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Abstract

We investigate the behaviour by generalJ - andK-methods of certain closed operator ideals
particular, the results apply to weakly compact operators, Rosenthal operators and Banac
operators.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction
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In 1974, Davis, Figiel, Johnson and Pelczyński [12] established their celebrated res
on the factorization property of weakly compact operators through reflexive space
proof given in [12] has a clear interpolation flavour. This motivated the investigatio
the behaviour of weak compactness under interpolation, as well as it started the re
on the factorization property for operator idealsI, that is to say, to study whether
not every operatorT of the idealI can be factorized through a Banach spaceE whose
identity operatorIE belongs toI. Relevant contributions on these problems are du
Beauzamy [1] and Heinrich [16] (other related results can be found in [20] and
a quantitative version of the results of Beauzamy and Heinrich were established
present authors in [10] and [8]). In both cases they deal with the classical real m
(A0,A1)θ,q .

But the real method is not enough to describe all interpolation spaces with resp
many important couples. For example, applying this method to(L1,L∞) we only obtain
Lp andLp,q spaces, while Lorentz spaces, Marcinkiewicz spaces and the major
symmetric spaces are interpolation spaces with respect to(L1,L∞) (see [2] and [18]).
However, as a famous result of Calderón [5] and Mitjagin [23] says, any interpol
space with respect to the couple(L1,L∞) is K-monotone, and so (see [4] or [25]) it ca
be obtained by the generalK-method, that is, extending the definition of the classical
method by replacing the usual weightedLq norm by a more general lattice norm.

The generalK-method has been studied widely, as well as the generalJ -method. We
only mention here the monograph by Peetre [26], by Brudnyı̌ and Krugljak [4], the pape
by Cwikel and Peetre [11] and by Nilsson [24] and [25]. In many casesJ -spaces arise a
dual ofK-spaces, but not always.

The behaviour of weakly compact operators by the generalK-method has bee
investigated by Aizenstein and Brudnyı̌ [4, Section 4.6], and by Mastylo [22]. Other relat
results have been obtained by Mastylo in [21], this time dealing with the Rosenthal pro
of K-spaces. To our knowledge, there is no known corresponding versions of any o
results forJ -spaces.

In this paper we develop a new approach to these results that allows us to estab
J -versions at the same time, as well as to extend the results to other closed operato
In particular, we cover the cases of Rosenthal operators and Banach–Saks operat
new approach is based on ideas of Heinrich [16] and our previous results in [6] and

The organization of the paper is as follows. In Section 2 we recall the definitio
generalJ - andK-method in the discrete form presented in [24], and we establish s
preliminary results. In Section 3 we show that ifI is the ideal of weakly compact operato
Rosenthal operators or Banach–Saks operators, thenI satisfies a certain property, the s
calledΣΓ -condition, relative to vector valued sequence spaces generated byΓ . HereΓ is
the sequence space that we are using to define theJ - or K-method. For this we assum
that the identity operatorIΓ onΓ belongs to the idealI. Finally, in Section 4, we establis
the interpolation theorems by using theΣΓ -condition. We also discuss the limit case wh
IΓ does not belong toI, uncovering an inaccuracy in [28, Theorem 1].
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2. Preliminaries

n

h

By a Banach coupleĀ = (A0,A1) we mean two Banach spacesAj , j = 0,1, which
are continuously embedded in some Hausdorff topological vector space. For eacht > 0 we
put:

K(t, a)=K
(
t, a; Ā)= inf

{‖a0‖A0 + t‖a1‖A1: a = a0 + a1, aj ∈Aj
}
, a ∈A0 +A1,

and

J (t, a)= J
(
t, a; Ā)= max

{‖a‖A0, t‖a‖A1

}
, a ∈A0 ∩A1.

Then{K(t, ·)}t>0 (respectively,{J (t, ·)}t>0) is a family of norms onA0+A1 (respectively,
A0 ∩A1), and any two of which are equivalent.

A Banach spaceA is said to be anintermediate spacewith respect to the couplēA if
A0 ∩ A1 ↪→ A ↪→ A0 + A1. Here↪→ means continuous inclusion. The “position” ofA
within the coupleĀ can be described by using the functions:

ψA(t)=ψA
(
t, Ā

)= sup
{
K(t, a): ‖a‖A = 1

}
,

ρ
A
(t)= ρ

A

(
t, Ā

)= inf
{
J (t, a): a ∈A0 ∩A1,‖a‖A = 1

}
(see [6]).

A function ϕ : (0,∞)→ (0,∞) is said to bequasiconcaveif ϕ(s) � max{1, s/t}ϕ(t)
for all s, t > 0. FunctionsψA, ρA are examples of this kind of functions. Note that ifϕ is
quasiconcave thenϕ∗(t) = 1/ϕ(1/t) has also this property. If a quasiconcave functioϕ
satisfies that

min{1,1/t}ϕ(t)→ 0 ast → 0 or ast → ∞,

then we writeϕ ∈ P0.
LetB = (B0,B1) be another Banach couple. We writeT ∈L(Ā,B) and alsoT : Ā→ B

to mean thatT is a linear operator fromA0 +A1 into B0 + B1 whose restriction to eac
Aj defines a bounded operator fromAj intoBj for j = 0,1. We set:

‖T ‖Ā,B = max
{‖T ‖A0,B0,‖T ‖A1,B1

}
.

