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1. Introduction and preliminaries

Huang and Zhang [1] have introduced the concept of the cone metric space, replacing the set of real numbers by an
ordered Banach space, and they showed some fixed point theorems of contractive type mappings on cone metric spaces.
Later, many authors generalized their results. In this work, we first recall the Meir-Keeler type function, and define a weaker
Meir-Keeler type function ¢ : int PU{0} — int PU{0} in a cone metric space. Under this weaker Meir-Keeler type function,
we show the common fixed point theorems of four single-valued functions in cone metric spaces. We recall some definitions
of the cone metric spaces and some of the properties [1], as follows:

Definition 1 ([1]). Let E be a real Banach space and P a subset of E. P is called a cone if and only if:

(i) P is nonempty, closed, and p # {0},
(ii) a,beN,a,b>0,x,y e P = ax+ by € P,
(i) x e Pand —x € P = x = 0.

Given a cone P C E, a partial ordering < with respect to P is defined by x < yifand only ify — x € P forallx,y € E. We
shall write x < y to indicate that x < y but x ## y, while x <« y will stand for y — x € int P, where int P denotes the interior
of P.

The cone P is called normal if there exists a real number K > 0 such that forallx, y € E,

0<x=y= x|l =Kyl

The least positive number K satisfying above is called the normal constant of P.
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The cone P is called regular if every increasing sequence which is bounded from above is convergent, that is, if {x,} is a
sequence such that

XI=X=-=X=--=V),
for some y € E, then there is x € E such that ||x, —x|| — 0asn — oo. Equivalently, the cone P is regular if and only if every
decreasing sequence which is bounded from below is convergent. It is well known that a regular cone is a normal cone.

In the following we always suppose that E is a real Banach space with cone P in E with intP # ¢, and < is a partial
ordering with respect to P.

Definition 2 ([1]). Let X be a nonempty set. Suppose the mapping d : X x X — E satisfies

(i) 0 <d(x,y),forallx,y e X, x £y,
(ii) d(x,y) = 0ifand only ifx = y,
(iii) d(x,y) = d(y, x), and
(iv) d(x,y) +d(y,z) > d(x,z),forallx,y, z € X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.
Definition 3 ([1]). Let (X, d) be a cone metric space, and let {x,} be a sequence in X and x € X. Ifforevery c € E with0 < c,
there is ng € N such that

d(x,,x) < ¢, foralln > ng,
then {x,} is said to be convergent and {x, } converges to x.
Definition 4 ([1]). Let (X, d) be a cone metric space, and let {x,} be a sequence in X. We say that {x,} is a Cauchy sequence
if for any ¢ € E with 0 < c, there is N such that

d(x,, xm) < c, foralln,m > N.

Definition 5 ([1]). Let (X, d) be a cone metric space. If every Cauchy sequence is convergent in X, then X is called a complete
cone metric space.

Remark 1 ([1]). If P is a normal cone, then {x,} converges to x if and only if d(x,, xX) — 0asn — oo. Further, in this case,
{x,} is a Cauchy sequence if and only if d(x,,, x,,) — 0asm, n — oo.

Let (X, d) be a cone metric space, T : X — X and xo € X. Then T is continuous at xq if for any sequence {x,} in X with
d(xn, xg) — 0, we have d(Tx,, Txg) — 0.

Definition 6. Let (X, d) be a cone metric space, and let S, F : X — X be two single-valued functions. We say that S and F
are compatible if

lim d(SFx,, FSx,) = 0
n—oo

whenever {x;,} is a sequence in X such that lim,,_, o, d(Fx;, Sx,) = 0.

In particular, d(SFx, FSx) = 0 if d(Fx, Sx) = 0 on taking x, = x for all n.

