
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Physics Letters B 637 (2006) 85–89

www.elsevier.com/locate/physletb

3–3–1 models at electroweak scale

Alex G. Dias a,∗, J.C. Montero b, V. Pleitez b

a Instituto de Física, Universidade de São Paulo, Caixa Postal 66.318, 05315-970 São Paulo, SP, Brazil
b Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona, 145, 01405-900 São Paulo, SP, Brazil

Received 10 January 2006; received in revised form 26 February 2006; accepted 6 April 2006

Available online 24 April 2006

Editor: M. Cvetič

Abstract

We show that in 3–3–1 models there exist a natural relation among the SU(3)L coupling constant g, the electroweak mixing angle θW , the mass
of the W , and one of the vacuum expectation values, which implies that those models can be realized at low energy scales and, in particular, even
at the electroweak scale. So that, being that symmetries realized in Nature, new physics may be really just around the corner.
© 2006 Elsevier B.V.

PACS: 12.10.Dm; 12.10.Kt; 14.80.Mz

Keywords: 3–3–1 model; Neutral currents

Open access under CC BY license. 
1. Introduction

Many of the extension of the Standard Model (SM) implies
the existence of at least one extra neutral vector boson, say Z′,
which should have a mass of the order of few TeV in order
to be consistent with present phenomenology. This is the case,
for instance, in left–right models [1], any grand unified theories
with symmetries larger than SU(5) as SO(10) and E6 [2], li-
ttle Higgs scenarios [3], and models with extra dimensions [4].
This makes the search for extra neutral gauge bosons one of
the main goals of the next collider experiments [5]. Usually,
the interactions involving Z′ are parametrized (besides the pure
kinetic term) as [6,7]

LNC(Z′) = − sin ξ

2
F ′

μνF
μν + M2

Z′Z′
μZ′μ + δM2Z′

μZμ

(1)− g

2cW

∑
i

ψ̄iγ
μ
(
f i

V − f i
Aγ 5)ψiZ

′
μ,

where Z, which is the would be neutral vector boson of the SM,
and Z′ are not yet mass eigenstates, having a mixing defined by
the angle tan 2φ = δM2/(M2

Z′ − M2
Z); cW ≡ cos θW (and for
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future use sW ≡ sin θW ) the usual parameter defined through
the electroweak mixing angle θW . If Z1 and Z2 denote the mass
eigenstates, then in most of the models MZ2 � MZ1 ≈ MZ .

In this situation the vector and axial-vector couplings, g
(SM)
V

and g
(SM)
A , respectively, of the SM Z boson with the known

fermions are modified at tree level as follows:

(2)gi
V = g

i(SM)
V cφ + f i

V sφ, gi
A = g

i(SM)
A cφ + f i

Asφ,

where g
i(SM)
V = T i

3 − 2Qis
2
W and g

i(SM)
A = T i

3 , being T i
3 =

±1/2 and Qi the electric charge of the fermion i; we have
used the notation cφ(sφ) = cosφ(sinφ). The coefficients f i

V,A

in Eq. (2) are not in general the same for all particles of the
same electric charge, thus, Z′ induces flavor changing neutral
currents (FCNC) which imply strong constraints coming from
experimental data such as 	MK and other |	S| = 2 processes.
These constraints imply a small value for the mixing angle φ

or, similarly, a large value to the energy scale, generically de-
noted by Λ, related with the larger symmetry. If sφ = 0 is im-
posed such constraints could be avoided, however in most of the
models with Z′ this usually implies a fine tuning among U(1)

charges and vacuum expectation values, that is far from being
natural [8].

Here we will show that there are models in which, at the tree
level, it is possible that: (i) there is no mixing between Z and Z′,
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and the latter boson may have a mass even below the TeV scale;
(ii) ρ0 = 1 since MZ1 = MZ , and (iii) the couplings of Z1 with

fermions, gi
V,A, being exactly those of the SM, g

i(SM)
V ,A , no mat-

ter how large is Λ. This is implied not by a fine tuning but by
a condition which can be verified experimentally involving the
parameters of the model, g, MW , sW and one vacuum expecta-
tion value (VEV).

