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Eigenvalues and perfect matchings
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Abstract

We give sufficient conditions for existence of a perfect matching in a graph in terms of the
eigenvalues of the Laplacian matrix. We also show that a distance-regular graph of degree k

is k-edge-connected.
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1. Introduction

A matching of a graph � is a set of mutually disjoint edges. A matching is perfect
if every vertex of � is incident with an edge of the matching. A perfect matching is
also called a 1-factor. A set of vertices of � that is incident with all edges of � is
called a vertex cover of �. For perfect matchings in bipartite graphs, Frobenius [6]
gave the following characterization.
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Theorem 1.1 (Frobenius). A bipartite graph with v vertices has a perfect matching
if and only if each vertex cover has size at least v/2.

Similar results are due to König [10] and Hall [8]. The characterization of Frobe-
nius implies that the adjacency matrix of a bipartite graph with no perfect matching
must be singular. So a bipartite graph with only nonzero adjacency eigenvalues has a
perfect matching. For regular bipartite graphs (of positive degree), Frobenius’ char-
acterization implies that there is always a perfect matching [9]. Because a graph
with adjacency eigenvalues λ1 � · · · � λv is regular if and only if vλ1 = ∑v

i=1 λ
2
i ,

the latter condition can also be interpreted as a sufficient eigenvalue condition for
the presence of a perfect matching in a bipartite graph.

For perfect matchings in arbitrary graphs we have the following characterization
by Tutte [11]. (An odd component is a component with an odd number of vertices.)

Theorem 1.2 (Tutte). A graph � = (V ,E) has no perfect matching if and only if
there exists a subset S ⊂ V, such that the subgraph of � induced by V \S has more
than |S| odd components.

This characterization generalizes Theorem 1.1 (in a bipartite graph with no perfect
matching take S to be a vertex cover of size less than v/2), but by no means it
implies that the two mentioned sufficient conditions for complete matchings in bipar-
tite graphs also work in general. Indeed, Fig. 1 gives counterexamples for both cases.
The first graph has a nonsingular adjacency matrix and yet no perfect matching, and
the second one is regular with no perfect matching. In this note we look for sufficient
conditions for perfect matchings in terms of the eigenvalues of the Laplacian matrix
L. We recall that L is related to the adjacency matrix A by L = D − A, where D is
the diagonal matrix of the vertex degrees. The Laplacian matrix L is positive semi-
definite with row sum 0. Its eigenvalues will be denoted by 0 = µ1 � µ2 � · · · �
µv . The eigenvalue µ2 is often called the algebraic connectivity; µ2 = 0 if and only
if the graph is disconnected, and µ2 � κv , where κv is the vertex connectivity of the
graph. For k-regular graphs D = kI , and hence the adjacency eigenvalues k = λ1 �
· · · � λv are related to the Laplacian eigenvalues by µi = k − λi (i = 1, . . . , v). For
these and other properties of the Laplacian matrix, see for example Section 2.5 of [3].

We shall show that Tutte’s result implies that a graph on v vertices with v even,
whose Laplacian eigenvalues satisfy 2µ2 � µv , has a perfect matching. For regular
graphs with v even, we prove that µ2 � 1 is already sufficient for existence of a
perfect matching.

Fig. 1. Graphs without a perfect matching.
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2. Arbitrary graphs

In this section we will use an inequality for disconnected vertex sets in graphs,
due to the second author (see [7–Lemma 6.1]). Two disjoint vertex sets A and B in a
graph are called disconnected if there are no edges between A and B.

Lemma 2.1. If A and B are disconnected vertex sets of a graph with v vertices and
Laplacian eigenvalues 0 = µ1 � · · · � µv, then

|A| · |B|
(v − |A|)(v − |B|) �

(
µv − µ2

µv + µ2

)2

.

Another tool is the following elementary lemma.

Lemma 2.2. Let x1 . . . xn be n positive integers such that
∑n

i=1 xi = k � 2n − 1.
Then for every integer �, satisfying 0 � � � k, there exists an I ⊂ {1, . . . , n} such
that

∑
i∈I xi = �.

Proof. Induction on n. The case n = 1 is trivial. If n � 2, assume x1 � · · · �
xn. Then n − 1 � k − x1 � 2(n − 1) − 1 and we apply the induction hypothesis to∑n

i=2 xi = k − x1 with the same � if � � n − 1, and � − x1 otherwise. �

Theorem 2.3. Let � be a graph with v vertices, and Laplacian eigenvalues 0 =
µ1 � µ2 � · · · � µv . If v is even and µv � 2µ2, then � has a perfect matching.

Proof. Assume � = (V ,E) has no perfect matching. By Tutte’s theorem there ex-
ists a set S ⊂ V of size s (say), such that the subgraph �′ of � induced by V \S has
q > s odd components. But since v is even, s + q is even, hence q � s + 2.

