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Abstract

In this paper we study in1nite episturmian words which are a natural generalization of Sturmian
words to an arbitrary alphabet. A characteristic property is: they are closed under reversal and
have at most one right special factor of each length. They are 1rst obtained by a construction
due to de LUCA which utilizes the palindrome closure. They can also be obtained by the way
of extended RAUZY rules. c© 2001 Elsevier Science B.V. All rights reserved.
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0. Introduction

In [5] de Luca makes a deep study of 1nite Sturmian words and gives a characteri-
zation of standard Sturmian (in1nite) words, namely if un is a palindrome pre1x of the
in1nite word, then un+1 = (unxn)(+) is also a palindrome pre1x for some xn ∈{a; b},
where v(+) denotes the palindrome right closure of v, i.e. the shortest palindrome hav-
ing pre1x v. As we shall see this property is equivalent to the following one, Al: an
in1nite word s has Al if for any pre1x v of s; v(+) is also a pre1x of s.

On the other hand, we have observed another characteristic property of standard
Sturmian words, Pi: an in1nite word s has Pi if any leftmost occurrence of a palindrome
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in s is a central factor of a pre1x palindrome of s. Finite Sturmian words have also
the following property, Ju: a word has Ju if it has a palindrome suHx with no other
occurrence in it.
In Section 2, we study the relations between these properties in the case of an

arbitrary alphabet. In particular, we prove the non-trivial equivalence between Al and
Pi. In Section 3, we apply this to a two letter alphabet and obtain a simple and short
proof of de Luca’s characterization.
The in1nite words considered in Section 2 are a natural and promising generalization

to an arbitrary alphabet of the standard Sturmian words. So in Section 4 we call them
standard episturmian and study some of their properties. In particular (Theorem 5),
an in1nite word is episturmian if and only if it is closed under reversal and has at
most one right special factor of each length. It appears that, at least in the case that
we call strict episturmian and with a three letter alphabet, they have been evoked by
Rauzy [11] and, together with Arnoux, studied in [1], so it could perhaps be better
to call them Rauzy words. We prove the equivalence of their various de1nitions, we
begin the study of morphisms preserving these words and we also mention some open
problems.
Let us also recall that generalizations of Sturmian words in other directions have been

considered by several authors (see notes of Berstel and Seebold [2] for a bibliography),
in particular the billiard sequences which generalize the de1nition of Sturmian words
by cutting sequences [12].

1. Preliminaries

1.1. Words

Given a set A (alphabet) whose elements are called letters, the free monoid A∗
generated by A is the set of the (1nite) words on A. The empty word is denoted by �.
If u= u(1)u(2) · · · u(m); u(i)∈A, is a word, its length is |u|=m. Also |u|x; x∈A, is
the number of occurrences of x in u. Lastly ũ denotes the reversal of u, i.e. the word
u(m)u(m− 1) · · · u(2)u(1). A word equal to its reversal is a palindrome.
In the same way, an in>nite word s is an in1nite sequence s= s(1)s(2) · · · s(i) · · · ; s(i)

∈A; i ∈ N+ =N\{0}. The set of in1nite words on A is A!. For a 1nite or in1nite
word t, the word w= t(i)t(i+1) · · · t(j) is a factor of t (proper factor if w 	= t). It is a
pre>x of t if i=1. If t ∈A∗ and |t|=m, then w is a su?x of t if j=m. Also we speak
of an occurrence of w in t if we consider w together with its position in t de1ned,
for instance, by i or by a pre1x uw; u∈A∗ of t. The factor w of t is unioccurrent in
t if it has exactly one occurrence in t. Lastly, given two occurrences of w in t given
by the pre1xes uw and u′w of t, the shift between them is ||u| − |u′||. Let u; v be two
palindromes, then u is a central factor of v if v=wuw̃ for some w∈A∗.
Let m∈A∗ ∪A!. Then F(m) denotes the set of the factors of m and the alphabet

of m is Alph(m)=F(m)∩A. Also m is closed under reversal if ũ∈F(m) whenever
u∈F(m).
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Given, u∈A∗, its palindrome right- (resp. left-) closure is the (unique) shortest
palindrome w= u(+) (resp. w= u(−)) which has pre1x (resp. suHx) u [5].
A word is primitive if it is not a power of some shorter word. An in1nite word s is

ultimately periodic if it can be written s= uvvv · · · = uv! for u∈A∗ and v a primitive
word (periodic if u= �).
Let s be an in1nite word, then a factor u of s is right (resp. left) special in s if

there exist x; y∈A; x 	= y, such that ux; uy∈F(s) (resp. xu; yu∈F(s)). Clearly, if s
is closed under reversal, its right special factors are exactly the reversals of its left
special factors.
Finally, an in1nite word s is uniformly recurrent if for each u∈F(s) there exists k

such that u∈F(w) for any w∈F(s) with |w|= k.

1.2. Sturmian words

Sturmian words, whose theory was founded by Morse and Hedlund 60 years ago in
the frame of symbolic dynamics, are extensively studied (see [2] for a survey).