2. The model

The so-called 3–3–1 models are interesting extensions of the
standard model [9–11] in which it is possible to explain the
number of generations and they are also very predictive con-
cerning new theoretical ideas as extra dimensions [12] and the
little Higgs mechanism [13]. Those models also include an ex-
tra neutral vector boson so that there is, in general, a mixing of
Z, the vector boson of SU(2)L ⊂ SU(3)L, and Z′ the gauge bo-
son related to the SU(3)L symmetry. Working in the Z,Z′ basis
(the parameterization in Eq. (1) is also valid but in these mod-
els there is no mixing in the kinetic term i.e., sin ξ = 0) it means
that the condition sinφ � 1 can be obtained if in this case the
energy scale Λ ≡ vχ , with vχ related to the SU(3)L symmetry,
is above the TeV scale. Hence, it is usually believed that only
approximately we can have that Z1 ≈ Z, even at the tree level.
The same happens with the neutral current couplings, gi

V,A,

which only approximately coincide with g
i(SM)
V ,A . This is true

since the corrections to the Z mass and gi
V,A in these models,

assuming vχ � vW 	 246 GeV, are proportional to (vW/vχ)2

and for vχ → ∞ we recover exactly the SM with all its degrees
of freedom, with the heavier ones introduced by the SU(3)L
symmetry decoupled. However, we expect that vχ should not
be extremely large if new physics is predicted to show up in
the near future experiments. In practice, measurements of the
ρ0 parameter, and FCNC processes like 	MK , should impose
constraints upon the vχ scale at which the SU(3)L symmetry
arises.

Let us consider, for instance, the model of Ref. [9] in which
the electric charge operator is defined as Q= (T3 −√

3T8)+X,
where Ti are the usual SU(3) generators and X the charge as-
signed to the Abelian factor U(1)X . Thus, the SM fermionic
content is embedded in the extended group according to the
multiplets transforming under SU(3)L ⊗U(1)X as: for leptons,
ΨaL = (νa, l

−
a , (l−)ca)

T
L ∼ (3,0), a = e,μ, τ (the superscript c

means charge conjugation operation); and for quarks, QmL =
(dm,um, jm)TL ∼ (3∗,−1/3); m = 1,2; Q3L = (u3, d3, J )TL ∼
(3,2/3), uαR ∼ (1,2/3), dαR ∼ (1,−1/3), α = 1,2,3, jmR ∼
(1,−4/3), and JR ∼ (1,5/3). Here jm and J are new quarks
needed to complete the representations. To generate masses for
all these fields through spontaneous symmetry breaking three
triplets of Higgs scalars and a sextet are introduced; they are
η = (η0, η−

1 , η+
2 )T ∼ (3,0), ρ = (ρ+, ρ0, ρ++)T ∼ (3,+1),

χ = (χ−, χ−−, χ0)T ∼ (3,−1) and

(3)S =
⎛
⎝

σ 0
1 h−

1 h+
2

h−
1 H−−

1 σ 0
2

h+
2 σ 0

2 H++
2

⎞
⎠ ∼ (6,0).
The VEVs in the neutral components of the scalar multiplets
are defined as 〈η0

1〉 = vη/
√

2, 〈ρ0
1〉 = vρ/

√
2, 〈χ0

1 〉 = vχ/
√

2
and 〈σ 0

2 〉 = vs/
√

2. It is also possible to have 〈σ 0
1 〉 �= 0 giving

Majorana mass to the neutrinos, but we will not be concerned
with this here. The VEV 〈χ0

1 〉 reduces the symmetry to the SM
SU(2)L ⊗ U(1)Y symmetry and the other VEVs further reduce
it to the electromagnetic U(1)Q factor.