First assume v � 3s + 3. Then �′ has at most 2s + 3 vertices and at least s + 2
components. By Lemma 2.2, �′ and hence �, has a pair of disconnected vertex sets
A and B with |A| = ⌊ 1

2 (v − s)
⌋

and |B| = ⌈ 1
2 (v − s)

⌉
. Now Lemma 2.1 implies(

µv − µ2

µv + µ2

)2

� |A| · |B|
vs + |A| · |B| = (v − s)2 − ε

(v + s)2 − ε
,

where ε = 0 if v − s is even and ε = 1 if v − s is odd. Using v � 2s + 2 we obtain
µv − µ2

µv + µ2
>

v − s − 1

v + s
� s + 1

3s + 2
>

1

3
.

Hence 2µ2 < µv .
Next assume v � 3s + 4. Now �′, and hence �, has a pair of disconnected ver-

tex sets A and B with |A| + |B| = v − s and min{|A|, |B|} � s + 1, so |A| · |B| �
(s + 1)(v − 2s − 1) > vs − 2s2. Now Lemma 2.1 implies(

µv − µ2

µv + µ2

)2

� |A| · |B|
vs + |A| · |B| � vs − 2s2

2vs − 2s2
= 1

2
− s

2v − 2s
>

1

4
,
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by use of v � 3s + 4. So

µv − µ2

µv + µ2
>

1

2
>

1

3
,

hence 2µ2 < µv . �

The complete bipartite graphs Km,n with m � n have Laplacian eigenvalues µ2 =
m and µv = v = m + n. This shows that 2µ2 can get arbitrarily close to µv for
graphs with v even and no perfect matching.

3. Regular graphs

For regular graphs the condition of the previous section can be improved.

Theorem 3.1. A connected k-regular graph on v vertices with adjacency eigen-
values k = λ1 � λ2 � · · · � λv and v even which satisfies

λ3 �
{
k − 1 + 3

k+1 if k is even,

k − 1 + 3
k+2 if k is odd,

has a perfect matching.

Proof. Let � = (V ,E) be a k-regular graph with v = |V | even and no perfect
matching. By Tutte’s theorem there exists a set S ⊂ V of size s such that V \S
induces a subgraph with q � s + 2 odd components �1,�2, . . . ,�q (say). Let ti
denote the number of edges in � between S and �i . Then clearly

∑q

i=1 ti � ks,
s � 1, and ti � 1 (since � is connected). Hence ti < k and ni > 1 for at least three
values of i, say i = 1, 2 and 3. Let �i denote the largest adjacency eigenvalue of �i ,
and assume �1 � �2 � �3. Then eigenvalue interlacing (see for example [5–p. 19])
applied to the subgraph induced by the union of �1, �2 and �3 gives �i � λi for
i = 1, 2, 3.

Consider �3 with n3 vertices and e3 edges (say). Then 2e3 = kn3 − t3 � n3(n3 −
1). We saw that t3 < k and n3 > 1, hence k < n3. Moreover, the average degree d̄3
of �3 equals 2e3/n3 = k − t3/n3. If k is even, t3 must be even and hence t3 � k − 2.
If k is odd, k < n3 implies k � n3 − 2 (remember that n3 is odd). Hence

d̄3 �
{
k − k−2

k+1 if k is even,

k − k−1
k+2 if k is odd.

Note that t3 < n3 implies that �3 cannot be regular. Next we use the fact (see
[5–p. 84]) that the largest adjacency eigenvalue of a graph is bounded from below
by the average degree with equality if and only if the graph is regular. Thus d̄3 < �3.
We saw that �3 � λ3, which finishes the proof. �
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The example from the introduction of a 3-regular connected graph with an even
number of vertices, but no perfect matching can easily be extended to arbitrary k � 3
(see [4]). We give the description for k even. For odd k the construction is simi-
lar but slightly more complicated. Let �′ be the complete graph Kk+1 from which
a matching of size (k − 2)/2 is deleted. Take k disjoint copies of �′. Add k − 2
new vertices and connect each of these vertices to a vertex of degree k − 1 in each
�′. This gives a connected k-regular graph with k2 + 2k − 2 vertices and no per-
fect matching. It is not very difficult to see that both the second and third largest
eigenvalue of this example are equal to the largest eigenvalue of �′, which equals
(k − 2 + √

k2 + 12)/2 = k − 1 + 3
k+1 + O(k−2). This shows that for v and k even

there exist graphs with no perfect matching, for which λ3 gets arbitrarily close to the
value of Theorem 3.1.

From the above it is clear that v even and λ2 � k − 1 implies existence of a perfect
matching. In terms of the Laplacian matrix this translates into:

Corollary 3.2. A regular graph with an even number of vertices and algebraic con-
nectivity at least 1 has a perfect matching.

But we can say more. The Laplacian matrix of a disjoint union of v/2 edges has
eigenvalues 0 and 2. This implies that deletion of the edges of a perfect matching
of a graph � reduces the eigenvalues of the Laplacian matrix of � with at most 2.
Hence:

Corollary 3.3. A regular graph with an even number of vertices and algebraic con-
nectivity µ2 has at least �(µ2 + 1)/2� disjoint perfect matchings.

Corollary 3.4. A regular graph with an even number of vertices and diameter at
most 3 has a perfect matching.