De�nition 1 (Berstel and Seebold [2]; Crisp et al. [3]; de Luca [5]; Justin and Pirillo
[7]). Let �; � be real numbers in [0,1] with � irrational. A Sturmian word on {a; b}
is an in1nite word s given either by

s(n)=
{

a if��+ (n+ 1)� − ��+ n�=0;
b otherwise

or by

s(n)=
{

a if��+ (n+ 1)�� − ��+ n��=0;
b otherwise:

Some interesting geometrical equivalent de1nitions are known, cutting sequences in
particular.

De�nition 2. A Sturmian word is standard if �=0 in De1nition 1.

De�nition 3. A word is a >nite Sturmian word if it is a factor of some (in1nite)
Sturmian word.

Some useful properties [2] are recalled hereafter.
• An in1nite word is Sturmian if and only if for every n it has exactly n+ 1 factors

of length n.
• A 1nite or in1nite non-ultimately-periodic word u is Sturmian if and only if it is
balanced, that is whenever w; w′ are factors of u with |w|= |w′| we have ‖w|a −
|w′|a|61.

• An in1nite word on two letters is standard Sturmian if and only if its pre1xes are
exactly its left special factors.
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2. Palindrome factors

In this section the alphabet A is arbitrary.

De�nition 4. A word w has property Ju (resp. LJu) if there exists a palindrome suHx
(resp. pre1x) of w which is unioccurrent in w.

Clearly, if w has Ju it has exactly one unioccurrent palindrome suHx v and this one
is the longest palindrome suHx of w, moreover if w= uv, then w(+) = uvũ.

Now, for u∈A∗, let P(u) denote the number of diOerent palindrome factors of u.
We have

Proposition 1. P(w) is the number of pre>xes (resp. su?xes) of w which have Ju
(resp. LJu).

Proof. For any u∈A∗ and x∈A, we have:
P(ux)=P(u) if ux has not Ju,
P(ux)=P(u) + 1 if ux has Ju.
The result for Ju follows by induction as P(�)= 1.

In particular, we have the trivial but seemingly not widely known fact

Proposition 2. A word w has at most |w|+ 1 diAerent palindrome factors.

Also

Proposition 3. A word w has exactly |w|+1 palindrome factors if and only if all its
pre>xes (resp. su?xes) have Ju (resp. LJu).

Corollary 1. If P(w)= |w| + 1 then for any factor u of w; P(u)= |u| + 1. In other
words; the language of all such w is factorial.

Proof. Let w=w′uw′′. Then by Proposition 3 all pre1xes of w′u have Ju whence,
again by Proposition 3, all suHxes of u have LJu, that is P(u)= |u|+ 1.

De�nition 5. An in1nite word s has property Al if, for any pre1x u of s; u(+) is also
a pre1x of s.

De�nition 6. An in1nite word s has property Pi if every leftmost occurrence of a
palindrome in s is a central factor of a palindrome pre1x of s.

Theorem 1. For an in>nite word s∈A! the following conditions are equivalent
(i) s has Al;
(ii) s has Pi;
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(iii) there exist an in>nite sequence u1 = �; u2; u3; : : : of palindromes and an in>nite
word �(s)= x1x2x3 · · · ; xi ∈A; such that un+1 = (unxn)(+) for all n¿1 and that
all the un are pre>xes of s.

Remark. When s satis1es (iii), u1; u2; u3; : : : are all the palindrome pre1xes of s in
increasing length order, because if some palindrome pre1x u of s would satisfy |un| ¡
|u|¡|un+1| we would have |(unxn)(+)|6|u|¡|un+1|, a contradiction.

Proof. (iii) ⇒ (i): With notations as in (iii) let u be any non-empty pre1x of s. There
exists n such that |un|¡|u|6|un+1|. As unxn is a pre1x of u; |(unxn)(+)|6|u(+)|; as un+1

is a palindrome |u(+)|6|un+1|. So |u(+)|= |un+1| and by the unicity of the palindrome
right closure of unxn we get u(+) = un+1. Consequently s has Al.
(i) ⇒ (ii): Let v be any palindrome factor of s with its leftmost occurrence given

by s= uvs′; u∈A∗; s′ ∈A!. If v is not the longest palindrome suHx of uv we have
uv= u′wv with w 	= � and wv a palindrome, whence uv= u′vw̃ and this is a contradic-
tion as |u′|¡|u|. So v is the longest palindrome suHx of uv, whence (uv)(+) = uvũ. As
s has Al; uvũ is a pre1x of s and so v is a central factor of a palindrome pre1x of s.
For the more diHcult proof of (ii) ⇒ (iii) we require a lemma

Lemma 1. If an in>nite word s on an alphabet A has property Pi; then all its pre>xes
have Ju.

