor [46].

Normal SAM level and SAM/SAH ratio may be reconstituted by
the administration of highly purified SAM during hepatocarcino-
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genesis [42,44,45]. This treatment results in sharp decrease of
preneoplastic liver lesions and prevention of DN and HCC devel-
opment, associated with decrease in labeling index and increase
in apoptosis of preneoplastic cells [42,44,45,47]. In diethylnitros-
amine-initiated rats, SAM persistently prevents development of
preneoplastic lesions promoted by thiobenzamide [43]. More-
over, human HCC cell lines transfected with MAT1A or cultured
in the presence of SAM undergo strong proliferation restraint
[48,49]. These observations were recently confirmed by Lu et al.
[50], which induced orthotropic HCC development by injecting
human HCC cell line, H4IIE, in the rat liver parenchyma. Contin-
uous SAM intravenous infusion after tumor cell injection inhib-
ited HCC formation. However, SAM infusion for 24 days did not
affect the size of already established tumors. This was explained
by a compensatory induction of hepatic GNMT that prevents SAM
accumulation. HuH7 cell transfectants, stably overexpressing
MAT1A, exhibited higher SAM levels and lower DNA synthesis
than control cells [51]. Lower HCC growth rates, microvessel den-
sity, and CD31 and Ki-67 staining, and higher apoptosis occurred
in MAT1A-transfected than in control tumors [51].

Fall in MAT1A expression associated with MAT2A upregulation
occurs in liver cirrhosis and rodent and human HCC, leading to
decrease in MAT1A:MAT2A ratio (called MAT1A/MAT2A switch)
[46,52,53]. MATI/III downregulation, secondary to oxidation of
cysteine residue in ATP binding site, and GSH fall occur in the cir-
rhotic liver [54,55]. SAM administration reconstitutes the GSH
pool, protects MATI/III [54,55], and has beneficial effects against
liver fibrosis both in rats and humans [37,54,55,36]. Being inhib-
ited by its reaction product, MATII upregulation cannot compen-
sate for MATI/III decrease [56]. Consequently, decrease in MATI/
III:MATII activity ratio strongly contributes, together with the
increase in SAM decarboxylation for polyamine synthesis, to
sharp SAM decrease [41]. Overall, these important findings sug-
gest that MAT1A/MAT2A switch and fall in SAM level are strongly
involved in hepatocarcinogenesis. Accordingly, the MAT1A-KO
mouse model, characterized by chronic SAM deficiency, even in
the presence of MAT2A induction, exhibits hepatomegaly without
histologic abnormalities at 3 months of age, and macrovesicular
steatosis involving 25–50% of hepatocytes and mononuclear cell
infiltration in periportal areas, at 8 months [57]. HCC develop in
many of these mice at 18 months of age [57].

Remarkably, recent findings showed oxidative stress, steato-
sis, and fibrosis, followed by HCC development [58], and
increased susceptibility to aflatoxin B1-related HCC [59] in
GNMT-KO mice, characterized by elevated SAM liver levels. Glo-
bal DNA hypomethylation, aberrant expression of DNA methyl-
transferases 1 and 3b [60], aberrant hypermethylation of
inhibitors of Ras and JAK/STAT pathways [57], and upregulation
of Beta-catenin, cyclin D1, and c-Myc [61] occur in these mice dur-
ing HCC development. Furthermore, Ras-mediated LKB1 overacti-
vation, associated with Erk, p90Rsk, and RasGpr3 expression,
promotes the proliferation of GNMT-deficient hepatoma cells
[60]. Interestingly, impairment of liver regeneration in GNMT-
KO mice stimulates dormant stem/progenitor cells to replicate,
a situation that could favor HCC formation [62]. High liver trans-
aminases, liver injury, fibrosis, and HCC development have been
documented in children with GNMT mutation [63].