Proof. In the proof of Theorem 3.1, we saw that ti < ni for i = 1, 2 and 3. Hence
there exist vertices x and y in �1 and �2 respectively, that are not adjacent to a vertex
of S. Therefore the distance between x and y is at least 4. �

4. Distance-regular graphs

The research for this note was motivated by the question: ‘Do all distance-regu-
lar graphs on an even number of vertices have a perfect matching?’ (For necessary
information on distance-regular graphs we refer to [1].)

We know of no distance-regular graph that does not satisfy the condition of Theo-
rem 3.1, but it is not immediately clear that that condition is fulfilled for all distance-
regular graphs. An example that comes close is the Biggs-Smith graph, where k = 3
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and λ2 = λ3 = (1 + √
17)/2 ≈ 2.562. It may be possible to classify all distance-

regular graphs with second largest eigenvalue larger than k − 1.
But in the distance-regular case we can prove a stronger result and have the exis-

tence of perfect matchings as an immediate corollary.

Theorem 4.1. A distance-regular graph of degree k is k-edge-connected, that is,
cannot be disconnected by removing fewer than k edges. Moreover, if k > 2 then the
only disconnecting sets of k edges are the sets of k edges on a single vertex.

We conjecture that in fact distance-regular graphs are k-vertex-connected. This is
known for strongly regular graphs [2].

Corollary 4.2. A distance-regular graph with an even number of vertices has a
perfect matching.

Proof. It is known (see [4]), that a k-regular graph with edge connectivity at least
k − 1 on an even number of vertices has a perfect matching. (The result is also clear
from the proof of Theorem 3.1.) �

Let � be a distance-regular graph of degree k > 2. As usual, let us write v for
the total number of vertices, d for the diameter and ki for the number of vertices at
distance i from a given vertex. Also, for two vertices x, y at distance i, let ci , ai , bi
be the number of vertices adjacent to y, at distance i − 1, i, i + 1 (respectively) from
x. Write λ := a1 and µ := c2 and k := k1. Finally, let �i (x) be the set of vertices of
� at distance i from the vertex x.

First a lemma giving a lower bound for the size of connected components.

Lemma 4.3
(i) Let S be a disconnecting set of vertices of �, and let A be the vertex set of a com-

ponent of the complement of S in �. Fix a vertex a ∈ A and let si := |S ∩ �i (a)|.
Then |A ∩ �i (a)| �

(
1 − ∑i

j=1
sj
kj

)
ki, so that

|A| � v −
∑
i

si

ki
(ki + · · · + kd).

(ii) Let T be a disconnecting set of edges of �, and let A be the vertex set of a
component of � minus T . Fix a vertex a ∈ A and let ti be the number of edges in
T that join �i−1(a) and �i (a). Then |A ∩ �i (a)| �

(
1 − ∑i

j=1
tj

cj kj

)
ki, so that

|A| � v −
∑
i

ti

ciki
(ki + · · · + kd).

Proof. Because (i) and (ii) are similar, we will only prove (ii). The case i = 0 is
trivial. Suppose i � 1, let ei denote the number of edges in � between A ∩ �i−1(a)
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and A ∩ �i (a), and put mi := |A ∩ �i (a)|. Then mici � ei � mi−1bi−1 − ti . Since
bi−1/ci = ki/ki−1, this gives mi � mi−1ki/ki−1 − ti/ci , and the inequality follows
by induction. �

For applications of this lemma, it is useful to note that (ki + · · · + kd)/ki �
(ki+1 + · · · + kd)/ki+1 (indeed, b0 � · · · � bd−1 and c1 � · · · � cd implies
ki/k0 � · · · � kd/kd−i), so that, for example, part (ii) implies that

|A| > v

(
1 − |T |

µk2

)
when T is a disconnecting set of edges none of which is incident with a.

Proof of Theorem 4.1. Suppose we remove (at most) k edges from �, disconnect-
ing this graph, where none of the components consists of a single vertex. If B is the
vertex set of a component such that each vertex of B is incident with at least one of
the removed edges, then |B| � k, and each vertex of B is on at least k − (|B| − 1)
removed edges with other vertex outside B, so that |B|(k − |B| + 1) � k. Since by
assumption |B| > 1 it follows that |B| = k and the subgraph induced by B is com-
plete. The local graph of � at a vertex of B is regular and contains a (k − 1)-clique,
so is a k-clique, and also � itself is complete, contradiction. This means that every
component has at least k + 1 vertices, and contains a vertex b not incident with any
of the removed edges.

If b1 > 1, then by the above remark we have for any component with vertex set
A and any vertex a ∈ A not incident with one of the removed edges

|A| > v

(
1 − k

µk2

)
= v

(
1 − 1

b1

)
� v

2
,

so that there is at most one component, contradiction.
Otherwise b1 = 1, that is, k = λ + 2. We may assume that d � 3, since the case

d = 2 was treated in [2]. Then ci � bj for i + j � d implies µ = 1. Now the local
graph of � is a disjoint union of (λ + 1)-cliques, so λ = 0 and k = 2, contrary to the
assumption. �
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