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Abstract

We investigate the behaviour by genesaland K -methods of certain closed operator ideals. In
particular, the results apply to weakly compact operators, Rosenthal operators and Banach—Saks
operators.
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Résumé

Nous étudions le comportement de certains ideaux d’opérateurs par EsK-méthodes. En
particulier, les résultats sont appliqués aux opérateurs faiblement compacts, aux opérateurs de
Rosenthal et aux opérateurs de Banach—Saks.
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1. Introduction

In 1974, Davis, Figiel, Johnson and Pelagki [12] established their celebrated result
on the factorization property of weakly compact operators through reflexive spaces. The
proof given in [12] has a clear interpolation flavour. This motivated the investigation on
the behaviour of weak compactness under interpolation, as well as it started the research
on the factorization property for operator idedlsthat is to say, to study whether or
not every operatof’ of the idealZ can be factorized through a Banach spacehose
identity operator/g belongs toZ. Relevant contributions on these problems are due to
Beauzamy [1] and Heinrich [16] (other related results can be found in [20] and [28];
a quantitative version of the results of Beauzamy and Heinrich were established by the
present authors in [10] and [8]). In both cases they deal with the classical real method
(Ao, Al)@,q-

But the real method is not enough to describe all interpolation spaces with respect to
many important couples. For example, applying this method .9 L~,) we only obtain
L, and L, , spaces, while Lorentz spaces, Marcinkiewicz spaces and the majority of
symmetric spaces are interpolation spaces with respe@ t0L~,) (see [2] and [18]).
However, as a famous result of Calderon [5] and Mitjagin [23] says, any interpolation
space with respect to the coufle;, L) is K-monotone, and so (see [4] or [25]) it can
be obtained by the gener&l-method, that is, extending the definition of the classical real
method by replacing the usual weightegd norm by a more general lattice norm.

The generaK -method has been studied widely, as well as the generakthod. We
only mention here the monograph by Peetre [26], by Brudmg Krugljak [4], the paper
by Cwikel and Peetre [11] and by Nilsson [24] and [25]. In many casepaces arise as
dual of K-spaces, but not always.

The behaviour of weakly compact operators by the gen&rahethod has been
investigated by Aizenstein and Brudijigt, Section 4.6], and by Mastylo [22]. Other related
results have been obtained by Mastylo in [21], this time dealing with the Rosenthal property
of K-spaces. To our knowledge, there is no known corresponding versions of any of these
results forJ-spaces.

In this paper we develop a new approach to these results that allows us to establish the
J-versions at the same time, as well as to extend the results to other closed operator ideals.
In particular, we cover the cases of Rosenthal operators and Banach—Saks operators. The
new approach is based on ideas of Heinrich [16] and our previous results in [6] and [9].

The organization of the paper is as follows. In Section 2 we recall the definitions of
general/- and K-method in the discrete form presented in [24], and we establish some
preliminary results. In Section 3 we show thaFifs the ideal of weakly compact operators,
Rosenthal operators or Banach—Saks operators Alstisfies a certain property, the so-
called X' --condition, relative to vector valued sequence spaces generatédHigre " is
the sequence space that we are using to defind tler K-method. For this we assume
that the identity operatafi- on I belongs to the idedl. Finally, in Section 4, we establish
the interpolation theorems by using thg--condition. We also discuss the limit case when
I does not belong t@, uncovering an inaccuracy in [28, Theorem 1].
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2. Preliminaries

By a Banach coupled = (4o, A1) we mean two Banach spacds, j =0, 1, which
are continuously embedded in some Hausdorff topological vector space. Fareé@ohe
put:

K(t,a)=K(t,a; A) =inf{llaollao + tllatlla,: a=ao+a1, aj € A;}, a€ Ao+ Ax,
and
J(t,a):J(t,a;A):max{||a||Ao,t||a||Al}, aeAoNnAj.

Then{K (¢, -)};>0 (respectively{J (¢, -)};~0) is a family of norms om o+ A1 (respectively,
ApN Aj), and any two of which are equivalent.

A Banach spacel is said to be afntermediate spacwith respect to the coupla if
ApN A1 — A <— Ag+ Ai1. Here— means continuous inclusion. The “position” af
within the coupleA can be described by using the functions:

Va0 =, (1, A) =sup{K (1,@): [lalla =1},
p, () =p,(t, A)=inf{J(t,a): a € AoN Ay, lalla =1} (see][6])

A function ¢ : (0, c0) — (0, 00) is said to bequasiconcavef ¢(s) < maxl,s/t}o(t)
for all s, > 0. Functionsy 4, p4 are examples of this kind of functions. Note thapifs
guasiconcave thep*(r) = 1/¢(1/¢) has also this property. If a quasiconcave functpon
satisfies that

min{1, 1/t}¢() — 0 ast — 0 orast — oo,

then we writep € Po.