MAT2A upregulation may also contribute to HCC cell prolifer-
ation. In H35 hepatocellular carcinoma cells, MAPK and PI3K/AKT
pathways are necessary for HGF-induced cell proliferation and
MAT2A upregulation [64]. Inhibition of these pathways in H35
3 vol. 59 j 830–841
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cells and fetal liver hepatocytes leads to proliferation restraint,
MAT2A under-regulation and MAT1A overexpression [64]. More-
over, transfection of MAT2B in HuH7 cells that do not express this
subunit results in b-subunit interaction with a2-subunit, DNA
synthesis increase, and SAM production decrease, whereas b-sub-
unit downregulation in HepG2 cells, overexpressingMAT2B,
diminishes DNA synthesis [65].
Molecular mechanisms underlying the deregulation of MAT
genes

The presence of numerous CpGs MAT1A and MAT2A promoters
motivated the evaluation of the epigenetic regulation of their
expression in HCC [65–67]. MAT1A downregulation in the cir-
rhotic liver of CCl4-treated rats and human HepG2 cell line is
associated with CCGG sequences methylation in MAT1A promoter
[66]. In HuH7 cells, MAT1A downregulation was attributed to
CCGG methylation at +10 and +80 of the coding region [67].
MAT2A upregulation in human HCC was associated with CCGG
hypomethylation of the gene promoter [68]. Recent work [48]
in which the methylation status of all CpGs of MAT1A and MAT2A
promoters was examined in rat and human HCC, confirmed these
results and showed Mat1A/Mat2A switch and low SAM levels,
associated with CpG hypermethylation and histone H4 deacetyla-
tion in Mat1A promoter, and prevalent CpG hypomethylation and
histone H4 acetylation in Mat2A promoter of fast growing F344
rats HCC. In slowly growing BN rat HCC, very low changes in
Mat1A:Mat2A ratio, CpG methylation, and histone H4 acetylation
occurred [48]. Furthermore, highest MAT1A promoter hyperme-
thylation and MAT2A promoter hypomethylation occurred in
human HCC with poorer prognosis [48].

Various trans-activating factors such as Sp1, c-Mybl2, NF-kB,
and AP-1 participate in MAT2A transcriptional upregulation in
HCC [18]. The mechanisms regulating MAT2B expression are
poorly known. Sp1 activates MAT2B promoter [19]. MAT2B has
two dominant splicing variants, variant 1 (V1) and variant 2
(V2), upregulated in HCC. TNFa induces the transcription of only
MAT2B V1 by mechanisms involving AP-1 and NF-kB [18]. MAT2B
V1 promoter expression is stimulated by leptin and inhibited by
SAM by mechanisms involving ERK and AKT signaling [18].

Accumulating evidence indicates that a class of mRNA-bind-
ing proteins (RBPs) plays a pivotal role in post-transcriptional
deregulation of gene expression in cancer cells. Among RBPs,
AUF1 enhances mRNA decay, whereas HuR selectively binds to
AUrich elements promoting mRNA stabilization [69–71].
Remarkably, a recent work [71] showed Mat1A mRNA decrease
in the fetal rat liver, associated with an increase in its interaction
with AUF1 and an increase in Mat2A mRNA and its interaction
with HuR [71] (Supplementary Fig. 1). Immunofluorescence anal-
ysis revealed increased HuR and AUF1 protein levels in human
livers with HCC suggesting post-transcriptional regulation of
MAT proteins in HCC levels of AUF1 [71]. Based on these findings,
we recently demonstrated a sharp increase of AUF1 and HuR in
F344 and human HCC associated with a consistent increase in
MAT1A-AUF1 and MAT2A-HuR ribonucleoproteins in both HCC
types [48]. Interestingly, these changes were very low or absent
in slowly progressing HCC of BN rats.

Recent observations attribute reduced MAT1A expression to
miRNAs upregulation in HCC [72]. Knockdown of miR-664,
miR-485-3p, and miR-495 individually in Hep3B and HepG2 cells,
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induces MAT1A expression. Hep3B cells tumorigenesis in nude
mice is decreased by stable overexpression and increased by
knockdown of miRNAs-664/485-3p/495 [72], suggesting that
upregulation of these miRNAs contributes to hepatocarcinogene-
sis by lowering MAT1A expression.