Proof. By induction on n= |w|, where w is pre1x of s, we exhibit a palindrome
w2 suHx of w and unioccurrent in it, which is trivial for n=1. Let w= vx, where
x∈A; v∈An; (|w|= n+ 1) and s=wt with t ∈A!.
The induction allows to set v1 ∈A∗; v2 ∈A+ with v= v1v2 and v2 palindrome unioc-

current in v. Then Pi involves that v1v2ṽ1 is a pre1x of s. If v1 	= �; x is pre1x of
ṽ1 and w2 = xv2x is the palindrome suHx of w which is unioccurrent in it, since v2 is
unioccurrent in v.
Let us suppose now that v1 = �, so v= v2 is a palindrome. Either x is unioccurrent in

w and w2 = x is obviously the unique palindrome suHx of w, or, let ux be the pre1x
of v such that x is unioccurrent in ux, and |u|¡|vx|= n+1. We 1rst prove that u is a
palindrome: the case x pre1x of v being clear since u= � is clearly a palindrome, we
now suppose u 	= �. By induction we can set u1 ∈A∗; u2 ∈A+ with u= u1u2 and u2 a
palindrome unioccurrent in u. Again, the assumption u1 	= � with Pi would involve that
u1u2ũ1 is a pre1x of s, and would contradict the unioccurrence of x in ux. So u1 = �,
and u= u2 is a palindrome. Now we can choose qx, the longest pre1x of v with q a
palindrome. As v is a palindrome, xqx is clearly a palindrome suHx of w= vx, and the
proof is complete if we show that w2 = xqx is unioccurrent in w. If it is not true, we
set v= oxqxp with o; p∈A∗ such that xqx is unioccurrent in oxqx. Let us prove that
l= oxq is a palindrome. Otherwise there exists by induction l1; l2 ∈ A+ with l= l1l2
and l2 a palindrome unioccurrent in l. Moreover l2 	= q (q is a pre1x of l since it is
a pre1x of v and thus q is not unioccurrent in l), so l1l2l̃1 is, from Pi, a pre1x of s
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and x is a pre1x of l̃1. Thus xl2x and xqx would be two distinct palindrome suHxes
of lx, both unioccurrent in it! So l is a palindrome with lx a pre1x of v, but then, as
|l|¿|q|, this contradicts the choice of q, and thus w2 is unioccurrent in w.

(ii) ⇒ (iii): Now s has Pi. Let us build the sequences (un)n¿1 and �(s) as denoted in
(iii). Clearly, u1 = � and x1 is the letter pre1x of s. Then we can set u2 = (u1x1)(+) = x1
and x2 is the letter such that u2x2 is a pre1x of s, with |u2|¿|u1|. By induction on
n, the above Lemma 1 ensures the existence of a unioccurrent palindrome suHx vn of
unxn, and the leftmost occurrence of vn in s is given by s=wvns′ = unxns′, for some
w∈A∗; s′ ∈A!. So with Pi, vn is a central factor of a palindrome pre1x of s, say u′.
Moreover, vn is the longest palindrome suHx of unxn, so that it is exactly a central
factor of u′ =(unxn)(+). Setting un+1 = (unxn)(+) which is a palindrome pre1x of s, and
xn+1 the letter such that un+1xn+1 is a pre1x of s, the proof is over.
From now on, �(s) will be called the directive word of s.

Corollary 2. If an in>nite word satis>es the (equivalent) conditions of Theorem 1;
then any factor w of it has exactly |w|+ 1 palindrome factors.

Proof. By Lemma 1 all pre1xes have Ju, so by Proposition 3 any factor w has exactly
|w|+ 1 palindrome factors.

Remark. The in1nite words having Al are, by Corollary 2, “rich” in palindrome factors.
For example, by Corollary 4 hereafter, the well-known [2] Fibonacci word abaababa · · ·
has this property. On the contrary, it is easy to 1nd in1nite words which are “poor”
in palindrome factors, for example (abc)! whose unique palindromes are a; b; c, and
for a non-periodic example, the image of the Fibonacci word by the morphism a �→
ac; b �→ b, whose unique palindromes are a; b; c and aca.

Proposition 4. If an in>nite word s satis>es the (equivalent) conditions of Theorem 1;
then it is closed under reversal.

Proof. This is trivial as any factor of s is a factor of some palindrome pre1x of s.

Theorem 2. If an in>nite word s satis>es the (equivalent) conditions of Theorem 1;
then it is uniformly recurrent.

Proof. Following the notations of (iii) of Theorem 1, the palindrome pre1xes of
s; u1 = �; u2; u3; : : : satisfy ui+1 = (uixi)(+); xi ∈A. It suHces to show, given any factor
v of s, that v has in1nitely many occurrences in s: this is trivial, and that the shift
between successive occurrences of v is bounded. Without loss of generality, we may
suppose that v is a palindrome pre1x of s, that is v= um for some m. For n¿m; v
is a pre1x and a suHx of un. Let kn be the maximum shift between successive oc-
currences of v in un. As un is pre1x and suHx of un+1 and |un+1|62|un|+ 1, we get
kn+16max(kn; |v|+1). For the same reason km+16|v|+1. Hence for all i¿m, we have
ki6|v|+ 1.
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Theorem 3. An in>nite word s having Al is ultimately periodic if and only if its direc-
tive word �(s) has the form gx!; g∈A∗; x∈A. In this case; s is even
periodic.

