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Abstract-The central role of difference equations and, principally, the role of their stability 
properties in Numerical Analysis is discussed by analyzing the special problem of approximating 
the solutions of ordinary differential equations. We show how a deeper knowledge of the stability 
properties of difference equations may be useful in designing numerical methods. 
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1. INTRODUCTION 

According to Threfethen’s definition [l], Numerical Analysis is the study of algorithms for the 

problems of continuous mathematics. At the hearth of algorithms, one often finds difference 

equations. Moreover, since the solutions of such difference equations must be “near” to the 

solutions of the continuous problems, the stability properties of the difference equations assume 

a central role. The fact that one is forced to work with finite arithmetic, instead of the infinite 

precision arithmetic, adds additional perturbation to the difference equations, making sometime 

the stability request even more crucial. 

The prominence of the role of the stability properties makes the difference among the Numer- 

ical Analysis and other branches of mathematics which also use the difference equations as a 

main tool. For example, in Combinatorics, difference equations are very important, but their 

stability properties are not, since the problems involved are often unstable and the interesting 

part concerning the solutions is their asymptotic behavior. 

A comprehensive discussion about the role of difference equations (and the related stability 

properties) in Numerical Analysis, would require much more space than the length of a paper. We 

shall confine ourselves to discuss three aspect of the same problem, that is the approximation of 

the solutions of a differential equation. In Section 2, we shall review the problem of approximating 

the solution of an initial value problem by means of a discrete one. The same continuous problem 

will be treated in Section 4, but there the discrete problem will become a boundary value one. In 

Section 3, as an example of boundary value problem, the singular perturbation boundary value 

problem will be analyzed. 
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2. INITIAL VALUE PROBLEMS 

Often the problem of approximating the solution of an initial value problem by means of 

a discrete one is not precisely stated, since part of the needed hypothesis are not explicitly 

mentioned. This is not a shortcoming of the Numerical Analysts only, but it is an aspect of the 

more general ‘Ldogma of stability” which has characterized for many years the physical models 

(see, for example, [2]). Consider the approximation of the Initial Value Problem: 

Y’ = f(h Y), yu(to) = Yo (1) 

where y, f E Iw. We suppose that the solution is unique in the interval (te,T). A discrete 

problem is usually obtained from (1) by approximating the continuous quantities by discrete 

ones, obtaining 

F’ (Y(tn), y(tn+l)>~. .> Y(tn+k), f(tn,Y(tn))r f(tn+l,Y(tn+l))> ... 7 f(tn+krY(tn+k))) = 7n. c2) 

We shall not go into the details on the way of obtaining the previous formula. The interested 

reader may refer to the excellent books on the subject (see for example [3-61). For our purpose, 

y(tn) are the values of the solution in a discrete set of points, h is the stepsize, and 7, is the local 

error which is 0(/G’+‘) for some integer p _ > 1, said order of the method. Moreover, n may range 

between 0 and N which will be considered large, and it does not matter because the problem 

requires h to be small or T to be large. The relation (2) is a difference equation of degree Ic. 

Since r, is not known, except for the above-mentioned asymptotic behavior with respect to h, 

the numerical method will disregard it, solving instead of (2) the difference equation: 

Fh(Yn,Yn+l,-. ,Yn+k,f(tn,Yn),f(tn+l,~~+l),... rf(tn+k&+k)) = 0. (3) 

Actually, because of the necessity of using finite precision arithmetic, instead of (3), a further 

perturbation of (2) is solved, that is 

Fh(Yn,Yn+l,- ,yn+k,f(tn,Yn),f(tn+l,Y~+l),...,~(tnfk,Y~+k)) =&n. (4 

The quantities Em, which take into account the errors due to the finite precision, are small, 

depending on the machine precision used, but they do not depend on h. The different nature of 

the two perturbation r, and Ed will have a certain theoretical importance, as stressed below. 
Equation (4) is a perturbation of equation (2), which, if the initial condition are exactly stated, 

gives the values of the continuous solution at the grid points. The sources of perturbation are: 

1. the local errors 7, 

2. the precision errors E, 

3. the Ic initial points: only one of them, ya, may be exactly known. 

When will all the previous perturbation not affect “too much” the solution? This is a problem 

of structural (or total) stability, very similar to the structural stability typical of physical models. 
Here the hidden hypothesis comes in: 

(a) the differential equation (1) has an equilibrium point g and one is interested to approximate 

the solution in a neighborhood of this point; 
(b) the function f(t, y) has a Taylor expansion with nonzero linear part around g and, for the 

linearized problem, g is uniformely asymptotically stable. 