Recall the notion of the Meir-Keeler type function. A function v : it — R is said to be a Meir-Keeler type function
(see [2]) if for each n € N, there exists § = §(n) > 0 such that fort € R withn < t < n + §, we have ¥ (t) < n. We
now define a new weaker Meir-Keeler type function, as follows:

Definition 7. Let (X, d) be a cone metric space with cone P, and let ¢ : int PU{0} — int PU{0}. Then the function v is called
a weaker Meir-Keeler type function if for each 1, 0 < n, there exists §, 0 < é such that fort € intP withn <t < § +n,
there exists ng € N such that ¥ (t) <« n.

2. Main results

In the sequel, we let the function ¢ : int P U {0} — int P U {0} satisfy the following conditions:

(i) ¥ is a weaker Meir-Keeler type function;

(ii) foreacht € intP, we have 0 < ¥ (t) < t;
(iii) for t, € intP, if limy_, oo t, = ¥ > 0, then lim,_, o ¥ (t;) K ¥;
(iv) {y"(t)}new is nonincreasing.

Moreover, we call this mapping a ¥s-mapping.

Theorem 1. Let (X, d) be a complete cone metric space with regular cone P such that d(x, y) € intP forallx,y € X withx # y,
andlet F,G,S, T : X — X be four single-valued functions with SX C GX and TX C FX such that for allx,y € X,

diSx, Ty) < ¢ (max {d(Fx, Gy), d(Fx, Sx), d(Gy, Ty), % [d(Fx, Ty) + d(Gy, Sx)]}) .
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If S and F are compatible, T and G are compatible, and if either F or G is continuous, then S, T, F and G have a unique common
fixed point z in X.
Proof. Given xy € X, define the sequence {x,} recursively as follows:
GXant+1 = SXan = Zon, Fxani2 = TXont1 = Zony1-
Since

d(zan, Zons1) = d(Sx2n, TXony1)

1
<y (max{d(FXZm GXong1), d(FXan, Sx2n), d(GXant1, Txong1), i[d(szn’ Txans1) + d(Gxant1, SXon)] })

1
<y (max {d(ZZn—l» Zon), A(Zon-1, Zon), A(Zon, Zong1), E[d(ZZn—la Zon) + d(zon, ZZrH—])]}) ,

we hence have

d(zan, Zons1) K d(Zon—1, Zon)-

Similarly,

d(Zant1, Zon42) <K d(Zan, Zont1)-
Generally, we have
d(zn, Znp1) K d(Zn-1,2,), and
d(zn, Zn1) < Y (d(Zn-1,20)) < -+ < " (d(20, 21))-

Since {¥"(d(zo, z1)) }ne is Nonincreasing, it must converge to some 7, 0 < n. We claim that » = 0. On the contrary,
assume that 0 < n. Then by the definition of the weaker Meir-Keeler type function, there exists §, 0 < § such that for 0 «
d(zo, z1) with n < d(z9,z1) < 8 + n, there exists ny € N such that ¥"(d(zq, z1)) < 1. Since lim,_, o ¥"(d(z0, 21)) = 1,
there exists my € N such that n < ¥™d(zy, z1) < 8§ + n, for all m > mq. Thus, we conclude that ™% (d(zy, z;)) < 7.S0
we get a contradiction. So lim,_, » ¥"(d(29, z1)) = 0, and so lim,_, o, d(z,, z;11) = 0.

Next, we let ¢, = d(zm, Zm+1), and we claim that the following result holds:

for each y > 0, thereis ng(y) € N such that for allm, n > ng(y),

d(zm,zn) < y. (*)

We shall prove () by contradiction. Suppose that (x) is false. Then there exists some ¥ > 0 such that for all k € N, there
are my, n, € N with my, > ny, > k satisfying:

(i) my is even and ny is odd,
(ii) d(zm,, zn,) = v, and
(iii) my is the smallest even number such that the conditions (i), (ii) hold (see [3]).