If the coupleĀ (respectively,B) reduces to a single Banach space, i.e., ifA0 = A1 = A

(respectively,B0 = B1 = B), then we writeT ∈L(A,B) (respectively,T ∈L(Ā,B)).
An interpolation methodis a procedureF that associates to each Banach coupleĀ

an intermediate spaceF(Ā) in such a way that given any other Banach coupleB and any
T ∈L(Ā,B), the restriction ofT toF(Ā) gives a bounded operator fromF(Ā) intoF(B).

By the closed graph theorem, for any couplesĀ, B there is a positive constantC such
that for allT ∈ L(Ā,B) it holds:

‖T ‖F(Ā),F(B) � Cmax
{‖T ‖A0,B0,‖T ‖A1,B1

}
. (2.1)
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If C = 1 in (2.1) for all couplesĀ, B, then the methodF is calledexact.
d,

w

s

and
For t > 0, lettR beR with the norm‖λ‖tR = t|λ|. If F is an exact interpolation metho
thecharacteristic functionϕF of F is defined by:

F
(
R, (1/t)R

)= (
1/ϕF (t)

)
R (see [17]).

The functionϕF is quasiconcave. The following result shows the connection betweenϕF ,
ψF(Ā) andρF(Ā).

Lemma 2.1.LetF be an exact interpolation method. For any Banach coupleĀ, it holds:

ψF(Ā)(t)� ϕF (t)� ρF(Ā)(t) for all t > 0.

Proof. Let a ∈ F(Ā) andt > 0. By the Hahn–Banach theorem, there is

f : Ā→ (
R, (1/t)R

)
such thatf (a)=K(t, a) and‖f ‖Ā,(R,(1/t)R) � 1. Hence

K(t, a)/ϕF(t)=
∥∥f (a)∥∥F(R,(1/t)R) � ‖a‖F(Ā)

and soψF(Ā)(t)� ϕF (t).
On the other hand, given anya ∈A0 ∩A1 and anyt > 0, the operatorT λ= λa satisfies

that

T :
(
R, (1/t)R

)→ Ā with ‖T ‖(R,(1/t)R),Ā� J (t, a).

It follows that‖a‖F(Ā) � J (t, a)/ϕF(t). This implies thatϕF (t)� ρF(Ā) (t). ✷
We are interested in sufficient conditions onF such thatT :F(Ā) → F(B) inherits

a certain property thatT :A0 ∩ A1 → B0 + B1 has. For this reason, we review no
some concepts from operator theory (see [13] and [27]). As usual,L(E,F ) designates
the collection of all bounded linear operators from the Banach spaceE into the Banach
spaceF , endowed with the operator norm. We putUE for the closed unit ball ofE, andE∗
for the dual space ofE.

An operator idealI is a method of ascribing to each pair(E,F ) of Banach space
a linear subspaceI(E,F ) of L(E,F ) such that

(i) I(E,F ) contains the finite rank operators; and
(ii) for all Banach spacesE,F,X,Y , wheneverR ∈L(X,E), T ∈ I(E,F ), S ∈ L(F,Y ),

then the composed operatorST R ∈ I(X,Y ).

The idealI is said to beclosedif I(E,F ) is a closed subspace ofL(E,F ) for all
Banach spacesE and F . Other properties that an ideal may have are surjectivity
injectivity. The idealI is said to besurjectiveif for every T ∈ L(E,F ) it follows from
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TQE ∈ I(&1(UE),F ) thatT ∈ I(E,F ). Here&1(UE) stands for the Banach space of all
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absolutely summable families of scalars withUE as index set and whereQE : &1(UE)→E

is the surjectionQE{λx} =∑
x∈UE λxx. The ideal is said to beinjectiveif wheneverT ∈

L(E,F ) and in additionJF T ∈ I(E, &∞(UF ∗)), then it follows thatT ∈ I(E,F ). Now
&∞(UF ∗) is the Banach space of all bounded families of scalars indexed by the eleme
UF ∗ , andJF :F → &∞(UF ∗) is the isometric embedding defined byJF y = (〈f,y〉)f∈UF∗ .
Further details can be found in [27]. Compact operators and weakly compact operat
examples of closed injective and surjective operator ideals. Other examples will be
in the next section.

The following results are immediate consequences of Lemma 2.1 and [9, Corollar
and 3.6].

Lemma 2.2.LetI be an injective closed operator ideal and letF be an exact interpolation
method withϕ∗

F ∈ P0. Suppose thatA is a Banach space andB = (B0,B1) is a Banach
couple. IfT ∈L(A,B) with T ∈ I(A,B0 +B1) thenT ∈ I(A,F(B)).

Lemma 2.3.LetI be a surjective closed operator ideal and letF be an exact interpolation
method withϕF ∈ P0. Suppose that̄A = (A0,A1) is a Banach couple and letB be a
Banach space. IfT ∈L(Ā,B) with T ∈ I(A0 ∩A1,B) thenT ∈ I(F(Ā),B).