Let B = (Bo, B1) be another Banach couple. We writes £(A, B) and alsdl’ : A — B
to mean thaf’ is a linear operator fromig + A1 into Bg + By whose restriction to each
A; defines a bounded operator frof into B; for j =0, 1. We set:

IT 115 5 = max{IIT | ao, B> 1T ll 41,51 }-

If the coupleA (respectively,B) reduces to a single Banach space, i.e4Adf= A1 = A
(respectivelyBo = B1 = B), then we writeT € L(A, B) (respectivelyl € L(A, B)).

An interpolation methods a procedureF that associates to each Banach couple
an intermediate spacg(A) in such a way that given any other Banach coupland any
T € L(A, B), the restriction of to F(A) gives a bounded operator fraffi(A) into F(B).

By the closed graph theorem, for any couplesB there is a positive constagt such
that for allT € £(A, B) it holds:

1Ty 75 < € MaX{IT lao. Bo: 1T llay.5,}- (2.1)
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If C =1in(2.1)forall couplest, B, then the methodF is calledexact
Fort > 0, lettR beR with the norm||A||;r = ¢|A]. If F is an exact interpolation method,
thecharacteristic functiorp £ of F is defined by:

F(R, (1/DR) = (1/er®))R (see [17])

The functiongp = is quasiconcave. The following result shows the connection betwgen
V) andpg 4.

Lemma 2.1.Let F be an exact interpolation method. For any Banach couplé holds
Ve <) < pgg) @) forallz>0.
Proof. Leta € F(A) andr > 0. By the Hahn—Banach theorem, there is
fiA— (R (1/DR)

such thatf (a) = K (¢, a) and||f||Aq(R’(1/,)R) < 1. Hence

K(t,a)/pF(t) = ||f(a)||]:(R,(l/t)R) < ”a”}'(A)

and SOW]—‘(A)(I) < @F(1).
On the other hand, given amye AgN A1 and anyr > 0, the operatof’ . = Aa satisfies
that

T:(R,(I/DR) > A with [Tk /g1 < a).

It follows that||a||f(A) < J(t,a)/F(t). Thisimplies thaty £(1) < P rii) ). O

We are interested in sufficient conditions #hsuch thatT : F(A) — F(B) inherits
a certain property that": Ap N A1 — Bo + B1 has. For this reason, we review now
some concepts from operator theory (see [13] and [27]). As ugl{@l, F) designates
the collection of all bounded linear operators from the Banach spaicgo the Banach
spaceF’, endowed with the operator norm. We @t for the closed unit ball of, andE*
for the dual space of.

An operator idealZ is a method of ascribing to each pdiE, F) of Banach spaces
a linear subspacg(E, F) of L(E, F) such that

() Z(E, F) contains the finite rank operators; and
(ii) forall Banach spaceg, F, X,Y,wheneveRR € L(X,E), T € Z(E,F),Se€ L(F,Y),
then the composed operat®T R € Z(X, Y).

The idealZ is said to beclosedif Z(E, F) is a closed subspace @X(E, F) for all
Banach space& and F. Other properties that an ideal may have are surjectivity and
injectivity. The idealZ is said to besurjectiveif for every T € L(E, F) it follows from
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TQr eZ(1(Ug), F)thatT € Z(E, F). Heret1(Ug) stands for the Banach space of all
absolutely summable families of scalars with as index setand whe@g : £1(Ug) — E
is the surjectionDg{Ar,} = ZXEUE Axx. The ideal is said to bmjectiveif wheneverT e
L(E, F) and in additionJrT € Z(E, L5 (UF~*)), then it follows thatl" € Z(E, F). Now
¢ (UF+) is the Banach space of all bounded families of scalars indexed by the elements of
Up+, andJr : F — Lo (Up~) is the isometric embedding defined Byy = ((f, ¥)) fev -
Further details can be found in [27]. Compact operators and weakly compact operators are
examples of closed injective and surjective operator ideals. Other examples will be given
in the next section.

The following results are immediate consequences of Lemma 2.1 and [9, Corollaries 3.5
and 3.6].

Lemma 2.2.LetZ be an injective closed operator ideal and JEte an exact interpolation
method withy’- € Po. Suppose thatl is a Banach space an#t = (Bo, B1) is a Banach
couple. fT € L(A, B) with T € Z(A, Bo + B1) thenT e (A, F(B)).

Lemma 2.3.LetZ be a surjective closed operator ideal andfebe an exact interpolation
method withgpr € Po. Suppose thatt = (Ao, A1) is @ Banach couple and lek be a
Banach space. It € L(A, By withT € Z(AgN A1, B) thenT € Z(F(A), B).