Under such hypothesis, one obtains the needed structural stability, and the first approximation 

stability theorem can be used. This permits us to linearize the discrete problem and, consequently, 
justifies the use of the popular linear test equation y’ = Xy, Re(X) < 0, to study the numerical 

methods. It is true that seldom one studies the methods for Re(X) > 0 but still there is the 
hidden hypothesis that one is integrating in a neighborhood of an (unstable) equilibrium point. 
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Numerical methods applied to problems far from the equilibrium points, for example in chaotic 

regime, have, so far, not been extensively studied. To be more clear, let us analyze the case of 

linear multistep formulas. In this case, (2) and (4) become 

k k 

c a!jy(tn+j) - h c Pjf(k+j7 Y(k+d> = Tn, 
j=o j=o 

ea,y,+j - h&Pjfn+j = en. 
j=o j=o 

(5) 

(6) 

By subtracting and posing e, = y(t,) - yn , one obtains the error equation: 

k 

c aje,+j -h&Pj(f( tn+j, T&f3 + e,+j) - fn+j> = Tn - En. (7) 
j=O j=O 

The unperturbed equation has e, = 0 as a constant solution. Of course the numerical solution 

is meaningful if this constant solution is at least stable. Here the different nature of 7, and E, 

plays a role (essentially of theoretical nature). In fact, if E, is not considered, provided that h 
tends to zero as n tends to infinite, one may show that the stability of the constant solution of 

C,“=, oje,+j = 0, which is only part of (7), implies the convergence of the perturbed equation. 

This is called O-stability and it is only of theoretical interest. In fact, the condition h -+ 0 

is very heavy, and moreover, E, = 0 is not realistic. It is remarkable that for cn # 0, no 

convergence results can be provided. Much more realistic is to ask for the asymptotic stability of 

the unperturbed equation derived from (7). This was established first by Dahlquist [7]. Supposing 

that (1) satisfies the hypotheses (a) and (b), one may linearize and study the linear error equation: 

&CX~ - hXPj) en+j = in - en, 
j=O 

(8) 

whose stability properties are dictated by the polynomial (q = hX): 

n(Z, S> = eCaj - 46) .j 
j=o 

(9) 

The asymptotic stability of the zero solution of the unperturbed equation is obtained for the values 

of q for which the polynomial n(z, q) is a Schur polynomial, that is when the roots are all inside 

the unit disk in the complex plane. Let ‘D be the set of values of q for which n(z, q) is a Schur 

polynomial. It is called region of absolute stability. It represents the values of hX (A E Cc-) for 

which the continuous problem and the discrete one have similar qualitative behavior. Depending 

on the choice of the parameters oj and @j (and then on the methods), it may happen that 

It would be desirable to have D = @- but it turns out that this is possible only when (Dahlquist 

barriers) ,& # 0 and p 5 2 (p is the order of the method). Even when this happens, as for the 

trapezoidal method, 

!/n+l--Yn = ;c.fn +.fn+d, 

one must say that, even if the two solutions (the continuous and the discrete ones) share the 

property of decaying, for relatively large values of q the discrete solution shows up an oscillating 

W?dA 28:1-3-O 
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behavior which is absent in the continuous solution. This means that only approximatively the 
qualitative behavior can be considered similar. Let us, for example, assume that X = -60, 
h = 0.1, to = 0. One has y(t,) = (ee6)“y 0 and yin = (-$)“yo from which it is evident that the 
two solutions only share the generic property that they tend to zero. If the hypothesis (b) is 
not satisfied, the discrete solution may even not exist for q not very small. Consider for example 
the problem y’ = -y2, y(0) = ya. The continous solution is y = yo/(l + yet). By applying the 
trapezoidal rule one has 

This is a second degree equation in yn+i. It is evident that if hy, > 1 + fi it has not real 
solutions and the numerical method is not defined. For smaller values of h one may recover the 
numerical method, but in this case, the region of absolute stability loses its importance. It is 
interesting to note that if one uses, as usual, the Newton method to solve the nonlinear equations 
at each step, it converges for hy, < 77 < 1 t a. By a little analysis, one may show that the 
condition hy, < 2 is sufficient for the convergence. This condition is the same which guarantees 
the root ~1 = l+QP 1--q/2 of the characteristic polynomial associated to a linearization of the equation 

around an approximate solution &, to be positive (for q E JR-). This is not surprising considering 
that zi has to approximate eQ. 

The case D > @- presents similar limitations and moreover if X E @+, the qualitative behavior 
of the two solutions may be completely different. 

The case 2, c @- can be easily realized but it is not sufficient for a large class of problems 
(stiff problems). 

Without going into more details, we shall say that this approach, which is the most widely 
used, is not the only possible, as shown is Section 4. 