These observations indicate that both transcriptional and
post-transcriptional mechanisms contribute to MAT1A/MAT2A
switch and SAM decrease during hepatocarcinogenesis. More-
over, they suggest that MAT1A/MAT2A switch and SAM reduction
may have a prognostic value for hepatocarcinogenesis.
Mechanisms of SAM anti-tumor effect

It is widely accepted [73–75] that interaction of DNA with carcin-
ogens and reactive oxygen and nitrogen species, generated
during carcinogen metabolism and/or inflammation accompany-
ing early stages of hepatocarcinogenesis, results in genomic
instability (GI), leading to somatic point mutations, copy number
alterations of individual genes, and gain/loss of chromosomal
arms. Several lines of evidence indicate that progressive accumu-
lation of genomic alterations, leading to signaling pathways
deregulation, allows initiated cells to evolve to DN and HCC
[73–75]. The observation that SAM treatment maintains a high
GSH pool, in CCl4-intoxicated rats [36], suggests a possible che-
mopreventive role of the SAM antioxidative action. DNA protec-
tion from oxidative damage by antioxidants prevents tumor
development in various organs, including the liver [76].

A sharp increase in polyamine synthesis may also favor fast
proliferation of preneoplastic and neoplastic liver cells. Progres-
sive upregulation of the ODC gene and rise in ODC activity and
polyamine synthesis occur during rat hepatocarcinogenesis
[40,77,78]. Upregulation of polyamine synthesis-related genes
also occurs in human HCC [45]. SAM may interfere with poly-
amine synthesis by inhibiting ODC activity [40].

It should be noted that the effects of SAM on oxidative stress
and polyamine synthesis could at least in part depend on accu-
mulation of 50-MTA [79] (Fig. 1), which can also arise from spon-
taneous splitting of SAM at physiologic temperature and pH [80].
50-MTA could undergo oxidation by microsomal mono-oxygen-
ases or auto-oxidation, with formation of sulfoxide and sulfone
derivatives, thus exerting a direct antioxidant effect [81].
50-MTA also inhibits CCl4-induced liver fibrosis [36]. The possibil-
ity that ODC inhibition by SAM at least partially depends on its
transformation into 50-MTA is suggested by the observation that
SAM preincubation in a cell-free system, in conditions leading to
its partial transformation into 50-MTA, is necessary for strong
ODC inhibition to occur in preneoplastic hepatocytes in vitro
[40]. 50-MTA is inhibitory even in the absence of preincubation,
and its effect is enhanced when its catabolism is blocked by ade-
nine [40].

The possible attribution to 50-MTA of SAM effects is intriguing,
and has been the object of accurate analyses. Indeed, SAM was
found to be a stronger inhibitor of DNA synthesis and rat hepato-
carcinogenesis than 50-MTA [41]. The observation that stable
transfectants of HuH7 cells overexpressing MAT1A exhibit higher
SAM levels and no change in 50-MTA content, and are less tumor-
igenic in vivo than control cells [50], strongly supports an
anti-tumorigenic effect of SAM independent of 50-MTA. Further-
more, SAM deficiency during hepatocarcinogenesis is associated
with global DNA hypomethylation [37] that is not reversed by
3 vol. 59 j 830–841 833
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50-MTA, whereas SAM-induced inhibition of the development of
preneoplastic foci in rat liver carcinogenesis is associated with
complete recovery of DNA hypomethylation [41], and is pre-
vented by the hypomethylating agent 5-azacytidine [82].

Global DNA hypomethylation induces GI during hepatocarci-
nogenesis [83]. AP sites represent the most frequent DNA lesions
in cells [84]. Together with other DNA repair proteins, APEX1 par-
ticipates in base excision repair [85]. Moreover, APEX1 is also
involved in the regulation of gene expression as a redox co-acti-
vator of different transcription factors, such as EGR-1, p53, and
AP-1 [86]. The induction of APEX1 gene by ROS at the transcrip-
tional level [87] is part of the defense mechanism against GI [88].

A recent work [89] showed increased GI in livers of 1-month-
old MAT1A-KO mice, compared to wild type mice, whereas Apex1
mRNA and protein levels were reduced by 20% and 50%, respec-
tively, in these mice of all ages. These changes were correlated
with increase in AP sites and reduced expression of APEX1 targets
Bax, Fas, and p21 [89]. In cultured human and mouse hepatocytes,
MAT1A mRNA decreased whereas APEX1 and c-MYC mRNAs
increased. However, APEX1 protein level decreased to 60% of
baseline [89] (Supplementary Fig. 2). SAM prevented these
changes in cultured hepatocytes, indicating that although SAM
inhibits APEX1 transcription, it stabilizes APEX1 protein [89]
(Supplementary Fig. 2). This SAM effect on APEX1 regulation
might contribute to SAM chemopreventive action and in part
explains why chronic SAM deficiency predisposes to HCC.