Peetre’s/- andK -methods are important examples of exact interpolation methods. Next
we recall the discrete version of the general form of these methods (see [24,11] and [4]).
Let I be a Banach space of real valued sequencesZvihk index set. We say that
is a Z-lattice if I" contains all sequences with only finitely many non-zero coordinates,
and moreovel” satisfies that whenevés,, | < || for eachm € Z and{u,,} € I', then

{&n} e I and|l{&n}lr < H{um .
The associated spad¥& of I" consists of all sequencés,,} for which

||{77m}Hp/=SU Z [mEml: ”{";:m}Hp <1} < 00.

The spacd™ is also aZ-lattice.
We say that"” is K -non-trivial if

{min(1,2"} eT. (2.2)

TheZ-lattice I' is calledJ-non-trivial if

supt >~ min(L, 27" [gul: ||s||r<1} < oc. (2:3)

m=—0oQ

Let I" be a K-non-trivial Z-lattice. Given any Banach couplé = (Ag, A1), the
K-spaceAr.x = (Ao, A1) -k is formed by alla € Ag + A1 such tha{K (2",a)} € I'.
We putllallz,. . = I{K @™, a)}lIr
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If I" is J-non-trivial, the J—spaceAp;J = (Ao, A1), is defined as the collection
of all sumsa =Y > u, (convergence indg + A1) where {u,,} € Ap N A1 and

m=—0oQ

{(J(2™, uy,)} e I'. We set

m=—0o0

lallz,., =6 {7 @" w1 a= ) m}

It is easy to check that- and K-methods are exact interpolation methods. Conditions
(2.2) and (2.3) are essential to get meaningful definitions (see [24] and [4]).

The classical real methodo, A1)s,4 coincide with thek - and J-methods generated
by I' = ¢,(27%™), the spacé, with the weight{2~¢"},

(A0, A1)y, 2-0m). k = (A0, A1)y, 2-0m), ) = (A0, A)o.q (see [3,4,30))

Here 0< 0 < 1 and 1< ¢ < oo. In a more general way, if is a function parameter and
I =£,(1/£(2™)) then

(Ao, ADe,1/f2m):k = (Ao, ADe,1/f@2m)):0 = (Ao, A1) f,q.

where(Ao, A1) 1,4 is the real method with a function parameter (see [26,17,15]).

If I' is anyZ-lattice satisfying (2.2) and (2.3), thety-.x < Ar.;. Butitis nottrue in
general thatd 1. ¢ coincides withA .. It is shown in [24], Lemma 2.5, that a necessary
and sufficient condition for equality is that the Calderdn transform

o]

2{&m} =! > min(L, 2" %) &

k=—00 meZ

is bounded or".
Itis easy to see that the characteristic functgnof the K -method is:

. - -1
ox (1) = |{min1,2"/n}|| ", t>0.
Next we determine the characteristic function of thenethod.

Lemma 2.4.Let I" be aJ-non-trivial Z-lattice. The fundamental function of tiemethod
defined byl" is:

¢, =supt »" min(l,1/2")|&n]: ||{sm}||r<1}, t>0.

m=—0oQ

Proof. Write

n()=supl Y min(L,/2")|&: H{sm}||r<1}.

m=—0oQ
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(0.¢]
m=—00

For anyx € R and anyJ-representation = Am, We have:

o]

M=K R A/DR) < D Kt )

o0

<|{r@am}|p D> minct /2™

m=—0o0

<[{r@" 2 .

J (2™, Am)
72", Am)HIr

Thereforegp; () < n(¢) foranyr > 0.
Conversely, given anye > 0 there exists{¢,} € Ur such thatn(t) — ¢ <
Yo somin(d,1/2™M)|&y,]. PutC =>"0"__  min(1,/2™)|§,]. Any A € R can be rep-

resented ag =y > min(l, t/2™)|&,|A/C. Since

J(2", min(1,1/2")|&u|A/C; R, (1/DR)
=min(L, t/2")max(1, 2" /t)|EnA]/ C = ||/ C,

it follows that(n(t) — &) IR, 1/0R) ., < CIl{Em}IrIAl/C < |A|. Thisimplies tha(¢) <
@y (t) for all r > 0, and completes the proof.o

The next result shows that the behaviour at 0 andf the functionsp, andg, can be
controlled by the norms of shift operators dn Fork € Z, theshift operatorr; is defined
by ti{émlmez = (Em+kImez-

Lemma 2.5.Let I" be aZ-lattice such that
27’1”1’"”1*’1* —0 and ||‘1,Ln||1j1* — 0 asn— oo.
The following holds

(a) if I" is K-non-trivial, theng, € Po.
(b) if I"is J-non-trivial, thengy’; € Po.