Peetre’sJ - andK-methods are important examples of exact interpolation methods.
we recall the discrete version of the general form of these methods (see [24,11] and

Let Γ be a Banach space of real valued sequences withZ as index set. We say thatΓ
is a Z-lattice if Γ contains all sequences with only finitely many non-zero coordina
and moreoverΓ satisfies that whenever|ξm| � |µm| for eachm ∈ Z and{µm} ∈ Γ , then
{ξm} ∈ Γ and‖{ξm}‖Γ � ‖{µm}‖Γ .

The associated spaceΓ ′ of Γ consists of all sequences{ηm} for which

∥∥{ηm}∥∥
Γ ′ = sup

{ ∞∑
m=−∞

|ηmξm|: ∥∥{ξm}∥∥
Γ

� 1

}
<∞.

The spaceΓ ′ is also aZ-lattice.
We say thatΓ isK-non-trivial if{

min(1,2m)
} ∈ Γ. (2.2)

TheZ-latticeΓ is calledJ -non-trivial if

sup

{ ∞∑
m=−∞

min(1,2−m)|ξm|: ‖ξ‖Γ � 1

}
<∞. (2.3)

Let Γ be aK-non-trivial Z-lattice. Given any Banach couplēA = (A0,A1), the
K-spaceĀΓ ;K = (A0,A1)Γ ;K is formed by alla ∈ A0 + A1 such that{K(2m,a)} ∈ Γ .
We put‖a‖ĀΓ ;K = ‖{K(2m,a)}‖Γ .
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If Γ is J -non-trivial, theJ -spaceĀΓ ;J = (A0,A1)Γ ;J is defined as the collection∑∞

ons

d

d

ary
of all sumsa = m=−∞ um (convergence inA0 + A1) where {um} ⊆ A0 ∩ A1 and
{J (2m,um)} ∈ Γ . We set

‖a‖ĀΓ ;J = inf

{∥∥{J (2m,um)}∥∥Γ : a =
∞∑

m=−∞
um

}
.

It is easy to check thatJ - andK-methods are exact interpolation methods. Conditi
(2.2) and (2.3) are essential to get meaningful definitions (see [24] and [4]).

The classical real method(A0,A1)θ,q coincide with theK- andJ -methods generate
by Γ = &q(2−θm), the space&q with the weight{2−θm},

(A0,A1)&q (2−θm);K = (A0,A1)&q(2−θm);J = (A0,A1)θ,q (see [3,4,30]).

Here 0< θ < 1 and 1� q � ∞. In a more general way, iff is a function parameter an
Γ = &q(1/f (2m)) then

(A0,A1)&q(1/f (2m));K = (A0,A1)&q(1/f (2m));J = (A0,A1)f,q,

where(A0,A1)f,q is the real method with a function parameter (see [26,17,15]).
If Γ is anyZ-lattice satisfying (2.2) and (2.3), then̄AΓ ;K ↪→ ĀΓ ;J . But it is not true in

general thatĀΓ ;K coincides withĀΓ ;J . It is shown in [24], Lemma 2.5, that a necess
and sufficient condition for equality is that the Calderón transform

Ω{ξm} =
{ ∞∑
k=−∞

min
(
1,2m−k)|ξk|}

m∈Z

is bounded onΓ .
It is easy to see that the characteristic functionϕ

K
of theK-method is:

ϕK (t)=
∥∥{min(1,2m/t)

}∥∥−1
Γ
, t > 0.

Next we determine the characteristic function of theJ -method.

Lemma 2.4.LetΓ be aJ -non-trivial Z-lattice. The fundamental function of theJ -method
defined byΓ is:

ϕJ (t)= sup

{ ∞∑
m=−∞

min(1, t/2m)|ξm|: ∥∥{ξm}∥∥
Γ

� 1

}
, t > 0.

Proof. Write

η(t)= sup

{ ∞∑
m=−∞

min(1, t/2m)|ξm|: ∥∥{ξm}∥∥
Γ

� 1

}
.
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For anyλ ∈ R and anyJ -representationλ=∑∞
m=−∞ λm, we have:

t
,

|λ| =K
(
t, λ;R, (1/t)R

)
�

∞∑
m=−∞

K(t,λm)

�
∥∥{J (2m,λm)}∥∥Γ ∞∑

m=−∞
min(1, t/2m)

J (2m,λm)

‖{J (2m,λm)}‖Γ
�
∥∥{J (2m,λm)}∥∥Γ η(t).

Therefore,ϕJ (t)� η(t) for anyt > 0.
Conversely, given anyε > 0 there exists{ξm} ∈ UΓ such that η(t) − ε �∑∞
m=−∞ min(1, t/2m)|ξm|. PutC = ∑∞

m=−∞ min(1, t/2m)|ξm|. Any λ ∈ R can be rep-
resented asλ=∑∞

m=−∞ min(1, t/2m)|ξm|λ/C. Since

J
(
2m,min(1, t/2m)|ξm|λ/C;R, (1/t)R

)
= min(1, t/2m)max(1,2m/t)|ξmλ|/C = |ξmλ|/C,

it follows that(η(t)−ε)‖λ‖(R,(1/t)R)Γ ;J � C‖{ξm}‖Γ |λ|/C � |λ|. This implies thatη(t)�
ϕJ (t) for all t > 0, and completes the proof.✷

The next result shows that the behaviour at 0 and∞ of the functionsϕK andϕJ can be
controlled by the norms of shift operators onΓ . Fork ∈ Z, theshift operatorτk is defined
by τk{ξm}m∈Z = {ξm+k}m∈Z.