The mechanism of APEX1 stabilization by SAM is not known.
Recent reports envisage proteasome inhibition by SAM. Simulta-
neous overexpression of ubiquitin-9 and APEX1 in HeLa cells dra-
matically lowers APEX1 protein, suggesting ubiquitin-9 is
involved in APEX1 protein degradation [90]. SAM inhibits chymo-
trypsin-like and caspase-like activities in 26S proteasome and
causes degradation of some of the 26S proteasomal subunits,
which is blocked by the proteasome inhibitor MG132 [91]. Fur-
thermore, SAM and 50-MTA lower CDC2 expression, upregulated
in several cancers, resulting in decreased ubiquitin-9 phosphory-
lation and expression [91].

Nitric oxide (NO) is a product of L-arginine to L-citrulline con-
version by NOS. Calcium-independent, inducible iNOS is present
in hepatocytes, Kupffer and stellate cells, and cholangiocytes,
whereas calcium-dependent eNOS is present in endothelial cells
[92]. NO may favor HCC development by inducing DNA muta-
tions, in hepatocytes surviving to oxidative stress, and vasodilata-
tion providing premalignant and malignant cells with sufficient
metabolites and oxygen. Overproduction of inflammatory cyto-
kines and growth factors during early stages of hepatocarcino-
genesis deregulates iNOS [92]. Reactive nitrogen species
produced via iNOS during chronic hepatitis may play a key role
in carcinogenesis by causing DNA damage. iNOS suppression by
aminoguanidine results in decreased HCC cell growth, NF-kB
and RAS/ERK downregulation, and increased apoptosis in vivo
and in vitro [93]. eNOS activation by AMPK during hepatocarcino-
genesis may also contribute to NO production, which is in turn an
endogenous AMPK activator [94], and lowers SAM level by inac-
tivating MATI/III [95] (Fig. 2). On the other hands, survival of
SAM-deficient cells in MAT1A-KO mice requires LKB1/AMPK acti-
vation. HGF is mitogenic for hepatocytes through LKB1/AMPK
activation, which is blocked by SAM [95] (Fig. 2).

Recent observations indicate that LKB1/AMPK axis activation
may contribute to hepatocarcinogenesis through other mecha-
nisms. Consequent to AMPK activation in hepatocytes is nuclear
834 Journal of Hepatology 201
to cytoplasmic HuR translocation, resulting in cyclin mRNAs sta-
bilization. Increased basal LKB1/AMPK axis leads to a rise in cyto-
plasmic HuR levels, cyclin D1 expression, and cell proliferation
[96] (Fig. 2). Furthermore, AMPK upregulation can contribute to
the glycolytic metabolism of cancer cells [97] through activation
of PFK-2, a key enzyme for glycolysis [98].

LKB1 may also regulate AKT-mediated cell survival indepen-
dently of PI3K, AMPK, and mTORC2 [99]. A critical role is played
by the deubiquitinating enzyme USP7. USP7 contributes to the
stability of MDM2, a negative p53 regulator, impairing its self-
ubiquitination and degradation. In SAM-deficient hepatocytes,
p53 is mostly cytosolic and hyperphosphorylated by several
kinases, including hyperactive LKB1 [100]. p53 hyperphosphory-
lation and its interaction with USP7 block the negative regulation
by MDM2. Furthermore, active LKB1-induced HuR cytosolic
translocation, stabilizes p53 and USP7 mRNAs [96] (Fig. 2). Thus,
LKB1 controls apoptotic response through phosphorylation and
cytoplasmic retention of p53, regulation of the de-ubiquitination
enzyme USP7, and HuR nucleo-cytoplasmic shuttling. Notably,
cytoplasmic staining of p53 and p-LKB1 (Ser428) occurs in a
NASH-HCC animal model (from MAT1A-KO mice) and in liver
biopsies obtained from human HCC derived from both ASH and
NASH [99]. These findings, however, contrast with the report of
a loss of LKB1, identified as an oncosuppressor gene, in cancer
cells, including HCC [100]. AMPK, activated by LKB1, inhibits
AKT signaling turning off mTOR by activating the tumor oncosup-
pressor complex TSC2/TSC1 [101]. Moreover, AMPK a2 catalytic
subunit downregulation is statistically associated with undiffer-
entiated HCC and poor patient prognosis, and AMPK inactivation
promotes hepatocarcinogenesis by destabilizing p53 in a p53
deacetylase (SIRTUIN 1)-dependent manner [102]. In complex,
the effects of LKB1/AMPK signaling on HCC development are
contradictory and probably a comparison between different
3 vol. 59 j 830–841
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experimental models and human HCC subtypes may contribute
to their complete understanding.