Proof. Write C = ||{min(1, 2")}|. The norm of(R,R)r.x is C| - |. Interpolating the
identity operatod € L((R, (1/1)R), (R, R)), we get

ok () =CHI @R g @B g >0,

Since ||I|lgg = 1 and |[/]l1/nrr = t, Using [7, Lemma 2.6/(ii)], we derive that
lim; 0@, (r) = 0. On the other hand, working witti/7)I and using [7, Lemma 2.6/(i)],
we obtain that lim.. o ¢, ()/t =0.

The proof for the/-method is similar, but reversin®, (1/1)R) and(R,R). O
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3. The X r-condition

Let I be aZ-lattice. Given any sequence of Banach spddggs}, the vector valued
spacel” (E,,) is defined by

I(Ep) ={x = {xn}: xm € Ey and|xllpz,) = | {IlxnllE, }| - < o0}

We denote byQy : I'(E,;,) — Ei the projectionQ{x,,} = xx, and by P, : E, — ' (E,;)
the embeddingP.x = {§;,x} where ), is the Kronecker delta. If the sequentE,,}
reduces to a single Banach space, i&g,,= E for all m € Z, then we writel"(E) instead
of I'(E,).

Definition 3.1. We say that an operator ide@l satisfies theX -condition if for any
sequences of Banach spadés,}, { F,} and for any operatof € L(I'(E,), I'(Fy)), it
follows from QT P, € Z(E,, Fy) foranyr, k € Z thatT € Z(I'(E,), I' (Fy)).

For the special casE = ¢, this condition was investigated by Heinrich in [16]. To say
that7 satisfies theX'--condition means that the opera®r L(I"(E,,), I' (F,;)) belongs
to Z if and only if all elements of its matrix representation belongt&uch an ideal must
be closed as the following result shows.

Lemma 3.2.LetI" be aZ-lattice. Each operator ideal which satisfies theZ--condition
is closed.

Proof. Take any Banach spade, F and any sequence of operat¢i$},cn C Z(E, F)
with >"°° 1 1T, llg,F < oo. We should prove that the operatbr=Y_,>; 7, belongs to
Z(E, F). We may assume thi, || g r > O for eachn € N.

Since{||Tn||2/3p} €ty andtp = I'Y2(1")Y? (see [19]), we can find sequences=
{am} € ', B ={Bn} € I’ with non-negative coordinates, such thiat, |z r = «, B, for
alln e Nanda, = 8, =0 for all m € Z — N. Each operatoff,, can be factorized as
T, = S, R, WhereR, = g, 1T, andS, = B,Ir. PutR,, = S,, =0 form € Z — N.

The operatorR:E — I'(F) defined by Rx = {R,x}.cz is bounded because
IRx|lrry < llellrllx]l£. We claim thatR € Z(E, I'(F)). Indeed, the spacE can be re-
alized as a vector valued spatéE,,) if we choose, for exampleo = E andE,,, = 0O for
all m # 0. Since for any, k € Z,

0 ifr#0,

RP. = .
Ok {Rk ifr=0

belongs tdZ (E, F), the X -condition implies thaR € Z(E, I' (F)).
Let S:I"(F) — F be the operator defined 8(z,,} = > o Smzm = D oeq Buin-
We have:

m=—0oQ0

{lzmll | - = 1Bl r]

r'} {Zm}Hr(F)*
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so0 S is bounded. Sinc& = SR, we conclude thal' e Z(E, F). O

Clearly, if Z satisfies the¥ --condition then the identity operatér on I must belong
toZ.

As in the casd” = ¢, (see [16]), the following lemma will be useful later on to check
if an ideal satisfies th&V --condition.

Lemma 3.3.Let I" be aZ-lattice. An operator ideal satisfies thex'--condition provided
the following holds for any Banach spacEsF, G,, (m € Z):

fThe L(E,'(Gp)), Toe LUI'(Gp), F))andToP;Q,T1 € Z(E, F) forall s € Z, then
T2Th € Z(E, F).

Proof. Let {E,,}, {F,} be arbitrary sequences of Banach spaces andl letC(I"(E,,),
I'(Fy,)) such thatQy TP, € Z(E,, Fy) for anyr,k € Z. Fix anyr € Z and putT; =
TP € L(E,, T'(Fy)) and Tz = I, € LI (Fn), I'(Fy)). For anys € Z, we have
ToP;QsT1 = P(QsTPy), SOT2P;QsT1 € Z(E,, I'(Fy)). Assumption oriZ implies that
TP, € Z(E,, I'(Fy)).

Now take S1 = Ir(,,) € LU (En), '(Ep)) and S =T € L(I'(Ew), I'(Fy)). For
anyr € Z, we getS2P. Q0,51 = (TP,)Q, € Z(I'(En), I' (Fiy)). Hence, using again the
assumption off, we derive that” € Z(I' (E,,), I'(Fy)). O

Next we give an example of an ideal which satisfiEg-condition. We recall that
a Z-lattice I' is said to beregular if for any {&,},eny € I' with &, | O it follows that
I€: 1l - — 0 asn — oo.