Since ¢, ~\ 0, by (ii), we have limy_, o, d(zin,, Z,) = ¥, and

)’ S d(zmk7 znk) = d(sxmk7 Txnk)

1
S I// <maX d(Fxmk» Gxnk)v d(Fkaa sxmk)v d(GXnk, Txnk)v E[d(Fkaa Txnk) + d(GXnk, sxmk)] })

1
=< w <max d(ka71, anfl)v ka - 17 an - ]’ i[d(zmkfh an) + d(an,h an) + d(an,], ka)]}>

1
=< 1// (max ka—l + d(ka, an) + an—la ka - 17 an - la E[ka—l + d(ka, an) + an—l + d(ka, an)]}>

= w(cmk71 + d(zmka an) + an71)~

Since limy_, oo Cmy—1 +d(Zm,,, Zn,) +Cn—1 = ¥, and by the condition (iii) of the ys-mapping, we have y < limy_, oo ¥ (Cip—1 +
Cny—1 + d(Zmy» Z,)) < ¥, a contradiction. It follows from (x) that the sequence {z,} must be a Cauchy sequence; hence {z,}
converges to some z € X. So, d(Fxyn, z) — 0, d(GXap41,2) — 0, d(SXx2n, z) — 0 and d(Txzp41,2) — 0asn — oo.

Assume F is continuous. Then we have

d(F?xyn, Fz) > 0 and  d(FSxap, Fz) — 0 asn — oo.
Since S and F are compatible and d(Sx,,, Fx,,) — 0asn — oo, we have

d(SFXZm FZ) = d(SFXZm FSXZn) + d(FSXZm FZ)7
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and so,
d(SFxy,, Fz) — 0, asn — oo.

Foranyn € N,

d(SFxon, Txon1) < w(maX{d(FZin, GXant1), d(F*Xan, SFXan),
1 2
d(Gxan1, Txont1), i[d(F Xan, Txony1) + d(GXong1, SFXon)] ¢ ).

(1) If
1
max{d(FZXZn, GXant1)s d(F*Xan, SFXan), d(GXant1, TXont1), E[d(FZXZm Txons1) + d(Gxang, SFXZn)]}

= d(F?x3n, GXant1),
then we have lim,_, oo d(F?X25, GXan41) = d(Fz, z), and

lim d(SFxan, Txons1) < lim ¥ (d(F*xon, GXont1)) < d(Fz, 2),
n—oo n—o0o

that is, d(Fz, z) < d(Fz, z), which implies that Fz = z.
2) If

1
max{d(FZXZn, Gxont1), A(F?Xan, SFxan), d(GXoni1, TXans1)s E[d(FZXZn, Txans1) + d(Gxapg, Sszn)]}

= d(F2x2n; SFXZH)7
then we have lim;_, o d(F?Xa5, SFX2,) = 0, and

lim d(SFXZH, TX2n+1) <0,
n— o0

which implies that Fz = z.
3) If

1
max{d(szM, GXant1)s d(F*Xan, SFXan), d(GXant1, TXant1), E[d(szzn, Txan41) + d(Gxany1, SFXZn)]}

= d(GXan+1, Tx2n+1),
then we have lim;_, o d(GX2p41, TX2n4+1) = 0, and

lim d(SFxan, TX2n41) < 0,
n—oo

which implies that Fz = z.
(4) If

1
max | d(F*Xan, GXans1), d(F*Xan, SFxan), d(GXont1, TXons1), E[d(F%n, Txoni1) + d(GXons1, SFxZn)J}

1
= E[d(szzn, Txzn41) + d(Gxang1, SFxon)],

then we have limy_. o 3[d(F*Xzn, TXan41) + d(GXans1, SFXon)] = d(Fz, 2) + d(Fz, z), and
lim d(SFxan, Txopy1) < lim W(d(szzn, Gxany1)) < d(Fz, z),
n—oo n—oo

that is, d(Fz, z) < d(Fz, z), which implies that Fz = z.
Follow (1)-(4), we get Fz = z.