From the kinetic terms for the scalar fields, constructed with
the covariant derivatives

Dμϕ = ∂μϕ − ig �Wμ · �T ϕ − igXXϕBμ,

(4)DμS = ∂μS − ig
[ �Wμ · �T S + S �Wμ · �T T

]
,

where gX denotes the U(1)X gauge coupling constant and
ϕ = η,ρ,χ , we obtain the mass matrices for the vector bosons.
Besides W± there are two other charged vector bosons, V ±
and U±±. The masses of these charged vector bosons are given
exactly by M2

W = (g2/4)v2
W , M2

V = (g2/4)(v2
η + 2v2

s + v2
χ )

and M2
U = (g2/4)(v2

ρ + 2v2
s + v2

χ ), where we have defined

v2
W = v2

η + v2
ρ + 2v2

s (in models where there are heavy leptons
transforming nontrivially under SU(3)L ⊗ U(1)X there is not
the contribution of the sextet and the above equations are still
valid simply doing vs = 0 [10]). For the mass square matrix
of the neutral vector bosons in this model we have the follow-
ing form, after defining the dimensionless ratios v̄ρ = vρ/vχ ,
v̄W = vW/vχ and the parameter t2 = g2

X/g2 = s2
W/(1 − 4s2

W),

M2

(5)

= g2

4
v2
χ

⎛
⎜⎜⎝

v̄2
W

1√
3
(v̄2

W − 2v̄2
ρ) −2t v̄2

ρ

1√
3
(v̄2

W − 2v̄2
ρ) 1

3 (v̄2
W + 4) 2√

3
t (v̄2

ρ + 2)

−2t v̄2
ρ

2√
3
t (v̄2

ρ + 2) 4t2(v̄2
ρ + 1)

⎞
⎟⎟⎠ ,

in the (W 3
μ,W 8

μ,Bμ) basis. This matrix has a zero eigenvalue
corresponding to the photon and two nonzero ones which are
given by

(6)M2
Z1

= g2v2
χ

6

[
3t2(v̄2

ρ + 1
) + 1 + v̄2

W

]
(1 − R),

(7)M2
Z2

= g2v2
χ

6

[
3t2(v̄2

ρ + 1
) + 1 + v̄2

W

]
(1 + R),

with

(8)R =
[

1 − 3(4t2 + 1)(v̄2
W(v̄2

ρ + 1) − v̄4
ρ)

(3t2(v̄2
ρ + 1) + 1 + v̄2

W)2

]1/2

.

3. ρ1 and ρ0 parameters

In order to analyze the condition which allows to iden-
tify Z1 of the 3–3–1 model with the Z of the SM, let us in-
troduce a dimensionless ρ1-parameter defined at the tree level
as ρ1 = c2

WM2
Z1

/M2
W . As we can see from Eqs. (6) and (7)

both mass eigenvalues, MZ1 and MZ2 , have a complicate depen-
dence on the VEVs but we observe from Eq. (6) that ρ1 � 1 (or,
MZ1 � MZ) is a prediction of the model. Next, we can search
for the conditions under which we have ρ1 ≡ ρ0 = 1, where
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ρ0 = c2
WM2

Z/M2
W is the respective parameter in the SM. This

is equivalent to the condition that MZ1 ≡ MZ at the tree level.
The equation ρ1 = 1 has besides the solution vχ → ∞, another
less trivial one which can be obtained using Eq. (6) above:

(9)v̄2
ρ = 1 − 4s2

W

2c2
W

v̄2
W .

The condition in Eq. (9) implies, using the definition of vW

given above also v2
η + 2v2

s = [(1 + 2s2
W)/2c2

W ]v2
W . We recall

that the U(1)X quantum number of the η and S fields are differ-
ent from that of the ρ field, so there is no symmetry among the
respective VEVs. We have verified that (9) is stable in the fol-
lowing sense: small deviations from it implies small deviations
from ρ1 = 1. With s2

W = 0.2312 [7] we obtain vρ ≈ 54 GeV

and
√

v2
η + 2v2

s ≈ 240 GeV. Notice that Eq. (9) is independent

of the vχ scale. Hence, all consequences of it will be also in-
dependent of vχ as claimed above in the Introduction. The fact
that vχ does not need to have a large value to be consistent
with the present phenomenology is interesting in the models of
Refs. [9,10] since these models have a Landau-like pole at the
TeV scale [14].