Other mechanisms of SAM antitumor effects have been envis-
aged. Forced expression of MAT1A in HCC cell lines results in
downregulation of cyclin D1, E2F1, IKK, NF-kB, and antiapoptotic
BCL2 and XIAP genes, and upregulation of proapoptotic BAK and
BAX genes [48]. SAM counteracts NF-kB activation in rat preneo-
plastic foci [103] and upregulates the oncosuppressor PP2A that
dephosphorylates and inactivates AMPK, pAKT, and pERK
[104,105]. The lowest SAM levels and PP2A expression occur in
both rat and human HCC exhibiting the highest pAKT and pERK
expression and proliferation rates [[45,48,106] and Frau et al.,
unpublished results]. ERK and PI3K pathways may be also acti-
vated by binding of SPP1 (osteoponin) to integrin receptors in
cancer [107]. Reduction of SPP1 expression in MAT1A transfected
tumors [50] may contribute to ERK and PI3K downregulation.
Journal of Hepatology 201
SAM level can influence ERK1/2 activity by interfering with
DUSP1, a specific ERK inhibitor (Fig. 3). DUSP1 downregulation
and ERK1/2 upregulation occur in fast progressing DN and HCC
of F344 rats and human HCC [108,109]. Conversely, active
ERK1/2 phosphorylates the Ser296 residue of DUSP1, thus con-
tributing to its ubiquitination by the SKP2-CKS1 ubiquitin ligase,
followed by proteasomal degradation [108,109]. On the other
hand, ERK1/2 sustains SKP2-CKS1 activity through its target
FOXM1 [110] (Fig. 3). Notably, DUSP1 mRNA and protein levels
are markedly reduced in livers of MAT1A-KO mice and in cul-
tured mouse and human hepatocytes, with protein decreasing
to lower levels than mRNA [111]. SAM treatment protects against
the fall in DUSP1 mRNA and protein in cultured mouse and
human hepatocytes, and SAM administration to MAT1A-KO mice
results in increase in SAM and Dusp1 mRNA and protein levels,
and decrease in Erk activity [111]. These observations show a
control of MAPK by SAM. SAM treatment increases DUSP1 mRNA
at transcriptional level, and contributes to increase in DUSP1 pro-
tein at post-translational levels, probably through inhibition of its
proteasomal degradation [111] (Fig. 3). Interestingly, TNF-a/HIF-
1a axis sustains the expression of FOXM1 [112], which mediates
ERK1/2 effects on cell cycle, cell survival, and angiogenesis [110].
Hypoxia could contribute to ERK1/2 upregulation by reducing
SAM level of HCC cells through HIF-1a binding to MAT2A pro-
moter [113]. These findings support a suppressive effect of SAM
on malignant transformation through ERK1/2 inhibition.