Proof. If s is ultimately periodic, let s=fv!; f∈A∗ and v a primitive word. There
exists n such that for i¿n the palindrome pre1x ui de1ned in (iii) of Theorem 1
satis1es |ui|¿|fv|. Consider two such palindromes ui; uj; n6i¡j. Then ui =fvpv′,
uj =fvqv′′; p; q positive integers and v′; v′′ proper pre1xes of v. As ui is a suHx
of uj; vpv′ is a suHx of vqv′′ whence, as v is primitive, v′ = v′′. Consequently, the
letters xi; xj following respectively ui; uj are the same, x say, whence �(s)= x1x2 · · ·
xn−1x!.
Conversely, let �(s)= x1x2 · · · xn−1x!. As s satis1es condition (iii) of Theorem 1,

ui+1 = (uix)(+) for i¿n. Now, for i¿n; xuix is the longest palindrome suHx of ui+1x
because ui is the longest palindrome proper pre1x (and suHx) of ui+1. Let un+1 = cxun,
c∈A∗. Then un+2 = (cxunx)(+) = cxunxc̃= cxun+1, and continuing in the same way,
un+j = cxun+j−1, for j¿1. It follows un+j =(cx) jun, for j¿0 whence s=(cx)!, that
is s is periodic.

Corollary 3. If the in>nite word s has Al and is not periodic; then all its pre>xes
are left special factors.

Proof. Let u be a pre1x of s. Then ũ is a suHx of all palindrome pre1xes ui of s such
that |ui|¿|u|. As s is not periodic, by Theorem 3, two letters at least occur in1nitely
many times in �(s)= x1x2 · · ·. So the occurrences of ũ in s are followed at least by
two diOerent letters, and ũ is right special in s.

In order to prove Proposition 5 hereafter which completes Corollary 3, we require
a lemma

Lemma 2. Let s be an in>nite word having Al and u be a factor of s. With the
notations of (iii) in Theorem 1; let r be such that u∈F(ur+1)\F(ur); and write
ur+1 =ded̃ with urxr =de; d; e∈A∗; and e being the unioccurrent palindrome su?x
of urxr . Then
(a) the leftmost occurrence of u in the pre>x ur+1 of s is given by ur+1 =ded̃= cuc′

= cfef′c′; with c; c′; f; f′ ∈A∗. In particular; e is a factor of u=fef′

(b) if u is a palindrome; then f̃=f′ and e is a central factor of u
(c) if u= xvy; with x; y∈A and v a palindrome pre>x of s; then u is either a su?x

of urxr or a pre>x of xrur .

Proof. (a) As u∈F(ur+1), putting into evidence the leftmost occurrence of u, we have
ur+1 = cuc′ for some c; c′ ∈A∗. As u =∈ F(ur) and ur+1 = urxrd̃ we have |cu|¿|urxr|
whence |c′|6|d|. In the same way, |c|6|d|. So writing d= cf; d̃=f′c′; f; f′ ∈A∗,
we get ur+1 = cuc′ = cfef′c′, whence u=fef′.
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(b) As ur+1 and u are palindromes we have ur+1 = cuc′ = c̃′uc̃. So |c|6|c′| because u
is a unioccurrent suHx of cu. As ur+1 = cfef′c′ = cf̃′ef̃c′ and as e is a unioccurrent
suHx of cfe, we have |cf|6|cf̃′| whence |f|6|f′|. As |cf|= |c′f′|= |d| we get
|c|= |c′|; |f|= |f′|. So e is a central factor of u.
(c) We have u= xvy=fef′. If |f|¿1 and |f′|¿1, then e is a factor of v. As v is

a palindrome pre1x of s, shorter than ur+1; e is a factor of ur , a contradiction. So we
have, for instance, f′ = � whence urxr = cfe= cu. Similarly if f= �, then xrur = uc′.

Proposition 5. If the in>nite word s has Al; then all its left special factors are pre>xes
of it.

Proof. If this is false, let u be a shortest left special factor of s which is not a pre1x of
s. Let u= vx; x∈A. Then v is left special, hence is a pre1x of s. So vz is a pre1x of s
for some z ∈A; z 	= x. So v is right special. So ṽ is a pre1x of s whence v= ṽ. As u is
left special we have yvx; y′vx∈F(s) for some y; y′ ∈A; y 	=y′. Appling Lemma 2(c)
to yvx we get that yvx or xvy is a pre1x of xrur for some r. Clearly |ur|¿|v|, so vz
is a pre1x of ur whence z ∈{x; y}. As z 	= x, we get z=y. In the same way z=y′

whence y=y′, a contradiction.

3. Case of a two letter alphabet

Now the alphabet is A= {a; b}. If x∈A we denote by Sx the other letter of A. The
in1nite words satisfying Theorem 1 can be completely characterized: the equivalence
between (iii) and (iv) in Theorem 4 hereafter is due to de Luca [5, Theorem 5 and
Proposition 11]. Indeed his formulation of (iii) makes use of palindrome left closure
(-) but this amounts to the same thing. Here we prove in a simple way de Luca’s
result with the help of Section 2.

Theorem 4. For an in>nite non-ultimately-periodic word s on the two letter alphabet
A= {a; b}; the following conditions are equivalent
(i) s has Al;
(ii) s has Pi;
(iii) there exist an in>nite sequence of palindromes u1 = �; u2; u3; : : : and an in>nite

word �(s)= x1x2x3 · · · ; xi ∈A; �(s) ∈ A!\(A∗a! ∪A∗b!) such that the ui are
pre>xes of s and ui+1 = (uixi)(+) for all i¿1;

(iv) the in>nite word s is standard Sturmian.