If we substitute Eq. (9) in Eqs. (6) and (7) we obtain M2
Z1

=
(g2/4c2

W)v2
W ≡ MZ and

(10)

M2
Z2

≡ M2
Z′ = g2v2

W

2

(1 − 2s2
W)(4 + v̄2

W) + s4
W(4 − v̄4

W)

6c2
W(1 − 4s2

W)
v2
χ .

Thus, assuming that Eq. (9) is valid we shall not distinguish
between Z1 and Z and between Z2 and Z′ unless stated ex-
plicitly. Moreover, the mass of Z′ can be large even if vχ is
of the order of the electroweak scale. In fact, from Eq. (10)
we see that for v̄W = 1 (the electroweak scale is equal to the
3–3–1 scale) we obtain MZ′ = 3.77MW . Of course for lower
values of v̄W , Z′ is heavier, for instance for v̄W = 0.25 we
have MZ′ = 18.36MW . We recall that since vχ does not con-
tribute to the W mass it is not constrained by the 246 GeV
upper bound. Thus, independently if v̄2

W is larger, smaller or
equal to 1, the charged vector boson V is heavier than U , being

	M =
√

M2
V − M2

U = 75.96 GeV, when vs = 0.

4. Neutral current couplings

We have also obtained the full analytical exact expressions
for the neutral current couplings gi

V,A and f i
V,A, and verified

that they also depend on the VEVs in a complicated way. But
when Eq. (9) is used in those expressions we obtain for the case
of the known fermions gi

V,A ≡ g
i(SM)
V ,A , and f i

V,A = f i
V,A(sW ),

i.e., these couplings depend only on the electroweak mixing an-
gle. For the lepton couplings with Z′, also after using Eq. (9)
in the general expressions, we obtain f ν

V = f ν
A = f l

V = −f l
A =

−
√

3(1 − 4s2
W)/6(≈ −0.07). We see that the couplings for all

leptons with Z′ are leptophobic [15]. In particular, the cou-
plings of Z to the exotic quarks jm and J are given by g

jm

V =
(8/3)s2 , gJ = −(10/3)s2 and g

jm = gJ = 0. Notice also that
W V W A A
the exotic quarks have pure vectorial couplings with Z. The
couplings of Z′ in the quark sector are given by:

f
um

V = 1

2
√

3

1 − 6s2
W√

1 − 4s2
W

, f
um

A = 1

2
√

3

1 + 2s2
W√

1 − 4s2
W

,

f
u3
V = − 1

2
√

3

1 + 4s2
W√

1 − 4s2
W

, f
u3
A = − 1√

3

√
1 − 4s2

W,

f
dm

V = 1

2
√

3
√

1 − 4s2
W

, f
dm

A =
√

1 − 4s2
W

2
√

3
,

f
d3
V = − 1

2
√

3

1 − 2s2
W√

1 − 4s2
W

, f
d3
A = − 1

2
√

3

1 + 2s2
W√

1 − 4s2
W

,

f
jm

V = − 1√
3

1 − 9s2
W√

1 − 4s2
W

, f
jm

A = − 1√
3

c2
W√

1 − 4s2
W

,

(11)f J
V = 1√

3

1 − 11s2
W√

1 − 4s2
W

, f J
A = 1√

3

c2
W√

1 − 4s2
W

.

In literature [9,16] these couplings were considered as an ap-
proximation of the exact couplings. Notice that, all these cou-
plings refer to fermions which are still symmetry eigenstates,
thus we see that in the leptonic sector there are not FCNCs nei-
ther with Z nor with Z′ and, in the quark sector there are FCNC
only coupled to Z′ as can be see from Eq. (11). However, FCNC
mediated by the Z′ depend only on its mass, but these FCNC
are not necessary large since there are also contributions in the
scalar sector (see below).