Lemma 2.5.LetΓ be aZ-lattice such that

2−n‖τn‖Γ,Γ → 0 and ‖τ−n‖Γ,Γ → 0 asn→ ∞.

The following holds:

(a) if Γ isK-non-trivial, thenϕK ∈ P0.
(b) if Γ is J -non-trivial, thenϕ∗

J ∈P0.

Proof. Write C = ‖{min(1,2m)}‖Γ . The norm of(R,R)Γ ;K is C| · |. Interpolating the
identity operatorI ∈ L((R, (1/t)R), (R,R)), we get:

ϕK (t)= C−1‖I‖(R,(1/t)R)Γ ;K,(R,R)Γ ;K , t > 0.

Since ‖I‖R,R = 1 and ‖I‖(1/t)R,R = t , using [7, Lemma 2.6/(ii)], we derive tha
limt→0ϕK (t)= 0. On the other hand, working with(1/t)I and using [7, Lemma 2.6/(i)]
we obtain that limt→∞ ϕ

K
(t)/t = 0.

The proof for theJ -method is similar, but reversing(R, (1/t)R) and(R,R). ✷
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3. TheΣΓ -condition
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Let Γ be aZ-lattice. Given any sequence of Banach spaces{Em}, the vector valued
spaceΓ (Em) is defined by:

Γ (Em)=
{
x = {xm}: xm ∈Em and‖x‖Γ (Em) =

∥∥{‖xm‖Em
}∥∥
Γ
<∞}

.

We denote byQk :Γ (Em)→ Ek the projectionQk{xm} = xk, and byPr :Er → Γ (Em)

the embeddingPrx = {δrmx} where δrm is the Kronecker delta. If the sequence{Em}
reduces to a single Banach space, i.e.,Em =E for all m ∈ Z, then we writeΓ (E) instead
of Γ (Em).

Definition 3.1. We say that an operator idealI satisfies theΣΓ -condition if for any
sequences of Banach spaces{Em}, {Fm} and for any operatorT ∈ L(Γ (Em),Γ (Fm)), it
follows fromQkT Pr ∈ I(Er,Fk) for anyr, k ∈ Z thatT ∈ I(Γ (Em),Γ (Fm)).

For the special caseΓ = &q , this condition was investigated by Heinrich in [16]. To s
thatI satisfies theΣΓ -condition means that the operatorT ∈ L(Γ (Em),Γ (Fm)) belongs
to I if and only if all elements of its matrix representation belong toI. Such an ideal mus
be closed as the following result shows.

Lemma 3.2.LetΓ be aZ-lattice. Each operator idealI which satisfies theΣΓ -condition
is closed.

Proof. Take any Banach spaceE, F and any sequence of operators{Tn}n∈N ⊆ I(E,F )
with

∑∞
n=1 ‖Tn‖E,F < ∞. We should prove that the operatorT = ∑∞

n=1Tn belongs to
I(E,F ). We may assume that‖Tn‖E,F > 0 for eachn ∈ N.

Since
{‖Tn‖1/2

E,F

} ∈ &2 and &2 = Γ 1/2(Γ ′)1/2 (see [19]), we can find sequencesα =
{αm} ∈ Γ , β = {βm} ∈ Γ ′ with non-negative coordinates, such that‖Tn‖E,F = αnβn for
all n ∈ N andαm = βm = 0 for all m ∈ Z − N. Each operatorTn can be factorized a
Tn = SnRn whereRn = β−1

n Tn andSn = βnIF . PutRm = Sm = 0 form ∈ Z − N.
The operatorR :E → Γ (F) defined by Rx = {Rmx}m∈Z is bounded becaus

‖Rx‖Γ (F ) � ‖α‖Γ ‖x‖E. We claim thatR ∈ I(E,Γ (F )). Indeed, the spaceE can be re-
alized as a vector valued spaceΓ (Em) if we choose, for example,E0 =E andEm = 0 for
all m �= 0. Since for anyr, k ∈ Z,

QkRPr =
{

0 if r �= 0,

Rk if r = 0

belongs toI(E,F ), theΣΓ -condition implies thatR ∈ I(E,Γ (F )).
Let S :Γ (F)→ F be the operator defined byS{zm} =∑∞

m=−∞ Smzm =∑∞
n=1βnzn.

We have:

∥∥S{zm}∥∥
F

�
∞∑

m=−∞
βm‖zm‖F �

∥∥{βm}∥∥
Γ ′
∥∥{‖zm‖F

}∥∥
Γ

= ‖β‖Γ ′
∥∥{zm}∥∥

Γ (F )
,
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soS is bounded. SinceT = SR, we conclude thatT ∈ I(E,F ). ✷

ck

e

t

t

Clearly, if I satisfies theΣΓ -condition then the identity operatorIΓ onΓ must belong
to I.