Theorem 3.4.The idealW of weakly compact operators satisfies the-condition for
any reflexiveZ-lattice I".

Proof. Itis well known that ifI" is reflexive then it is regular. Hencg}* = I’ and for any
sequencéE,, } of Banach spaces it holds:

F(Ex)* =T"(E}) =T(E) (see[18]or[21]) (3.1)
Let {F,,}mez be another sequence of Banach spaces and let:
T € L(I'(Ep), I'(Fy)) such thatQyT P, € W(E,, Fy) for any r, k € Z. According to
Gantmacher’s theorem and (3.1), to check thas weakly compact we should show that

T*x™ e I'(F,) forallx™ e I'(E}). (3.2)

Butx*™* =lims_ Y ,__, P-Q,x**, so it suffices to establish (3.2) whefi* has finitely
many non-zero coordinates. Say,

sk k3k sk K3k K3k
X ={...,O,O,xfs,x_s+1,...,xs_l,xs ,0,0,...}.

We have:
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s n s
T Z T**P’x:*zn"_)moo Z Z PkaT**P,x;k*

r=-—s k=—nr=—s

n s
T K% ok
—n|l_[noo g g Pr(OxT P)™ x,™.

k=—nr=-—s

Using weak compactness of operat@sT P, we get that

n

> Z P(QkT P)**x* € I'(Fy).

k=—nr=-—s
This implies that **x** € I (F,,) becausd” (F},) is a closed subspace of
C(Fy) =T (Fn)*. O

In order to show other example, we recall that an operd&ter L(E, F) is said to
be aRosenthal operatoif for every bounded sequende,} C E, the sequencéT x,}
admits a weak Cauchy subsequence. By Rosenthal’'s theorem [29], the former condition is
equivalent to the fact that no subspacd@F) is isomorphic tof;. In other words[ (E)
does not contain a copy éf. Rosenthal operators form an injective and surjective operator
ideal.

Theorem 3.5.The idealR of Rosenthal operators satisfies th&--condition for any
Z-lattice I' which does not contain a copy 6f.

Proof. Accordingto Lemma 3.3, itis enough to show that for any Banach sgacEesG,,
(m € Z) and any operatorg, € L(E, I'(G)), T2 € L(I'(Gy,), F)) suchthatl>2 P;Q Ty €
R(E, F) foranys € Z, it holdsT>T1 € R(E, F). For this aim, take any bounded sequence
{xn}nen € E and let M =sup,enl{lixnll£}. Using thatT>PsQ,T1 € R(E, F), we can
find a subsequendg;,} of {x,} such that{ZiV:_N T2 Py Qs T1Xy tnen IS @ weak Cauchy
sequence for any € N. Let us check tha§T>T1%, }.cn is a weak Cauchy sequence.
Sincel” does not contain a copy éf, according to [31, Theorem 117.3], is regular.
Hence,[' (G,)* = I''(G}). Using again thaty ¢ I', it follows from [31, Theorem 117.2],
thatI™" is also regular. Whence, given apfye F* and anye > 0, we can findV € N with

&

N
T f — PO TS <— >
2/ Z 0T3S ) AM\T1llE, (G

s=—N

r'G;

Now, since{ZﬁV:_N T2 P; Qs T1Xy tnen is @ weak Cauchy sequence, there exite N such
that

< foralln, k > ng.

N
< Z TZPSQSTl(fn—)?k),f>

s=—N

NI ™
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Consequently, for any, k > ng, we obtain:

(T2 (% — %), f)] <

N
<T1(;C‘n_;k)a Tz*f_ Z PS‘QYTZ*f>‘

s=—N

+

N
<T1<)7n —%). Y P Qst*f>‘

s=—N
N

T3 f— ) PO f

s=—N

N
< Z TZPSQsTl(fn—SFk),f>‘

s=—N

L2MITAllE, 1 (G

r'Gs)

+

<£+s
<=+=-=¢.
2 2

This completes the proof.O0

The next example refers to Banach—Saks operators. Recall that an offesafdE, F)
is called aBanach—Saks operatdfrit maps bounded sequences into sequences possessing
Cesaro convergent subsequences. A Banach spaisesaid to have thdanach—Saks
propertyif the identity operatoi g is Banach—Saks.

Theorem 3.6.The idealB3S of Banach—Saks operators satisfies fie-condition for any
Z-lattice I' with the Banach—Saks property.