Proof. The equivalence among (i), (ii) and (iii) follows from Theorems 1 and 3.
(iv) ⇒ (ii): Here s is standard Sturmian. Suppose it has not Pi. Then there ex-

ist a shortest u ∈ A∗, a palindrome v unioccurrent in uv and s′ ∈ A! such that
s= uvs′ and ũ is not a pre1x of s′. Clearly u 	= � so putting u= u′x; u′ ∈A∗; x∈A
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and s′ =ys′′; y∈A; s′′ ∈ A! we have s= u′xvys′′. If x=y; xvx= v′ is unioccurrent
in u′v′ and u′v′ũ′ = uvũ is not a pre1x of s. As this contradicts the minimality of |u|
we have x 	=y. So s= u′xv Sxs′′. So xv; v Sx and their reversals vx; Sxv are factors of s.
So v is left special and is a pre1x of s, a contradiction with (iv).
(i) ⇒ (iv): Now s satis1es Theorem 1. So by Proposition 5 it has at most one left

special factor of each length and as it is not ultimately periodic it has exactly one.
As by Proposition 5 these left special factors are pre1xes, we get that s is standard
Sturmian.

Corollary 4. Any >nite Sturmian word u has Ju and has exactly |u| + 1 diAerent
palindrome factors.

Proof. This follows from Corollary 2 and Theorem 4.

4. Episturmian words

In this section the alphabet A is 1nite.

4.1.

The words satisfying Theorem 1 are very similar to standard Sturmian words and as
we will see have several similar properties. So we introduce the following de1nition

De�nition 7. An in1nite word s is standard episturmian if it satis1es the equivalent
conditions of Theorem 1.
An in1nite word t is episturmian if F(t)=F(s) for some standard episturmian

word s.

The second part of this de1nition is justi1ed by the uniform recurrence property
(Theorem 2) and the analogy with Sturmian words.
An episturmian word is periodic (resp. aperiodic) if the corresponding standard epis-

turmian word is periodic (resp. aperiodic).
The case of periodicity is given by Theorem 3. The next theorem gives a character-

ization of episturmian words.

Theorem 5. Let s be an in>nite word on the >nite alphabet A; then the following
conditions are equivalent:
(i) s is episturmian;
(ii) s is closed under reversal and has at most one right special factor of each length.

Proof. (i) ⇒ (ii): It suHces to prove this for standard episturmian words, and this
follows immediately from Propositions 4 and 5.
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(ii) ⇒ (i): Remark that as s is closed under reversal,then any factor of s has in-
1nitely many occurrences in s. Construct a “standard” in1nite word )(s) as follows:
(a) if s has exactly one left special factor of each length, then )(s) is the in1nite

word whose pre1xes are those factors;
(b) if not, s is ultimately periodic and even is periodic as each factor occurs in1nitely

many times. Let u be the longest left special factor of s and for one of its occur-
rences, write s=fus′; f∈A∗; s′ ∈A!. Then )(s)= us′.

We prove 1rst that )(s) has Pi. If not there is a leftmost occurrence of a palindrome
w in )(s) such that )(s)= uxvwṽys′ for some u; v∈A∗; s′ ∈A!; x; y∈A; x 	=y.
As yvwṽx∈F(s); vwṽ is left special in s, whence )(s)= vwṽs′′; s′′ ∈A! and this
contradicts the fact that the occurrence of w considered previously was the leftmost
one. Consequently, )(s) is standard episturmian.
Let us show now that F(s)=F()(s)). If s is periodic this is evident by the de1nition

of )(s). If not, let u be any factor of s and let s(i)s(i + 1) · · · s(i + k − 1) and
s(j)s(j + 1) · · · s(j + k − 1) be two occurrences of ũ in s with k = |u| and j ¿ i. If ũ
is not right special we have s(i+ k)= s(j+ k). Continuing this way we see that either
s(i + q)= s(j + q) for all q¿0 or ũ is a pre1x of some right special factor of s. The
1rst case is impossible as s is not periodic. So u is a factor of some left special factor
of s, whence u∈F()(s)). So F(s)=F()(s)) and s is episturmian.

Remark. The condition of closure under reversal cannot be deleted from (ii). Indeed
replace in the Fibonacci word abaab · · · each b by bc, then we get the in1nite word
abcaabcabc : : : which has exactly one left (resp. right) special factor of each length
but is not episturmian because it is not closed under reversal.

4.2. Complexity of episturmian words

Recall that the complexity function p of an in1nite word s is given by p(n)= |An∩
F(s)| for all n∈N.

Theorem 6. Let s be a standard episturmian word with sequence of palindrome
pre>xes u1 = �; u2; : : : and �(s)= x1x2 · · · as in (iii) of Theorem 1. Then for n∈N+

and x∈A; unx∈F(s) if and only if x occurs in xnxn+1 : : : .