As in the caseΓ = &q (see [16]), the following lemma will be useful later on to che
if an ideal satisfies theΣΓ -condition.

Lemma 3.3.LetΓ be aZ-lattice. An operator idealI satisfies theΣΓ -condition provided
the following holds for any Banach spacesE,F,Gm (m ∈ Z):

If T1 ∈ L(E,Γ (Gm)), T2 ∈ L(Γ (Gm),F )) andT2PsQsT1 ∈ I(E,F ) for all s ∈ Z, then
T2T1 ∈ I(E,F ).

Proof. Let {Em}, {Fm} be arbitrary sequences of Banach spaces and letT ∈ L(Γ (Em),
Γ (Fm)) such thatQkT Pr ∈ I(Er ,Fk) for any r, k ∈ Z. Fix any r ∈ Z and putT1 =
T Pr ∈ L(Er,Γ (Fm)) and T2 = IΓ (Fm) ∈ L(Γ (Fm),Γ (Fm)). For any s ∈ Z, we have
T2PsQsT1 = Ps(QsT Pr), soT2PsQsT1 ∈ I(Er ,Γ (Fm)). Assumption onI implies that
T Pr ∈ I(Er ,Γ (Fm)).

Now takeS1 = IΓ (Em) ∈ L(Γ (Em),Γ (Em)) and S2 = T ∈ L(Γ (Em),Γ (Fm)). For
any r ∈ Z, we getS2PrQrS1 = (T Pr )Qr ∈ I(Γ (Em),Γ (Fm)). Hence, using again th
assumption onI, we derive thatT ∈ I(Γ (Em),Γ (Fm)). ✷

Next we give an example of an ideal which satisfiesΣΓ -condition. We recall tha
a Z-lattice Γ is said to beregular if for any {ξn}n∈N ⊆ Γ with ξn ↓ 0 it follows that
‖ξn‖Γ → 0 asn→ ∞.

Theorem 3.4.The idealW of weakly compact operators satisfies theΣΓ -condition for
any reflexiveZ-latticeΓ .

Proof. It is well known that ifΓ is reflexive then it is regular. Hence,Γ ∗ = Γ ′ and for any
sequence{Em} of Banach spaces it holds:

Γ (Em)
∗∗ = Γ ′(E∗

m

)∗ = Γ
(
E∗∗
m

)
(see [18] or [21]). (3.1)

Let {Fm}m∈Z be another sequence of Banach spaces and let:
T ∈ L(Γ (Em),Γ (Fm)) such thatQkT Pr ∈ W(Er,Fk) for any r, k ∈ Z. According to
Gantmacher’s theorem and (3.1), to check thatT is weakly compact we should show tha

T ∗∗x∗∗ ∈ Γ (Fm) for all x∗∗ ∈ Γ (E∗∗
m

)
. (3.2)

But x∗∗ = lims→∞
∑s
r=−s PrQrx∗∗, so it suffices to establish (3.2) whenx∗∗ has finitely

many non-zero coordinates. Say,

x∗∗ = {. . . ,0,0, x∗∗−s, x∗∗−s+1, . . . , x
∗∗
s−1, x

∗∗
s ,0,0, . . .}.

We have:
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T ∗∗x∗∗ =
s∑
T ∗∗Prx∗∗

r = lim
n∑ s∑

PkQkT
∗∗Prx∗∗

r

ition is

rator

ce

,

r=−s n→∞
k=−n r=−s

= lim
n→∞

n∑
k=−n

s∑
r=−s

Pk(QkT Pr)
∗∗x∗∗

r .

Using weak compactness of operatorsQkT Pr , we get that

n∑
k=−n

s∑
r=−s

Pk(QkT Pr)
∗∗x∗∗

r ∈ Γ (Fm).

This implies thatT ∗∗x∗∗ ∈ Γ (Fm) becauseΓ (Fm) is a closed subspace of

Γ (F ∗∗
m )= Γ (Fm)

∗∗. ✷
In order to show other example, we recall that an operatorT ∈ L(E,F ) is said to

be aRosenthal operatorif for every bounded sequence{xn} ⊆ E, the sequence{T xn}
admits a weak Cauchy subsequence. By Rosenthal’s theorem [29], the former cond
equivalent to the fact that no subspace ofT (E) is isomorphic to&1. In other words,T (E)
does not contain a copy of&1. Rosenthal operators form an injective and surjective ope
ideal.

Theorem 3.5.The idealR of Rosenthal operators satisfies theΣΓ -condition for any
Z-latticeΓ which does not contain a copy of&1.