Changes of MATs expression may affect cancer cell growth by
interfering with protein methylation. A recent study [114] identi-
fied two partially overlapping areas at the C-terminal end of the
protein involved in cytoplasmic retention and nuclear localization
of MATI/III in most rat tissues. Nuclear accumulation of the active
enzyme was correlated with histone H3K27 trimethylation, an
epigenetic modification associated with DNA methylation, there-
fore pointing to the need of MATI/III to guarantee SAM supply for
specific methylations and, eventually, additional roles. Interest-
ingly, MATIIa also provides SAM locally on chromatin by interact-
ing with chromatin-related proteins involved in histone
modification, chromatin remodeling, transcription regulation,
and nucleo-cytoplasmic transport [115,116], This mechanism
can regulate MAFK, a member of MAF oncoproteins, which inter-
acts with both MATIIa and MATIIb [114,115]. MAFK functions as
transcription activator and repressor by forming diverse heterodi-
mers to bind to MAF recognition elements of DNA [115,117].
However, the oncogenic role of MAFK and its targets in HCC is
unknown. Moreover, ERK1/2 activation, elicited by particular
growth factors in different cell lines including HCC cells, may be
limited by arginine methylation of RAF proteins by PRMT5
[117]. Expression of RAF mutants that cannot be methylated
affects the amplitude and duration of ERK activation by growth
factors [117]. However, PRMT5 accelerates cell cycle progression
through the G1 phase, activates PI3K/AKT and suppresses JNK/c-
Jun signaling in lung cancer [118]. Apparent discrepancies could
depend on PRMT5 localization. PRMT5 and p44/MED50/WD45/
WDR77 cytoplasmic co-localization is required for prostate cancer
cell growth. In contrast, nuclear PRMT5, present in benign pros-
tate epithelium, inhibits cell growth in a methyltransferase activ-
ity-independent manner [119].

Finally, HCV protein impairs JAK-STAT signaling by inhibiting
STAT1 methylation, which favors STAT1 binding by its inhibitor
PIAS1 [120]. Remarkably, SAM and betaine restore STAT1 methyl-
ation and improve IFNalpha antiviral effect in cell culture [120].
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Changes in methionine metabolism and HCC prognosis

Increasing evidence indicates that the deregulation of various
signaling pathways progressively increases with HCC progression
and has a prognostic value [98]. The comparative analysis of
c-Myc and c-Myc/TGFa transgenic mice and of genetically sus-
ceptible F344 and genetically resistant BN rats recapitulates the
main pathogenetic mechanisms of human HCC, with c-Myc and
BN tumors approaching human HCC characterized by better
prognosis, and c-Myc/TGFa and F344 HCCs resembling those
with shorter survival [98,106,121,122].

Decrease in MatI/III:MatII activity ratio occurs in c-Myc and
c-Myc/TGFa transgenics, with the lowest values in c-Myc trans-
genics [45]. Sahh gene expression increases in HCC of c-Myc
transgenics and in DN and HCC of the double transgenics, sug-
gesting a relatively high production of homocysteine, presumably
not associated with rise in GSH because of decreased Cbs levels in
tissues of both transgenic models [45] (Fig. 1). Bhmt expression
decreases in dysplastic and neoplastic liver of both transgenic
lines, whereas Mthf-hmt expression does not change in c-Myc
lesions, showing a sharp increase in HCC of double transgenics
[45]. As concerns polyamine synthesis, progressive increase in
Sdc, Odc, Smr, and Sms mRNAs occurs in dysplastic and neoplastic
lesions of both transgenic models, with the highest levels in the
lesions of c-Myc/Tgf-a transgenics (Fig. 1). Finally, the expression
of Mtap1, encoding a key enzyme for methionine re-synthesis
through the salvage pathway [123], increases only in the lesions
of double transgenics [45].
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Similar results were found in HCC with better prognosis (sur-
vival >3 years after partial liver resection; HCCB) and poorer
prognosis (survival <3 years; HCCP) and their corresponding
surrounding liver (SL) [45]. In these lesions, MATI:MATII ratio
progressively decreases from SL to HCC with the lowest values
in HCCP, reflecting the changes in MAT1A:MAT2A expression ratio.
A slight increase or no change in SAHH expression and a marked
decrease of CBS mRNA occur in human HCCs with better and
poorer prognosis and their corresponding SL, with respect to
the control liver. As concerns the genes encoding key enzymes
of methionine synthesis, BHMT expression decreases in liver
lesions of all subgroups, MTHF-HMT does not change and MTAP1
decreases in HCCP. Finally, levels of SDC, ODC, SMR, and SMS pro-
gressively increase from SL to HCC, with highest values in HCCP.
These observations indicate the association of MAT1A/MAT2A
switch, decrease in methionine resynthesis, and increase in
SAM utilization for polyamine synthesis with HCC progression.
Accordingly, cell proliferation rate of transgenic mice and human
HCC are positively correlated with global DNA hypomethylation
and GI [45]. These observations suggest that deregulated methi-
onine metabolism and MATI/III:MATII ratio are implicated in
HCC progression and prognosis.