3. BOUNDARY VALUE PROBLEMS 

When it is well conditioned, a Boundary Value Problem is characterized by having the solution 
made up of components which are both decreasing and increasing for t --f co. The numerical 
methods need to generate discrete problems which show similar characteristics. If one tries to 
use numerical methods which do not fulfill this request, as in the popular shooting method, the 
discrete problem presents very serious instability. A deeper analysis of this question may be 
found in [8,9]. 

In order to show how the knowledge of the stability properties of a difference equation are 
essential in designing efficient numerical methods, let us discuss in details the second order 
singular perturbation problem: 

EY” + s(t)y’ + c(t)y = j(t), t E [tmin, Lax]7 

Y(Lin) = a7 Y(tmax) = by 

where E is positive (it could be very small), c(t) and f(t) are continuous functions on the inte- 
gration interval [&in, tmax] and s(t) is differentiable. 

This problem is considered a difficult one since, because of the small parameter E, the solution 
may present very different behaviors in different subintervals of (a, b). In a recent paper [lo], 
Kreiss et al. have discussed the necessity, in order to avoid very small values of steplengths on 
large intervals, to use different methods (characterized as forward, backwards and symmetric) on 
different subintervals. They should be chosen according to the signs and the magnitude of the 
eigenvalues of a suitable matrix. Our approach, based on the stability properties of a second order 
difference equation, will lead to similar conclusions, but, in our case the choice among backward, 
symmetric or forward methods is automatic since the nature of the method is imbedded in a 
unique difference equation. 
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By using a three point scheme to approximate the derivatives of the problem, we obtain, as 
discrete problem, the second order difference equation: 

ai-l&-l + yi + w/i+1 = fi, 

510 = a, ~n+l = b, 

where 
-hi+1(2f - s(ti+l)hi+l) 

Oi = (hi+1 + hi)(26 + S(&+1)(hi - hi+l) - c(ti+~)hJL~+l) ’ 

-hi_1(2E + s(t&_1) 

Ti = (hi-1 + hJ(2E + S(&)(hi_i - hi) - c(t$zJ+i)’ 

(10) 

(11) 

(12) 

hence, depend on the stepsizes. method behaves as a 
forward one, if ci = 0, the behaves as a backward 
method is a symmetric assume 
all the values, it is evident the flexibility method to adapt to the different situations 
in the subintervals. 

values of the stepsize 

(1~01, IYn+llr max IAl), 

which is equivalent 
matrix form, 

Ty = f, 

where y =(yi, . . . , yAT, f= (f(ti) - ~OYO, f(h), . . . ,f(L) - ~,a~+l)~ and 

T= 

To obtain a stable difference equation, it is sufficient to choose cri and ri so that T-l exists 
and IIT-‘II is either independent from n (well conditioned), or it grows as n or n2 (weakly well 
conditioned). In this way, the global error can be controlled. 

Let x = (y(ti),... , ~(t,))~ be the vector of the exact solution at the gridpoints; the global 
error e = y - x satisfies 

Te = <, 

where < = (Cl, . . . , 6) T is the vector of the local truncation errors. One has then 

IHI 5 lP3 IICIL 

and, if IIT-lll depends at most on n2, we may conclude that 

IHI I kO(hq), q > 1, h = max(hi), k a constant. 

The solvability of the discrete problem is related to the solvability of the continous one. It turns 
out that the conditions of existence of the solution for the problem (10) are very similar to the 
conditions of existence for the continuous problem. Consider, for example, the following widely 
used condition [ 121: 

s2(t) c(t) I y + T+ (tmax”tmi.J2f. (13) 

which is sufficient for the continous problem to have solution; a similar result holds for the discrete 
problem. In fact, one has: 
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THEOREM 1. Suppose a constant stepsize is used. A sufficient condition for the matrix T to be 

invertible is the following: 

s(~i+ds(~i) 40 I 4E - 

+ s’(v) 
2 ’ 

c (&+1) c (ti) > 0. (14) 

PROOF. A sufficient condition for T to be invertible is (see [13]) 

airi I l/4, for all i. 

By substituting the values of gi and pi in (11) and (12), it results that this inequality is satisfied 

if: 

-W(7) - s(ti+1)s(ti) I -4CC(<) + C(ti+1)c(ti)h2, 

with <, 77 E [ti, ti+l]. The previous inequality is certainly satisfied if (14) holds true. I 

The conditions on pi and gi which ensure the well conditioning of the matrix T are known [13). 

By applying these conditions it is possible to choose, by using (11) and (12)) the optimal stepsizes. 

From this point of view one could say that an inverse problem is solved in order to obtain an 

optimal sequence of stepsizes. 
In particular, the next result gives the possibility to choose a constant stepsize. 

0.8 - 

0.6 

Figure 1. E = 10-4. 