Proof. According to Lemma 3.3, it is enough to show that for any Banach spacesE,F,Gm
(m ∈ Z) and any operatorsT1 ∈ L(E,Γ (Gm)), T2 ∈ L(Γ (Gm),F )) such thatT2PsQsT1 ∈
R(E,F ) for anys ∈ Z, it holdsT2T1 ∈ R(E,F ). For this aim, take any bounded sequen
{xn}n∈N ⊆ E and letM = supn∈N{‖xn‖E}. Using thatT2PsQsT1 ∈ R(E,F ), we can
find a subsequence{̃xn} of {xn} such that{∑N

s=−N T2PsQsT1x̃n}n∈N is a weak Cauchy
sequence for anyN ∈ N. Let us check that{T2T1x̃n}n∈N is a weak Cauchy sequence.

SinceΓ does not contain a copy of&1, according to [31, Theorem 117.3],Γ is regular.
Hence,Γ (Gm)∗ = Γ ′(G∗

m). Using again that&1 �⊂ Γ , it follows from [31, Theorem 117.2]
thatΓ ′ is also regular. Whence, given anyf ∈ F ∗ and anyε > 0, we can findN ∈ N with∥∥∥∥∥T ∗

2 f −
N∑

s=−N
PsQsT

∗
2 f

∥∥∥∥∥
Γ ′(G∗

m)

� ε

4M‖T1‖E,Γ (Gm)
.

Now, since{∑N
s=−N T2PsQsT1x̃n}n∈N is a weak Cauchy sequence, there exitsn0 ∈ N such

that ∣∣∣∣∣
〈

N∑
s=−N

T2PsQsT1(̃xn − x̃k), f
〉∣∣∣∣∣� ε

2
for all n, k � n0.
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Consequently, for anyn, k � n0, we obtain:

ssing
s

f

.

∣∣〈T2T1(̃xn − x̃k), f
〉∣∣� ∣∣∣∣∣

〈
T1(̃xn − x̃k), T

∗
2 f −

N∑
s=−N

PsQsT
∗
2 f

〉∣∣∣∣∣
+
∣∣∣∣∣
〈
T1(̃xn − x̃k),

N∑
s=−N

PsQsT
∗
2 f

〉∣∣∣∣∣
� 2M‖T1‖E,Γ (Gm)

∥∥∥∥∥T ∗
2 f −

N∑
s=−N

PsQsT
∗
2 f

∥∥∥∥∥
Γ ′(G∗

m)

+
∣∣∣∣∣
〈

N∑
s=−N

T2PsQsT1(̃xn − x̃k), f

〉∣∣∣∣∣
� ε

2
+ ε

2
= ε.

This completes the proof.✷
The next example refers to Banach–Saks operators. Recall that an operatorT ∈L(E,F )

is called aBanach–Saks operatorif it maps bounded sequences into sequences posse
Cesaro convergent subsequences. A Banach spaceE is said to have theBanach–Sak
propertyif the identity operatorIE is Banach–Saks.

Theorem 3.6.The idealBS of Banach–Saks operators satisfies theΣΓ -condition for any
Z-latticeΓ with the Banach–Saks property.

Proof. We follow the main lines of the proof for the caseΓ = &q established by Heinrich
in [16]. Take any Banach spacesE,F,Gm (m ∈ Z) and any operatorsT1 ∈L(E,Γ (Gm)),
T2 ∈ L(Γ (Gm),F )) with T2PsQsT1 ∈ BS(E,F ) for any s ∈ Z. Let {xn}n∈N ⊆ E be
any bounded sequence. Using thatT2PsQsT1 ∈ BS(E,F ) and applying a result o
Erdős and Magidor [14], for eachs ∈ N we can find a subsequence{x ′

n} of {xn} such
that all subsequences of{T2PsQsT1x

′
n} are Cesaro convergent. It follows that{xn} has

a subsequence{̃xn} such that{T2PsQsT1x̃n} is Cesaro convergent for alls simultaneously
Let ξn = {‖QmT1x̃n‖Gm}m∈Z. We have‖ξn‖Γ = ‖T1x̃n‖Γ (Gm), so the sequence{ξn}n∈N

is bounded inΓ . SinceΓ has the Banach–Saks property, we may assume that{̃xn} has been
chosen in such a way that{ξn} is Cesaro convergent inΓ . Let µ= {µm}m∈Z be its limit.
Banach–Saks property ofΓ implies also thatΓ is regular, and so‖{γNm µm}‖Γ → 0 as
N → ∞, where:

γNm =
{

0 if |m| �N,

1 if |m|>N.
Combining this fact with the Cesaro convergence of{ξn} toµ, we derive that for anyε > 0,
there isN ∈ N such that for alln >N , it holds:
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‖QmT1x̃j‖Gm

}∥∥∥∥ � ε
.

g the

y

ic
∥ n
j=1

∥
Γ

‖T2‖Γ (Gm),F

Whence, ∥∥∥∥∥1

n

n∑
j=1

T2

∑
|m|>N

PmQmT1x̃j

∥∥∥∥∥
F

� ε.

Since

1

n

n∑
j=1

T2T1x̃j = 1

n

n∑
j=1

T2

∑
|m|�N

PmQmT1x̃j + 1

n

n∑
j=1

T2

∑
|m|>N

PmQmT1x̃j

and{∑|m|�N T2PmQmT1x̃j }j∈N is Cesaro convergent, it follows that{ 1
n

∑n
j=1T2T1x̃j }n∈N

is a Cauchy sequence and therefore it is convergent.
The proof is complete. ✷
Banach–Saks operators form also an injective and surjective operator ideal.