The main feature introduced by the validity of the condition
Eq. (9), which we would like to stress, is the fact that all cou-
plings between the already known particles are exactly those of
the SM, regardless the value of the vχ scale. Hence, vχ is not
required to be large to recover those observed couplings (until
now vχ → ∞ was the usual approach to do that). In this way,
the 3–3–1 gauge symmetry could be realized, for instance, at
the electroweak scale (vχ = vW ) allowing the extra particles in-
troduced by the SU(3)L to be light enough to not decouple and
be discovered in the near future experiments.

5. A Goldberger–Treiman-like relation

We can rewrite Eq. (9) as

(12)g
vρ√

2
=

√
1 − 4s2

W

cW

MW.

This is like the Goldberger–Treiman relation [17] in the sense
that its validity implies a larger symmetry of the model (see
below) and all quantities appearing in it can be measured in-
dependently of each other. In fact, all but vρ , are already well
known. However, cross sections of several processes, for in-
stance e+e− → ZH where H is a neutral Higgs scalar trans-
forming as doublet of SU(2), are sensitive to the value of vη

(or vρ ) [18]. So, in principle it is possible to verified if Eq. (9),
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or equivalently Eq. (12), is satisfied and if the 3–3–1 symmetry
can be implemented near the weak scale.

6. Custodial symmetries and the oblique T parameter

We can understand the physical meaning of Eq. (9) in the
following way. The 3–3–1 models have an approximate SU(2)

custodial symmetry. This is broken by the mixing between Z

and Z′. In general we have a mixture between these neutral
bosons in such a way that the mass eigenstates Z1 and Z2 can
be written as [19] Z1 = Zcφ − Z′sφ and Z2 = Zsφ + Z′cφ , and
the condition in Eq. (9) is equivalent to put φ = 0 i.e., no mix-
ing at all between Z and Z′. There is also an approximate SU(3)

custodial symmetry because when both (9) and sin θW = 0 are
used, we have MU/MZ′ = 1. However this symmetry is badly
broken. We stress that the alternative approach used in liter-
ature [9,19,20] is that the condition sinφ � 1 is obtained by
assuming that vχ � vW . This is of course still a possibility if
the relation (9) is not confirmed experimentally. However, we
have shown above that it is possible that φ = 0 even if vχ = vW .

Of course, in any case radiative corrections will induce a
mixing among Z and Z′, i.e., a finite contribution to φ. This
should imply small deviations from ρ0 = 1. The oblique T pa-
rameter constraints this deviations since ρ0 − 1 	 αT and it
is given, for the 3–3–1 models, in Ref. [21]. Using the expres-
sions of Ref. [21] but without the mixing at the tree level (φ = 0
in Eq. (4.1) of [21]), we obtain for example T = −0.1225
for v̄W = 1 and T = −0.012 for v̄W = 0.25, with T → 0 as
v̄W → 0 (vχ → ∞), and all T values calculated with v̄W � 1
are within the allowed interval [7]. This implies that the con-
dition Eq. (9) is not significantly disturbed by radiative cor-
rections. It means that the natural value of sinφ, arisen only
through radiative corrections, is small because the symmetry of
the model is augmented when this parameter vanishes.

The important thing is that even if Eq. (9) or equivalently
Eq. (12) are valid only approximately, we will have that again
MZ1 ≈ MZ and also the neutral current couplings of Z1 only
approximately coincide with those of the SM, but now this
is valid almost independently of the value of vχ . That is, the
3–3–1 symmetry still can be implemented at an energy scale
near the electroweak scale.