Proof. We follow the main lines of the proof for the cage= ¢, established by Heinrich
in [16]. Take any Banach space&s F, G,, (m € Z) and any operatorg, € L(E, I'(G,)),
To € L(I'(Gp), F)) with ToP,Q,T1 € BS(E, F) for any s € Z. Let {x,},eny € E be
any bounded sequence. Using tHetP, Q71 € BS(E, F) and applying a result of
Erdés and Magidor [14], for each € N we can find a subsequené€,} of {x,} such
that all subsequences ¢1>P;Q,T1x} are Cesaro convergent. It follows th@at,} has
a subsequendg;,} such tha{ 7> P, O T1 X, } is Cesaro convergent for allsimultaneously.

Leté&, = {1 QmT1XnllG, tmez. We havelé, || = IT1Xn (G, SO the sequendéy }nen
is boundedin. Sincel” has the Banach—Saks property, we may assumgihiahas been
chosen in such a way th#,} is Cesaro convergentifi. Let u = {1 }mez be its limit.
Banach-Saks property df implies also that’™ is regular, and sd{y," m}llr — 0 as
N — oo, where:

y_ [0 iflmI <N,
m 1 if jm|> N.

Combining this fact with the Cesaro convergenc&pj to ., we derive that for any > 0,
there isN € N such that for alh > N, it holds:
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Whence,

ZTz > PnOnTi¥,

j=1 |m|>N

<8.

Since

n n n
%;TZTJJ‘:%ZB > PQOTlfjJr%ZTz > PuQuTi¥;

j=1  Im|<N j=1  |m[>N

and{}_ <y T2Pn OnT1X;} jen is Cesaro convergent, it follows th{%t > i=1 21X j}nen
is a Cauchy sequence and therefore it is convergent.
The proof is complete. O

Banach—Saks operators form also an injective and surjective operator ideal.

4. Real interpolation and operator ideals

In this section we establish interpolation results for general couples by using the
X r-condition.

Theorem 4.1.Let I" be aK-non-trivial Z-lattice withg, € Po, and letZ be an injective
and surjective operator ideal which satisfies_tﬁ)e-condition. Supposd = (Ap, A1),
B = (Bo, B1) are Banach couples and |1&te £(A, B). Then

T eZI(Ar.x.Br.x) ifandonlyif T eZ(AgN A1, Bo+ B).

Proof. Assume thaf’ €Z(AoNA1, Bo+ B1). Sincel is surjective angk € Po, applying
Lemma 2.3 we get thaf € I(A]" k. Bo+ Bi1). Let Fy, be the spacéy + B1 endowed
W|th the normkK (2",.), m € Z, and letT : Ar. Kk = I'(Fp) be the operator defined by
Tx—{ ,Tx,Tx,Tx,...}. For eachneZ QmT T belongs taZ(Ar.k, Fy,). Then,
the Xp- condltlon |mpI|es thatT e Z(Ap k., T (Fy)). Now we consider the |sometr|c
embeddingj: Br.x — I'(F,) given by j(y)={...,y,y,y,...}. SincejT = T, using
the injectivity of Z, we conclude thal' € Z(Ar.x, Br.x).

Obviously, ifT € Z(Ar.x, Br.x) thenT € Z(AgN A1, Bo+ B1). O

The result for the/-method reads:
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Theorem 4.2.Let I' be aJ-non-trivial Z-lattice with ¢ € Po, and letZ be an injective
and surjective operator ideal which satisfies_tﬁ)e-condition. Supposd = (Ag, A1),
B = (Bo, B1) are Banach couples and léte L(A, B). Then

T eZI(Ar.s,Br.;) ifandonlyif T e€Z(AoN A1, Bo+ B).

Proof. We only need to prove thdt € Z(AoN A1, Bo + By) impliesT € Z(AF;J, Br.;)
because the converse implication is cleaf’ ¥ Z(AgN A1, Bo + B1), SinceZ is injective
andg; € Po, Lemma 2.2 yields thal € Z(AoN A1, Br.j). LetG,, be the spacdonN A;
with the normJ (2", .), m € Z, and Ietf:F(Gm) — Br.; be the operator defined by
T{um}=T(X°_ . un). For eachn € Z, T P, = T belongs taZ(G,,, Br.;). Whence,
according to theX-condition, T e I(I'(Gn), Br.y). Let m: ' (Gp) — AF;J be the
metric surjection given byr{u,} = > o~ un,. Using thatZ is surjective, it follows

fromT =Tx thatT € Z(Ar.;, Br.y). O

Remark 4.3.Lemma 2.5 gives a sufficient condition fpg € Py andg’ € Po in terms of
shift operators or".

Combining Theorems 4.1 and 4.2 with the results of Section 3 we derive:

Corollary 4.4. Let I" be a reflexiv%—lattice. LetA = (Ag, A1) and B = (Bg, B1) be
Banach couples, and 16t € £(A, B) suchthatl : Agn A1 — B+ Bj is weakly compact.