4. Real interpolation and operator ideals

In this section we establish interpolation results for general couples by usin
ΣΓ -condition.

Theorem 4.1.LetΓ be aK-non-trivial Z-lattice withϕ
K

∈ P0, and letI be an injective
and surjective operator ideal which satisfies theΣΓ -condition. SupposēA = (A0,A1),
B = (B0,B1) are Banach couples and letT ∈L(Ā,B). Then

T ∈ I
(
ĀΓ ;K,BΓ ;K

)
if and only if T ∈ I(A0 ∩A1,B0 +B1).

Proof. Assume thatT ∈ I(A0∩A1,B0+B1). SinceI is surjective andϕK ∈P0, applying
Lemma 2.3 we get thatT ∈ I(ĀΓ ;K,B0 + B1). Let Fm be the spaceB0 + B1 endowed
with the normK(2m, ·), m ∈ Z, and letT̂ : ĀΓ ;K → Γ (Fm) be the operator defined b
T̂ x = {. . . , T x,T x,T x, . . .}. For eachm ∈ Z, QmT̂ = T belongs toI(ĀΓ ;K,Fm). Then,
the ΣΓ -condition implies that̂T ∈ I(ĀΓ ;K,Γ (Fm)). Now we consider the isometr
embeddingj :BΓ ;K → Γ (Fm) given byj (y) = {. . . , y, y, y, . . .}. SincejT = T̂ , using
the injectivity ofI, we conclude thatT ∈ I(ĀΓ ;K,BΓ ;K).

Obviously, ifT ∈ I(ĀΓ ;K,BΓ ;K) thenT ∈ I(A0 ∩A1,B0 +B1). ✷
The result for theJ -method reads:
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Theorem 4.2.Let Γ be aJ -non-trivial Z-lattice withϕ∗
J ∈ P0, and letI be an injective

y

.

s

r.

al
and surjective operator ideal which satisfies theΣΓ -condition. SupposēA = (A0,A1),
B = (B0,B1) are Banach couples and letT ∈L(Ā,B). Then

T ∈ I
(
ĀΓ ;J ,BΓ ;J

)
if and only if T ∈ I(A0 ∩A1,B0 +B1).

Proof. We only need to prove thatT ∈ I(A0 ∩A1,B0 +B1) impliesT ∈ I(ĀΓ ;J ,BΓ ;J )
because the converse implication is clear. IfT ∈ I(A0 ∩A1,B0 +B1), sinceI is injective
andϕ∗

J ∈ P0, Lemma 2.2 yields thatT ∈ I(A0 ∩A1,BΓ ;J ). LetGm be the spaceA0 ∩A1

with the normJ (2m, ·), m ∈ Z, and letT̃ :Γ (Gm) → BΓ ;J be the operator defined b
T̃ {um} = T (

∑∞
m=−∞ um). For eachm ∈ Z, T̃ Pm = T belongs toI(Gm,BΓ ;J ). Whence,

according to theΣΓ -condition, T̃ ∈ I(Γ (Gm),BΓ ;J ). Let π :Γ (Gm) → ĀΓ ;J be the
metric surjection given byπ{um} = ∑∞

m=−∞ um. Using thatI is surjective, it follows
from T̃ = T π thatT ∈ I(ĀΓ ;J ,BΓ ;J ). ✷
Remark 4.3.Lemma 2.5 gives a sufficient condition forϕ

K
∈ P0 andϕ∗

J ∈ P0 in terms of
shift operators onΓ .

Combining Theorems 4.1 and 4.2 with the results of Section 3 we derive:

Corollary 4.4. Let Γ be a reflexiveZ-lattice. Let Ā = (A0,A1) and B = (B0,B1) be
Banach couples, and letT ∈ L(Ā,B) such thatT :A0∩A1 → B0 +B1 is weakly compact

(i) If Γ isK-non-trivial withϕK ∈ P0, thenT : ĀΓ ;K → BΓ ;K is weakly compact.
(ii) If Γ is J -non-trivial withϕ∗

J ∈ P0, thenT : ĀΓ ;J → BΓ ;J is weakly compact.

Corollary 4.5. LetΓ be aZ-lattice which does not contain a copy of&1. LetĀ= (A0,A1),
B = (B0,B1) be Banach couples, and letT ∈ L(Ā,B) such thatT :A0 ∩A1 → B0 + B1
is Rosenthal.

(i) If Γ isK-non-trivial withϕ
K

∈ P0, thenT : ĀΓ ;K → BΓ ;K is a Rosenthal operator.
(ii) If Γ is J -non-trivial withϕ∗

J ∈ P0, thenT : ĀΓ ;J → BΓ ;J is a Rosenthal operator.

Corollary 4.6. Let Γ be aZ-lattice with the Banach–Saks property. LetĀ = (A0,A1),
B = (B0,B1) be Banach couples, and letT ∈ L(Ā,B) such thatT :A0 ∩A1 → B0 + B1

is Banach–Saks.