Proof. If part: If x= xq for some q¿n, then uqxq is a pre1x of s, hence its suHx unxq
is a factor of s.
Only if part: Let unx∈F(s); x∈A, and consider a factor yunx; y∈A, of s. By

Lemma 2(c) yunx or xuny is a suHx of urxr for some r. So |yunx|6urxr whence
n ¡ r. So xnun is a suHx of ur . So x= xr or x= xn, so x occurs in xnxn+1 : : : .

Theorem 7. Let t be an aperiodic episturmian word; s be the corresponding standard
episturmian word; with directive word �(s)= x1x2x3 · · · . Then; for n large enough; t
has complexity p(n)= (h−1)n+q for some q∈N+ and with h the number of letters
that occur in>nitely many times in �(s).
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Proof. For any right special factor u of t let hu be its order, that is the number of
letters x such that ux∈F(t). Then hu is a decreasing function of |u| and for |u| large
enough hu = h where, by Theorem 6, h is the number of the letters occurring in1nitely
many times in �(s). As p(|u|+ 1)− p(|u|)= hu − 1, the result follows.

The case where any right special factor of t has order k = |A| gives the maximum
complexity p(n)= (k−1)n+1. Such episturmian words will be called A-strict according
to the following de1nition.

De�nition 8. Let t ∈A! be an episturmian word and B=Alph(t). Then t is strict if
for any right special factor u of t; uB⊂F(t). Also, t is A-strict if t is strict and B=A.

In [1] uniformly recurrent in1nite words of complexity p(n)= (k − 1)n + 1 with
exactly one right and one left special factor of each length have been studied (with
emphasis on the case k =3). We claim that they are exactly the strict episturmian
words. This follows from Section 4.3 hereafter but we can sketch a more direct proof.
Let T be such an in1nite word with alphabet A. In [1] it is studied by the mean of its
factor graphs -n. The directed graph -n has for vertice set An∩F(T ) and has an arrow
from u to v if uy= xv∈F(T ) for some x; y∈A. It consists of k simple paths from Dn

to Gn and one simple path from Gn to Dn, with Gn (resp. Dn) the left (resp. right)
special factor of length n. The evolution of these graphs when n grows shows that T
has in1nitely many factors w1; w2; : : : which are both left and right special and that
|wn+1|62|wn|+1. Consequently if wn is a palindrome, then wn+1 is also a palindrome.
Consequently, T has in1nitely many palindrome factors hence is closed under reversal.
So, by Theorem 5, T is episturmian.

4.3. Rauzy rules

The construction of standard Sturmian words by Rauzy pairs and rules is well known
[8]. The extension to alphabets of at least three letters is evoked in [11] and implicitly
made in [1].
Let A= {a1; a2; : : : ; ak} be a k-letter alphabet, k¿2. We construct a sequence (Rn)n∈N

of Rauzy k-uples Rn =(A(1)
n ; A(2)

n ; : : : ; A(k)
n ) as follows: R0 = (a1; a2; : : : ; ak); Rn+1 is ob-

tained from Rn by applying one of the Rauzy rules, labelled 1; 2; : : : ; k, with the rule
i∈ [1; k] de1ned by

A(i)
n+1 =A(i)

n ;

A( j)
n+1 =A(i)

n A( j)
n for j∈ [1; k]\{i}:

We impose no restriction on the choice of the rule at each stage. There exists a
unique in1nite word t such that every pre1x of t is a pre1x of in1nitely many of the
A(q)
n ; n∈N; q∈ [1; k]. So any Rauzy sequence (Rn)n∈N de1nes an in1nite word.
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Theorem 8. An in>nite word s on the >nite alphabet A= {ai; 16i6k} is standard
episturmian if and only if it can be obtained by the Rauzy rules for A. Moreover; if
�(s)= ai1ai2ai3 · · · then the sequence of the applied Rauzy rules is i1; i2; i3; : : : .

Proof. (Only if ): Let s be the standard episturmian with directive word �(s)= x1x2 · · ·
and corresponding palindrome pre1xes u1 = �; u2; : : : . For any n de1ne vn; v′n and wn

by un+1 = vnun = unṽn; vn = v′nxn; unxn = v′nwn. Then wn is the unioccurrent palindrome
suHx of unxn. We have also un+1 = vnvn−1 · · · vpup for any p∈ [1; n]. Now de1ne k-
uples Rn =(A(1)

n ; A(2)
n ; : : : ; A(k)

n ) by R0 = (a1; a2; : : : ; ak) and, for i∈ [1; k],
(a) A(i)

n = vn−1vn−2 · · · v1ai = unai if ai does not occur in x1x2 · · · xn−1

(b) A(i)
n = vn−1vn−2 · · · vp with p maximal in [1; n− 1] such that xp = ai if ai occurs in

x1x2 · · · xn−1.
We will show that Rn+1 is obtained from Rn by applying a Rauzy rule and more

precisely the rule i such that xn = ai.
(a) Suppose we are in the 1rst case for the de1nition of A(i)

n , that is A(i)
n = unai. Then

as ai does not occur in un, we have un+1 = unaiun whence vn = unai =A(i)
n . We

have also A(i)
n+1 = vn because xn = ai, so A(i)

n+1 =A(i)
n .