Foranyn € N,
1
d(Sz, Txpny1) < 1//<max{d(Fz, GXont1), d(Fz, Sz), d(GXant1, Tx2n41), E[d(FZ’ Txan41) + d(GXopg1, 52)]})'
(5 If

1
max{d(Fz, GXong1), d(Fz, Sz), d(GXans1, Txong1), i[d(FZ’ Txany1) + d(Gxany1, 52)]] = d(Fz, Gxan41),
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then we have lim,_, o, d(Fz, GX54.1) = d(Fz,z) = 0, and
lim d(Sz, Txpns1) = d(Sz,2) < lim ¥ (d(F*X2n, GXany1)) < O,
n—oo n—oo

which implies that Sz = z.
(6) If

1
max [d(Fz, Gxan41), d(Fz, Sz), d(GXany1, TXon41), E[d(FZ’ Txont1) + d(Gxant1, SZ)]} = d(Fz, Sz),

then we have
lim d(Sz, Txzn41) = d(Sz,z) < lim ¢ (d(Fz, Sz)) < d(Fz, Sz),
n—oo n—oo

a contradiction, which implies that Sz = z.
(7) If

1
max{d(Fz, GXant1), d(Fz, Sz), d(GXant1, Txon41), E[d(FZ’ Txan41) + d(Gxany1, SZ)]} = d(Gxany1, TXans1),

then we have lim,,_, o, d(Fz, GX3,41) = 0, and
lim d(Sz, Txons1) = d(Sz,2) < lim ¥ (d(Fz, Gxan41)) < O,
n—oo n—oo

which implies that Sz = z.
(8) If

1
max{d(Fz, GXant1), d(Fz, Sz), d(GXant1, Tx2n41), E[d(FZ’ Txons1) + d(Gxany, 52)]}

1
= i[d(FZ’ Txzn41) + d(Gxan1, S2)1,

then we have lim,_. o 3[d(Fz, TXon41) + d(GXant1, S2)] = 3d(Sz, 2), and

1 1
lim d(Sz, TXony1) = d(S2.2) < lim ¥ <7[d(Fz, Taons1) + d(GxZnH,Sz)J) < -d(sz.2),
n—o0 n—o00 2 2

a contradiction, which implies that Sz = z.

Following (5)-(8), we get Sz = z.
Select z’ € X such that Gz’ = z = Sz. Then TGz’ = Tz, and

d(z, TZ') = d(Sz,TZ)
<y (max {d(Fz, GZ), d(fz, Sz), d(GZ', TZ)), %[d(Fz, TZ') 4+ d(GZ/, Sz)]})
< Y (max{0, 0, d(z, TZ), d(z, TZ)}),

which implies that T2’ = z and so GTz' = Gz.
Since T and G are compatible and d(Tz', Gz') = 0, we get d(Tz, Gz) = d(TGZ', GTZ') = 0, which implies Tz = Gz. Since

d(z, Tz) = d(Sz, Tz)

<y (max {d(Fz,gz), d(Fz, Sz), d(Gz, Tz), %[d(Fz, Tz) + d(Gz, Sz)]})

<y (max {d(z, T2), 0,0, %[d(z, Tz) + d(z, Tz)]})
= ¥ (d(z, Tz2)),

we have d(z, Tz) = 0,and so Tz = z.
Hence z is a common fixed point of S, T, F and Gwith Sz =Tz = z = Fz = Gz.
Let y be a common fixed point of S, T, F and G. We have

d(y,z) < d(Sy, Tz)
<Y <max {d(Fy, Gz), d(Fy, Sy), d(Gz, Tz), %[d(Fy, Tz) + d(Gz, Sy)]})
= ¥ (d(y, 2)).

This implies y = z. Hence z is the unique common fixed point of S, T, F and G.
Similarly, we can prove the continuity of G. O
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For the case F = G = I (identity mapping), we have the following corollary.

Corollary 1. Let (X, d) be a complete cone metric space with regular cone P such that d(x,y) € intP forallx,y € X withx # y,
andlet S, T : X — X be two single-valued functions such that for allx, y € X,

d(Sx, Ty) < (max {d(x, y), d(x, Sx), d(y, Ty), %[d(X, Ty) + d(y, Sx)]}) .

Then S and T have a unique common fixed point z in X.
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