7. Experimental constraints on the SU(3)L scale

Once the vχ scale is arbitrary when Eq. (9) is satisfied,
we can ask ourselves what about the experimental limit upon
the masses of the extra particles that appear in the model.
After all they depend mainly on vχ , the scale at which the
SU(3)L symmetry is supposed to be valid. Firstly, let us con-
sider the Z′ vector boson. It contributes to the 	MK at the
tree level [22]. This parameter imposes constraints over the
quantity (Od

L)3d(Od
L)3s(MZ/MZ′), which must be of the or-

der of 10−4 to have compatibility with the measured 	MK .
This can be achieved with MZ′ ∼ 4 TeV if we assume that
the mixing matrix have a Fritzsch-structure Od

Lij = √
mj/mi

[23] or, it is possible that the product of the mixing angles sat-
urates the value 10−4 [22], in this case Z′ can have a mass
near the electroweak scale. More important is the fact that there
are also in this model FCNC mediated by the neutral Higgs
scalar which contributes to 	MK . These contributions depend
on the mixing matrix in the right-hand d-quark sector, Od

R , and
also on some Yukawa couplings, Γ d , i.e., the interactions are
of the form d̄L(Od

L)d3Γ
d

3α(OR)αsR . Thus, their contributions
to 	MK may have opposite sing relative to that of the contri-
bution of Z′. A realistic calculation of the 	MK in the context
of 3–3–1 models has to take into account these extra contribu-
tions as well. Muonium–antimuonium transitions would imply
a lower bound of 850 GeV on the masses of the doubly charged
gauge bileptons, U−− [24]. However this bound depends on
assumptions on the mixing matrix in the lepton charged cur-
rents coupled to U−− and also it does not take into account that
there are in the model doubly charged scalar bileptons which
also contribute to that transition [25]. Concerning these dou-
bly charged scalars, the lower limit for their masses are only
of the order of 100 GeV [26]. From fermion pair production at
LEP and lepton flavor violating effects suggest a lower bound
of 750 GeV for the mass MU but again it depends on assump-
tions on the mixing matrix and on the assumption that those
processes are induced only by the U−− boson [27]. Other phe-
nomenological analysis in e+e−, eγ and γ γ colliders assume
bileptons with masses between 500 GeV and 1 TeV [28,29].
The muonium fine structure only implies MU/g > 215 GeV
[30] but also ignores the contributions of the doubly charged
scalars. Concerning the exotic quark masses there is no lower
limit for them but if they are in the range of 200–600 GeV they
may be discovered at the LHC [31]. Direct search for quarks
with Q = (4/3)e imply that they are excluded if their mass is in
the interval 50–140 GeV [32] but only if they are stable. Sim-
ilarly, most of the searches for extra neutral gauge bosons are
based on models that do not have the couplings with the known
leptons and quarks as those of the 3–3–1 model [6], anyway we
have seen that even if vχ = vW the Z′ has a mass of the order
of 300 GeV. Finally, rare processes like μ− → e−νeν

c
μ, induced

by the extra particles are also not much restrictive. We may con-
clude that there are not yet definitive experimental bounds on
the masses of the extra degrees of freedom of the 3–3–1 models.

8. Conclusions

Summarizing, we have shown that if the condition in Eq. (9)
is realized, concerning the already known particles, the 3–3–1
model and the SM are indistinguishable from each other at the
tree level and, as suggested by the value of the T -parameter
obtained above, it is possible that this happens even at the one
loop level. The models can be confirmed or ruled out by search-
ing directly for the effects of their new particles, for instance in
left–right asymmetries in lepton–lepton scattering. An asym-
metry of this sort only recently has begun to be measured in an
electron–electron fixed target experiment [33], but the effects
of these asymmetries could be more evident in collider experi-
ments [34,35]. From all we have discussed above, it is clear that
new physics may be really just around the corner.

We have also verified that in 3–3–1 models with heavy lep-
tons [10] and with right-handed neutrinos transforming nontriv-
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ially under the 3–3–1 gauge symmetry [11] a similar situation
occurs, but, in the later model, the equivalent of the relation in
Eq. (9) is given by v̄2

ρ = [(1 − 2s2
W)/2c2

W ]v̄2
W [36]. Notwith-

standing we have verified that the latter condition is less stable,
in the sense we said before: small deviation of it implies large
deviation from ρ1 = 1. This suggests that, when both 3–3–1
models were embedding in a SU(4)L ⊗ U(1)N model [37], the
SU(3) subgroup which contains the vector boson Z of the SM
should be the minimal 3–3–1 model considered in this work.
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