In support of the above suggestion, a recent work [48] showed
that MATI/III:MATII ratio and Mat1A:Mat2A expression ratio are
negatively correlated with DNA synthesis and DNA methylation
and positively correlated with apoptosis of F334 and BN rat liver
lesions. Furthermore, the analysis of human HCCs showed a pro-
gressive decrease in MAT1A expression and MATI/III activity and
3 vol. 59 j 830–841
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progressive increase in MAT2A expression and MATII activity
from SL to HCC. These changes were paralleled by progressive
increase in proliferation rate, and decrease in DNA methylation
and apoptosis from SL to HCC. Correlation analysis revealed an
inverse correlation of MAT1A:MAT2A and MATI/III:MATII ratios
with PCNA expression and GI, and a direct correlation with apop-
tosis and DNA methylation. Correlation experiments clearly indi-
cated the presence of two patient subgroups with significantly
different MATI/III:MATII ratio and survival length, with the HCC
subset showing the lower MATI/III:MATII ratio being associated
with shorter survival, and Cox analysis showed that MATI/III:MA-
TII ratio significantly predicts patient survival length. In the mul-
tivariate analysis model, MATI/III:MATII ratio remained
significantly associated with overall survival, together with
patients’ age, tumor etiology and grade, PCNA expression, DNA
methylation, and GI.
Key Points

• The deficiency of labile methyl groups results in 
pronounced liver SAM decrease, without significant 
changes in SAH content, decrease in SAM:SAH 
ratio, lipid peroxidation and fall in phosphatidycholine 
synthesis, impaired mitochondrial function necessary 
for fatty acids oxidation, and steatohepatitis followed by 
HCC  development. Decrease in SAM level and SAM/
SAH ratio also occurs, in liver of rats fed adequate 
diet, during hepatocarcinogenesis induced by different 
carcinogens and experimental models, and in 
dysplastic nodules and HCC of rats and humans 

• SAM is synthesized by the liver-specific MATI/III 
and the ubiquitous MATII encoded by MAT1A and 
MAT2A genes, respectively. Decrease in MAT1A 
expression and increase in MAT2A expression, with 
consequent fall in MAT1A:MAT2A expression ratio 
(MAT1A/MAT2A switch), occurs in rodent HCC and 
human liver cirrhosis and HCC. Being inhibited by 
its reaction product, MATII isoform upregulation 
cannot compensate for MATI/III isozyme decrease. 
Decrease in MATI/III:MATII activity ratio strongly 
contributes to the sharp decrease in SAM level and 
hepatocarcinogenesis. Accordingly, SAM administration 
to carcinogen-treated rats strongly prevents 
hepatocarcinogenesis. MAT1A-KO mice, characterized 
by chronic SAM deficiency, exhibit macrovesicular 
steatosis and mononuclear cell infiltration in periportal 
areas, at 8 months, and HCC development, in many 
mice, at 18 months of age

• Mat1A/Mat2A switch and low SAM levels are 
under epigenetic control at transcriptional and 
post-transcriptional levels. CpG hypermethylation 
and histone H4 deacetylation of Mat1A promoter, 
and prevalent CpG hypomethylation and histone 

H4 acetylation in Mat2A promoter occur  in  fast-
growing HCC of F344 rats, genetically susceptible
to hepatocarcinogenesis. In slow-growing HCC 
of genetically resistant BN rats, changes in the 
Mat1A:Mat2A ratio, CpG methylation, and histone
H4 acetylation are very low. Highest MAT1A 
promoter hypermethylation and MAT2A promoter
hypomethylation occur in human HCC with poorer
prognosis. Furthermore, the levels of AUF1 protein,
which destabilizes MAT1A mRNA, MAT1A-AUF1
ribonucleoprotein, HuR protein, which stabilizes 
MAT2A mRNA, and Mat2A-HuR ribonucleoprotein
sharply increase in F344 and human HCC, and 
undergo low/no increase in BN HCC