(i) If Γ is K-non-trivial with ϕK ∈ P0, then T : ĀΓ ;K → BΓ ;K is a Banach–Sak
operator.

(ii) If Γ is J -non-trivial withϕ∗
J ∈ P0, thenT : ĀΓ ;J → BΓ ;J is a Banach–Saks operato

All results for theJ -method are new. The results for theK-method comprise sever
known theorems. To be precise:
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(a) Corollary 4.4/(i) is a result of Aizenstein and Brudnyı̌ [4, Theorem 4.6.8] (see also the
−θm

nd

2.3],

ial
y

when

l

paper by Mastylo [22, Corollary 11]). Writing down the special caseΓ = &q(2 )

with 1< q <∞, 0< θ < 1, we recover results of Heinrich [16] and Maligranda a
Quevedo [20, Theorem 1]. In particular, ifΓ = &q(2−θm), Ā= B andT is taken to be
the identity operator, we get a well-known result of Beauzamy [1, Proposition II.
on reflexivity of spaces(A0,A1)θ,q .

(b) Corollary 4.5/(i) forĀ= B andT = I is due to Mastylo [21, Theorem 3.3]. The spec
caseΓ = &q(2−θm) with 1< q <∞, 0< θ < 1, andT = I is a result of Beauzam
[1, Proposition II. 3.3], on copies of&1 in (A0,A1)θ,q .

(c) If we write down Corollary 4.6/(i) forĀ = B, T = I and Γ = &q(2−θm) with
1< q <∞, 0< θ < 1, we recover a result of Heinrich [16, Corollary 2.5/(i)].

In the last three corollaries, we are assuming that the identity operator onΓ belongs
to I to get thatI satisfies theΣΓ -condition. The corollaries fail in general ifIΓ /∈ I. Easy
counterexamples can be constructed, taking evenĀ = B andT = I . However, we show
next that under a very restrictive condition on the couple, a positive result still holds
IΓ /∈ I.

Proposition 4.7.Let Γ be aK- and J -non-trivial Z-lattice, and letI be an injective
operator ideal. SupposēA= (A0,A1) is a Banach couples. If the embedding

i :A0 ∩A1 →A0 +A1

belongs toI and its range is closed, then the identity operatorsIĀΓ ;K , IĀΓ ;J belong toI.

Proof.
As we pointed out in Section 2

A0 ∩A1 ↪→ ĀΓ ;K ↪→ ĀΓ ;J ↪→A0 +A1.

Moreover,A0 ∩A1 is dense inĀΓ ;J for the norm ofA0 +A1. Therefore, if

i :A0 ∩A1 →A0 +A1

has closed range, we obtain that

A0 ∩A1 = ĀΓ ;K = ĀΓ ;J =A0 ∩A1
A0+A1

with equivalent norms. Now using that the embeddingi :A0 ∩A1 → A0 +A1 belongs to
I and thatI is injective, we conclude that identity operatorsIĀΓ ;K , IĀΓ ;J belong toI. ✷

Given any operator idealI and anyZ-latticeΓ it is clear thatIĀΓ ;K ∈ I(ĀΓ ;K, ĀΓ ;K)
implies that the embeddingi :A0 ∩A1 → A0 +A1 belongs toI. But it is false in genera
that the embedding has closed range. Even if we ask, in addition, thatI is injective and
IΓ /∈ I(Γ,Γ ). Next we show it by means of an example.
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Counterexample 4.8.Let 0< θ < 1 and put:

ple
at

neral.

l. 666,

.
ster-

6)

inburgh
Γ =
{

{ξm}m∈Z:
∥∥{ξm}∥∥

Γ
=
( −∞∑
m=−1

(
2−θm|ξm|)2)1/2

+
∞∑
m=0

2−θm|ξm|<∞
}
.

It is easy to check thatΓ is aK-non-trivial Z-lattice. Take any ordered Banach cou
Ā= (A0,A1), that is , a pairA1 ↪→A0, with the embedding having norm 1. We claim th

(A0,A1)Γ ;K = (A0,A1)θ,2 (equivalent norms).

Indeed, we have:

K(t, a)= ‖a‖A0 for t � 1, t‖a‖A0 �K(t, a) for 0< t � 1.

Whence,

‖a‖ĀΓ ;K = 1

1− 2−θ ‖a‖A0 +
( −∞∑
m=−1

(
2−θmK(2m,a)

)2)1/2

�
[

2(1−θ)(1− 2−(1−θ)2)1/2

1− 2−θ + 1

]( −∞∑
m=−1

(
2−θmK(2m,a)

)2)1/2

∼ ‖a‖(A0,A1)θ,2,

where ∼ means equivalence with constants which do not depend ona. Now choose
θ = 1/2, I = W andĀ = (&∞, &1). The embeddingi : &1 → &∞ is weakly compact, the
Z-latticeΓ is not reflexive, the interpolation spaceĀΓ ;K = (&∞, &1)1/2,2 = &2 is reflexive,
but the embeddingi : &1 → &∞ does not have closed range.

The counterexample uncover an inaccuracy in [28]: Theorem 1/(b) is not true in ge
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