(i) If I" is K-non-trivial with ¢, € Py, thenT : 51‘;[{ —>_§p;K is weakly compact.
(ii) If I"is J-non-trivial with ¢ € Po, thenT : Ar,; — Br,; is weakly compact.

Corollary 4.5. Let I be aZ-lattice which does not contain a copyfaf LetA = (Ag, A1),
B = (Bo, B1) be Banach couples, and I&te £(A, B) such thatT : AgN A; — Bg + B1
is Rosenthal.

(i) If I' is K-non-trivial with ¢, € Po, thenT : 51*;[( —>_§p;K is a Rosenthal operator.
(i) If I" is J-non-trivial with ¢} € Po, thenT : Ar.; — B, is a Rosenthal operator.

Corollary 4.6. Let I be aZ-lattice with the Banach—Saks property. Lét= (Ao, A1),
B = (Bo, B1) be Banach couples, and I&te £(A, B) such thatT : AgN A; — Bg + B1
is Banach—Saks.

i is K-non-trivial with ¢, € Po, thenT:Ap.x — Br.x is a Banach-Saks

If I''is K t | with ¢, € Po, thenT: Ar. Br. B h—-Sak
operator. ) B

ii is J-non-trivial with ¢*% € Pg, thenT : Ar.; — B.; is a Banach—Saks operator.
If risJ trivial with % € Po, thenT : Ar,; — Br. Banach—Saks operat

All results for theJ-method are new. The results for tkemethod comprise several
known theorems. To be precise:
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(a) Corollary 4.4/(i) is a result of Aizenstein and Brudf¥, Theorem 4.6.8] (see also the
paper by Mastylo [22, Corollary 11]). Writing down the special case 64(2‘9’")
with 1 < g < 0o, 0 < 6 < 1, we recover results of Heinrich [16] and Maligranda and
Quevedo [20, Theorem 1]. In particularlif= Eq(2‘9m), A = B andT is taken to be
the identity operator, we get a well-known result of Beauzamy [1, Proposition Il. 2.3],
on reflexivity of spacesAo, A1)e,q-

(b) Corollary 4.5/(i) forA = B andT = I is due to Mastylo [21, Theorem 3.3]. The special
casel’ = 64(2*9’”) withl<g <o00,0<6 <1, andT = I is a result of Beauzamy
[1, Proposition Il. 3.3], on copies @ in (Ao, A1)g,q.

(c) If we write down Corollary 4.6/(i) forA = B, T =1 and I' = ¢,(27%") with
1<gq <o00,0<0 <1, we recover a result of Heinrich [16, Corollary 2.5/(i)].

In the last three corollaries, we are assuming that the identity operator lmelongs
to 7 to get thatZ satisfies theX'--condition. The corollaries fail in generalif- ¢ Z. Easy
counterexamples can be constructed, taking evenB andT = I. However, we show
next that under a very restrictive condition on the couple, a positive result still holds when
Ir¢Z.

Proposition 4.7.Let I" be a K- and J-non-trivial Z-lattice, and letZ be an injective
operator ideal. Supposé = (Ag, A1) is a Banach couples. If the embedding

i:ApgN A1 — Ao+ A1
belongs tdZ and its range is closed, then the identity operatdfs ., I5,., belong toZ.

Proof.
As we pointed out in Section 2

AoN A1 Ap.gx = Ar.j < Ao+ A1
Moreover,AgN A; is dense irﬁp;J for the norm ofAg + Aj. Therefore, if
i:ApNA1— Ao+ As
has closed range, we obtain that
AoNA1=Apr.x =Ar,; = Agn Aot

with equivalent norms. Now using that the embeddingo N A1 — Ag + A1 belongs to
7 and that? is injective, we conclude that identity operatéis. ., Iz, , belongtoZ. O

Given any operator idedl and anyZ-lattice I" it is clear that/; . € T(Ar.x,Ar.x)
implies that the embedding Ao N A1 — Ag + A3 belongs tdZ. But it is false in general
that the embedding has closed range. Even if we ask, in addition tisainjective and
Ir ¢ Z(I', I'). Next we show it by means of an example.
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Counterexample 4.8Let 0< 0 < 1 and put:

—00

12 o
r= :{ém}mez: ||{sm}||r=( > (2‘9'”|sm|)2> +Y 279, <oof.

m=—1 m=0

It is easy to check thaf” is a K-non-trivial Z-lattice. Take any ordered Banach couple
A = (Ap, A1), thatis, a paird; — Ag, with the embedding having norm 1. We claim that

(Ao, A1) .k = (Ao, A1)p,2 (equivalent norms)
Indeed, we have:
K(t,a)=llalla, fort>1, tlallap < K(t,a) forO<t <1
Whence,
—00

1/2
1 —om g om\2
”a”Ar:K:m”“”AO""( Z (27'mKk (2", a)) )

m=—1

1-6)(1 _ 2—(1-0)2y1/2 —00 1/2
g[2 (127002 +1]<Z(2_9m,((2m’a))z>

1-29

m=—1

~ llall(Ag. A1) 25

where ~ means equivalence with constants which do not depend.ddow choose
0 =1/2,7=W andA = (s, £1). The embedding: £1 — £+ is weakly compact, the
Z-lattice I' is not reflexive, the interpolation spadeh;K = (oo, £1)1/2,2 = L2 is reflexive,
but the embedding: £; — ¢~ does not have closed range.