• In HCC cells, MAT1A/MAT2A switch is associated
with global DNA hypomethylation, decrease in DNA
repair, genomic instability, and signaling upregulation
including c-MYC overexpression, rise in polyamine
synthesis, upregulation of RAS/ERK, IKK/NF-kB, PI3K/
AKT, and NF-kB patways, and of LKB1/AMPK axis.
Furthermore, decrease in MAT1A expression and
SAM levels is associated with increase in HCC cell
proliferation, cell survival, and microvascularization.
All of these changes are reversed by SAM treatment
in vivo or forced MAT1A overexpression or MAT2A
inhibition in cultured HCC cells

• MAT1A:MAT2A expression ratio is a putative 
prognostic marker for human HCC. Indeed, in human
HCC, MAT1A:MAT2A and MATI/III:MATII ratios 
correlate negatively with cell proliferation and genomic
instability, and positively with apoptosis and global DNA
methylation. Moreover, MATI/III:MATII ratio strongly
predicts patients’ survival length
Conclusions and future perspectives

Pleiotropic effects on signal transduction (Fig. 4), associated with
decrease in MAT1A expression and SAM levels, favoring hepato-
carcinogenesis, include: (a) global DNA hypomethylation, pro-
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duction of oxygen reactive and nitroactive species, and
activation of LKB1/AMPK axis, which may induce GI; (b) cell cycle
activation following upregulation of c-MYC and genes involved in
polyamine synthesis; (c) RAS/ERK, IKK/NF-kB, PI3K/AKT, and NF-
kB signaling upregulation, leading to increase in cell proliferation,
cell survival, and microvascularization.

Most of these changes were discovered in rodent models
[37,41,78,89,99,105]. Previous research on comparative func-
tional genomics to evaluate rodent models for human liver cancer
[106,121,122] and other cancers [124,125] indicated that molec-
ular pathways associated with specific cancer phenotypes are
evolutionarily conserved [126]. Accordingly, the progression of
both human and rodent HCC prognostic subtypes is correlated
with upregulation of MAPK, IKK/NF-kB, JAK/STAT, WNT/FZD,
and PI3K/AKT pathways, and cell cycle key genes, downregula-
tion of cell cycle inhibitors [98], and decrease in MAT1A
expression and SAM levels [45,48]. Some of these changes,
including MAT1A/MAT2A switch, are putative prognostic markers
of HCC [48].

The interference of changes in MAT1A expression and SAM
level with several pathways, during hepatocarcinogenesis, opens
3 vol. 59 j 830–841 837
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new therapeutic perspectives. SAM chemopreventive effect for
experimental hepatocarcinogenesis has been well documented
[41–44,49,127]. In humans, according to recent observations
[29,127–129], HCC could be prevented by a SAM curative effect
on ASH and hepatitis C. An ongoing phase II clinical trial is eval-
uating SAM as a potential chemopreventive agent in hepatitis C
and cirrhosis [129].

No evidence of SAM therapeutic effect against HCC is available
[49]. Preliminary approaches should test the effects of stable
MAT1A overexpression or MAT2A/MAT2B inhibition in experimen-
tal HCC in vivo. Silencing of MAT2A or MAT2B in HepG2 cells
inhibits proliferative response to leptin [130]. However, intracel-
lular transduction of viral vectors in vivo still presents numerous
limitations [131]. In this context, the therapeutic effect for HCC of
a family of fluorinated N,N-dialkylaminostilbene agents, which
inhibits colorectal cancer cells proliferation in vitro and in vivo
[132], should be texted. These molecules bind to MATIIa catalytic
subunit and inhibit SAM synthesis. They also inhibit WNT/b-cate-
nin signaling [132], therefore, they could be particularly effective
against b-catenin mutated HCC. Furthermore, a recent observa-
tion of MAT1A downregulation by miRNAs-664/485-3p/495 over-
expression in HCC [72], suggests a therapeutic effect of specific
anti-miRNAs oligonucleotides. Liver vessels allow entering mole-
cules up to 200 nm in diameter, including antisense oligonucleo-
tides (ASOs) inhibiting or decoying miRNAs. ASOs delivery using
pegylated liposomes, biodegradable polymers, lipid nanoparticles
is an alternative. However, novel modification, conjugation or
formulation strategies may improve effective and safe delivery
of anti-miRNAs oligonucleotides. Nonetheless, different miRNAs
inhibitors are in preclinical studies, 15 nt ASOs are in clinical tri-
als and 8 nt versions show promise in non-human primates
[133,134].
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