(b) Suppose we are in the second case for the de1nition of A(i)
n , that is A(i)

n = vn−1 · · · vp
with xp = ai and xn−1; : : : ; xp+1 	= ai. Then we have un = vn−1 · · · vp+1v′paiup, hence
up is the longest palindrome suHx of un which is preceded by ai in un. So
aiupai =wn. It follows that unxn = vn−1 · · · vp+1v′pwn whence vn−1 · · · vp+1v′p = v′n.
As A(i)

n+1 = vn we have again A(i)
n+1 =A(i)

n .
So in both cases A(i)

n+1 =A(i)
n = vn.

Now for j 	= i, by the de1nition of A( j)
n and A( j)

n+1 we have A( j)
n+1 = vnA

( j)
n because the

occurrences, if any, of aj in x1x2 · · · xn−1 and in x1x2 · · · xn are the same. Consequently
A( j)
n+1 =A(i)

n A( j)
n . So Rn+1 can be obtained from Rn by applying the Rauzy rule i.

(If ): It follows from the only if part that any sequence of Rauzy rules can be
obtained with a suitable standard episturmian word, and so generates it.

4.4. Morphisms

The theory of Sturmian morphisms [2] on a 2-letter alphabet has a natural extension
for any k-letter alphabet A= {a1; : : : ; ak} with k¿2. Hereafter we sketch some results
and proofs, at least for standard episturmian words.
We de1ne endomorphisms  a; 2ab of A∗; a; b∈A; a 	= b by

 a(a)= a;  a(x)= ax; x∈A; x 	= a;

2ab(a)= b; 2ab(b)= a; 2ab(x)= x; x∈A; x 	= a; b:

These morphisms satisfy relations such as 2ab ◦  a =  b ◦ 2ab. Endomorphisms of A∗
are naturally extended to A!. The following lemmas have easy proofs.

Lemma 3. Let u∈A∗ and a∈A. Then
(a)  a(ũ)a is the reversal of  a(u)a;
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(b) u is a palindrome if and only if  a(u)a is a palindrome;
(c) u is a right (resp. left) special factor of an in>nite word t if and only if  a(u)a

is a right (resp. left) special factor of  a(t).

For any m∈A∗ ∪ A! let us say that a∈A is separating for m if for any x; y∈A,
xy∈F(m) implies a∈{x; y}.

Lemma 4. (a) If s is a standard episturmian word with >rst letter a; then a is sepa-
rating for s and its factors.
(b) If two diAerent letters a; b are separating for m∈A∗ ∪ A!; then m is (ab)! or

(ba)! or m∈F((ab)!).

Theorem 9. The in>nite word s∈A! is standard episturmian if and only if there exist
a standard episturmian word t and a∈A such that s=  a(t). Moreover the >rst letter
of s is a; t is unique; and the directive words satisfy �(s)= a�(t).

Proof. (Only if ): If s is standard episturmian its 1rst letter, a say, is separating, so
s=  a(t) for some t ∈A!. By Lemma 3 and easy arguments, t is closed under reversal
and has at most one left special factor of each length, and this one is a pre1x of t, hence
by Theorem 5, t is standard episturmian. Clearly t is unique. At last if u′1 = �; u′2; : : :
are the palindrome pre1xes of t and �(t)= x′1x

′
2 · · · ; x′n ∈A then by Lemma 3,  a(u′n)a

is a palindrome pre1x of s and even is un+1 from the remark after Theorem 1, with
u1 = �; u2; : : : being the sequence of all palindrome pre1xes of s. Moreover xn+1 = x′n,
so �(s)= x1�(t)= a�(t).
(If ): Follows from Lemma 3 in the same way.

Now let M be the monoid of morphisms generated by the  a and the 2ab; a; b∈A.
We have

Theorem 10. (a) If ’∈M; then for any standard episturmian word t ∈A!; ’(t) is
standard episturmian.
(b) If ’ is an endomorphism of A∗ such that for any A-strict standard episturmian

word t the in>nite word ’(t) is also A-strict standard episturmian; then ’∈M .

Proof. Part (a) follows by induction from Theorem 9. For part (b) suppose by con-
tradiction that there exists a morphism ’ =∈M such that ’(t) is A-strict standard epis-
turmian whenever t is. Choose ’ such that |’|=)x∈A|’(x)| is minimal. Let C be the
set of the 1rst letter of each ’(x) 	= �, x∈A. For any x∈A such that ’(x) 	= � let t
be an A-strict standard episturmian word with 1rst letter x. Then ’(x) is a pre1x of
’(t), so the 1rst letter of ’(x) is separating for ’(t) hence for all ’(y) 	= �, y∈A.
So if |C|¿3, three diOerent letters are separating for all non-empty ’(y); y∈A. By
Lemma 4(b) this is impossible unless |’(x)|61 for all x∈A. In this case we must
have A= {’(x); x∈A}, so ’ is a permutation of A, hence ’∈M .