The counterexample uncover an inaccuracy in [28]: Theorem 1/(b) is not true in general.

References

[1] B. Beauzamy, Espaces d'interpolation réels: topologie et géométrie, in: Lecture Notes in Math., vol. 666,
Springer-Verlag, Berlin/New York, 1978.

[2] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.

[3] J. Bergh, J. Lofstrom, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin/New York, 1976.

[4] Y. Brudnyi, N. Krugljak, Interpolation Functors and Interpolation Spaces, vol. 1, North-Holland, Amster-
dam, 1991.

[5] A.P. Calderén, Spaces betweért and L and the theorem of Marcinkiewicz, Studia Math. 26 (1966)
273-299.

[6] F. Cobos, M. Cwikel, P. Matos, Best possible compactness results of Lions—Peetre type, Proc. Edinburgh
Math. Soc. 44 (2001) 153-172.

[7] F. Cobos, L.M. Fernandez-Cabrera, A. Martinez, Compact operators betkeamd J-spaces, Studia
Math., in press.



432 F. Cobos et al. / J. Math. Pures Appl. 83 (2004) 417-432

[8] F. Cobos, A. Manzano, A. Martinez, Interpolation theory and measures related to operator ideals, Quart. J.
Math. 50 (1999) 401-416.
[9] F. Cobos, A. Manzano, A. Martinez, P. Matos, On interpolation of strictly singular operators, strictly

cosingular operators and related operator ideals, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 971-989.

[10] F. Cobos, A. Martinez, Extreme estimates for interpolated operators by the real method, J. London Math.
Soc. 60 (1999) 860-870.

[11] M. Cwikel, J. Peetre, Abstradt andJ spaces, J. Math. Pures Appl. 60 (1981) 1-50.

[12] W.J. Davis, T. Figiel, W.B. Johnson, A. Pelémki, Factoring weakly compact operators, J. Funct. Anal. 17
(1974) 311-327.

[13] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, in: Cambridge Stud. Adv. Math., vol. 43,
Cambridge Univ. Press, Cambridge, UK, 1995.

[14] P. ErdBs, M. Magidor, A note on regular methods of summability and the Banach—Saks property, Proc.
Amer. Math. Soc. 59 (1976) 232-234.

[15] J. Gustavsson, A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42
(1978) 289-305.

[16] S. Heinrich, Closed operator ideals and interpolation, J. Funct. Anal. 35 (1980) 397-411.

[17] S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981) 50-73.

[18] S.G. Krén, Ju.l. Petunin, E.M. Semenov, Interpolation of Linear Operators, Amer. Math. Soc., Providence,
RI, 1982.

[19] G.Ya. Lozanovskii, On some Banach lattices, Siberian Math. J. 10 (1969) 419-431.

[20] L. Maligranda, A. Quevedo, Interpolation of weakly compact operators, Arch. Math. 55 (1990) 280-284.

[21] M. Mastylo, Interpolation spaces not containiéty J. Math. Pures Appl. 68 (1989) 153-162.

[22] M. Mastylo, On interpolation of weakly compact operators, Hokkaido Math. J. 22 (1993) 105-114.

[23] B.S. Mitjagin, An interpolation theorem for modular spaces, Mat. Sbornik 66 (1965) 472—-482.

[24] P. Nilsson, Reiteration theorems for real interpolation and approximation spaces, Ann. Mat. Pura Appl. 132
(1982) 291-330.

[25] P. Nilsson, Interpolation of Calderén and Ovchinnikov pairs, Ann. Mat. Pura Appl. 134 (1983) 201-232.

[26] J. Peetre, A theory of interpolation of normed spaces, Notes Mat. 39 (1968) 1-86. Lecture Notes, Brasilia,
1963.

[27] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.

[28] A. Quevedo, Some remarks on the reflexivity of the real interpolation space, J. Math. Anal. Appl. 162 (1991)
189-195.

[29] H.P. Rosenthal, A characterization of Banach spaces contaépingroc. Natl. Acad. Sci. USA 71 (1974)
2411-2413.

[30] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

[31] A.C. Zaanen, Riesz Spaces Il, North-Holland, Amsterdam, 1983.