THEOREM 2. Suppose that, for t E [tminr t,,,], k > 0, 

(i) c(t) 5 -k 

(ii) s’(t) > -k 

(iii) h is constant and, 

if s’(t) > k , h 5 (2e/(max Isi\ - k))1’2 

if s(tmin) > 0, h 5 -2E/s(t,in) 

ifs(t,,,) < 0 , h I -2E/s(tmax), 

then T is invertible and well conditioned or weakly well conditioned. 

If the continous problem is ill conditioned or one wish to use fewer grid points, it is necessary 

to use a variable stepsize. This can be efficiently done but we skip here the details (see [ll]). 
As an example consider the solution of the following BVP [ll]: 

UJ” + ty’ = 0, -1 < t < 1, 

Y(-1) = 0, Y(l) = 1, 

which has a turning point at t = 0. 

This problem was solved by choosing the stepsize according to what was said above. In Figure 1 

we report the solution for E = 10p4, and the stepsize variation. 
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4. INITIAL VALUE PROBLEMS SOLVED BY 
DISCRETE BOUNDARY VALUE METHODS 

215 

The possibility of using discrete boundary value problems for the solution of continuous initial 
value problems is also essentially based on the above mentioned “axiom of stability.” In fact the 
knowledge of the tendency of the solution to a steady state (asymptotic stability to this solution), 
was the idea which led to this possibility [14-161. On the other hand, it was noticed that the 
most difficult initial value problems are those for which the approximation of the subdominant 
solutions is needed. Subdominant solutions are those which present the smallest growing factor. 
For example, consider the discrete problem 

?h+2 - 102y,+1 + 2ooy, = 0. 

The general solution is yn = ~12~ + ~2100~. Suppose we have the initial condition yo = fi, 
y1 = 2& then we need to get the solution yn = 2”& Unfortunately this solution is very 
unstable because if y1 is not exactly twice yo, then an error proportional to lOOn will arise 
destroying very soon the right solution. Boundary value problems do not have this drawback, as 
noticed by Miller [17] and Olver [18]. For example, in the previous example one may choose an N 
large enough and pose ye = 0, y~-l = 1 and then solve the problem backward, obtaining, after 
multiplying the entire sequence by &/yo, a very good approximation of the solution for n < N. 
Many authors, for example Cash [19], Axelsson and Verwer [20], Lopez and Trigiante [21], taking 
advantage of this fact, have used boundary discrete value methods to approximate the solutions 
of stiff initial value problems (see also [22,23]). I n such problems, in fact, a situation similar to the 
one in the previous example arises when one uses discrete initial value problems to approximate 
the continuous solution. 

To obtain a discrete boundary value problem one adds extra points to the right of the extreme 
point T. Let them be tN,tN+l, . . . ,tN+k-2 for some N > 1. The initial condition is imposed 
in to, while additional conditions are imposed in the above defined extra points. Usually the 
extra conditions are imposed not explicitly, by using, at the end, methods which require fewer 
points (see [21,24,25] for details). The following theorem, with generalizes previous results, states 
in more precise form what said before (see [26]). 

THEOREM 3. Suppose that the roots -zi of the characteristic polynomial 

p(z) = -&zi 
i=o 

are such that 

IZl I < I.% I . 5 1% (15) 

then there exists ICI constant and a bounded quantity &,o such that the solution of the difference 
equation: 

kPiL+i = Sn, (16) 
i=o 

with the boundary condition described above, is 

n-l 

&a = (6 + too)zT_ + kl c gjz;l+ + 0 
j=O 

(lzi”3 + 0 (lz2/-(N-4) (17) 

tiSN--+CO. 

To apply the theorem to the problem (2), one must be sure that the problem can be linearized. 
If this is the case, then the linear problem leads to the characteristic polinomial (9). If the linear 
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part of the discrete problem has Re(X) < 0, then one needs to have 1~11 < 1 in the previous 
theorem, while all the remaining roots are to stay outside the unit disk of the complex plane. 
This approach is alternative to the classical approach of Dahlquist. The root conditions are quite 
different and methods which were considered bad may now be good ones. This is the case, for 
example, for the so-called Simpson method, which is of order four and has, as boundary value 
method, a very large region where the conditions of Theorem 3 are satisfied. As matter of fact 
the root condition is less tight in this approach: There are not barriers such as the Dahlquist 
barriers. Moreover, convergence results can be done even in the case of constant h and in the case 
of finite arithmetic. In fact, suppose that h is fixed and N -+ co and that (16) is the linearized 
error equation (8), one obtains that &, = y(tn) - yn remains bounded (see [24] for details). For 
h -+ 0, results similar to the classical ones are obtained. 

The pratical use of such methods requires the solution of large systems of linear equations. 
This can be done on parallel computers, where they become competitive with the classical ones 

( see 
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