552 X. Droubay et al. / Theoretical Computer Science 255 (2001) 539–553

If |C|=2, say C = {a; b}, a 	= b, then by Lemma 4(b), |’(x)|¿2; x∈A gives ’(x)∈
F((ab)!). Also |’(x)|=1 gives ’(x)∈C. So only a and b occur in ’(x); x∈A. So
A=C and the A-strict standard episturmian words are the standard Sturmian words on
A. Then ’(x)∈M by the theory of standard Sturmian morphisms [2,4].
Finally if C = {a} for some a∈A; a is separating for all non-empty ’(x); x∈A and

we see easily that ’(x)=  a(ux); ux ∈A∗; x∈A. Hence ’(x)=  a ◦ ’1 where ’1 is
de1ned by ’1(x)= ux; x∈A. Also if s=’(t) with t A-strict standard episturmian, then
by Theorem 9, s=  a(s′) with s′ A-strict standard episturmian. So ’1(t)= s′ whence
’1 satis1es the hypotheses for ’. By the minimality of |’| we have either ’1 ∈M ,
whence ’∈M , or |’1|¿|’| whence ’(x)∈ a∗ for all x∈A, which is impossible as
|A|¿2.

The next theorem is a stronger version of part (b) of Theorem 10.

Theorem 11. Let ’∈Endo(A∗) be such that ’(t)= s for some A-strict standard epis-
turmian words s; t ∈A!. Then ’∈M .

Proof (sketch). If this is false then there exist ’; s; t with |’| minimal satisfying the
hypotheses and such that ’ =∈M .
Let x be the 1rst letter of t. If ’(x)= �, we have s=’(t′) with t′ =  −1

x (t). If y is
the 1rst letter of t′, either ’(y) 	= � and we consider t′ instead of t, or ’(y)= � and
we repeat the argument. So, without loss of generality, we assume ’(x) 	= �. Let a be
the 1rst letter of ’(x), hence of s. Put s1 =  −1

a (s). If all non-empty ’(z); z ∈A have
a for their 1rst letter we can write ’(z)=  a(uz); uz ∈A∗, z ∈A. Let ’1 : A∗→A∗ be
given by ’1(z)= uz for all z ∈A. Then ’=  a ◦ ’1 and s1 =’1(t). Clearly ’1 =∈ M
and |’1|6|’| so, by the minimality of |’|; |’1|= |’| whence ’(z)∈ a∗ for all z ∈A.
This is impossible.
So at least two diOerent letters are pre1xes of the ’(z), z ∈A. It can be shown then

that all ’(z), z ∈A are palindromes. Let ’′ =’ ◦  x and t′ =  −1
x (t). Then s=’′(t′).

As all the ’′(z); z ∈A have the same 1rst letter, a, and with s1 =  −1
a (s) as previously

we have s1 =’1(t′) with ’1 being given by ’′ =  a ◦’1. In the particular case where
|’(x)|=1, i.e. ’(x)= a it is easy to see that |’1|6|’|, whence by the minimality of
|’|; ’1 ∈M or |’1|= |’| and then the restriction of ’1 to A is a permutation of A.
Hence ’1 ∈M , whence ’∈M . If |’(x)| ¿ 1, and if b is the 1rst letter of s1 we repeat
the argument with s2 =  −1

b (s1); ’2 given by ’1 =  b ◦’2 and s2 =’2(t′). Continuing
this way as far as possible and with a careful analysis of the process, we arrive to
some ’n such that |’n|6|’| and we conclude that ’∈M .

From Theorem 11 we deduce a result for standard episturmian words which are 1xed
points of morphisms.

Theorem 12. Let s be a strict standard episturmian word. Then s is the >xed point
of a morphism if and only if its directive word �(s) is periodic.
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Proof. (If ): Let �(s)= (x1x2 · · · xn)!. It follows from Theorem 9 that s=( x1 ◦  x2 ◦
· · · ◦  xn)(s).
(Only if ): Without loss of generality, assume s is A-strict. If s=’(s) then, by

Theorem 11, ’∈M . So ’=  y1 ◦  y2 ◦ · · · ◦  yn ◦ 7; yi ∈A, with 7 a permutation of
A. It follows by Theorem 9 that �(s)=y1y2 · · ·yn7(�(s)) whence, easily, �(s) is
periodic.

4.5. Other problems

Let us mention three among the many problems about episturmian words.
First, do episturmian words satisfy a “balance” condition which extends the one for

Sturmian words?
Another problem is: is there a number theoretical de1nition of episturmian words on

A recalling the one for Sturmian words and is there some kind of continued fraction
expansion that could play a role there as for Sturmian words? Some particular cases
have been examined. In [10] the in1nite word on {a; b; c} which is the 1xed point of the
morphism ’ given by ’(a)= ab; ’(b)= ac; ’(c)= a, that is the standard episturmian
word with directive word (abc)!, is studied in this spirit. In [1] any A-strict episturmian
word on {a; b; c} is characterized by partitioning the circle of length 1 into 3 intervals
of lengths �; 8; 9 where �; 8; 9 are the frequencies of a; b; c in the in1nite word, and
performing a transformation on those intervals.
Lastly, it has been shown (Corollary 2) that any factor w of an episturmian word has

exactly |w|+1 palindrome factors. However, the converse is false: if in the Fibonacci
word abaab · · · we replace a by aa and b by bb, we get aabbaaaabb · · · whose any
factor of length n has exactly n+1 palindrome factors. So the problem of characterizing
such words is open.
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