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a b s t r a c t

In this work, we define a weaker Meir–Keeler type function ψ : int P ∪ {0} → int P ∪ {0}
in a cone metric space, and under this weaker Meir–Keeler type function, we show the
common fixed point theorems of four single-valued functions in cone metric spaces.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Huang and Zhang [1] have introduced the concept of the cone metric space, replacing the set of real numbers by an
ordered Banach space, and they showed some fixed point theorems of contractive type mappings on cone metric spaces.
Later, many authors generalized their results. In this work, we first recall theMeir–Keeler type function, and define aweaker
Meir–Keeler type functionψ : int P∪{0} → int P∪{0} in a conemetric space. Under this weakerMeir–Keeler type function,
we show the common fixed point theorems of four single-valued functions in conemetric spaces.We recall some definitions
of the cone metric spaces and some of the properties [1], as follows:

Definition 1 ([1]). Let E be a real Banach space and P a subset of E. P is called a cone if and only if:

(i) P is nonempty, closed, and p 6= {0},
(ii) a, b ∈ <, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ,
(iii) x ∈ P and−x ∈ P ⇒ x = 0.

Given a cone P ⊂ E, a partial ordering≤with respect to P is defined by x ≤ y if and only if y− x ∈ P for all x, y ∈ E. We
shall write x < y to indicate that x ≤ y but x 6= y, while x� ywill stand for y− x ∈ int P , where int P denotes the interior
of P .
The cone P is called normal if there exists a real number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y⇒ ‖x‖ ≤ K‖y‖.

The least positive number K satisfying above is called the normal constant of P .

I Research was supported by the NSC.
∗ Corresponding author.
E-mail addresses: pctp@mail.nhcue.edu.tw, thchang@mail.nhcue.edu.tw (T.-H. Chang).

0893-9659/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2010.06.027

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82214431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:pctp@mail.nhcue.edu.tw
mailto:thchang@mail.nhcue.edu.tw
http://dx.doi.org/10.1016/j.aml.2010.06.027


C.-M. Chen, T.-H. Chang / Applied Mathematics Letters 23 (2010) 1336–1341 1337

The cone P is called regular if every increasing sequence which is bounded from above is convergent, that is, if {xn} is a
sequence such that

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ y,
for some y ∈ E, then there is x ∈ E such that ‖xn− x‖ → 0 as n→∞. Equivalently, the cone P is regular if and only if every
decreasing sequence which is bounded from below is convergent. It is well known that a regular cone is a normal cone.
In the following we always suppose that E is a real Banach space with cone P in E with int P 6= φ, and ≤ is a partial

ordering with respect to P .

Definition 2 ([1]). Let X be a nonempty set. Suppose the mapping d : X × X → E satisfies
(i) 0 < d(x, y), for all x, y ∈ X, x 6= y,
(ii) d(x, y) = 0 if and only if x = y,
(iii) d(x, y) = d(y, x), and
(iv) d(x, y)+ d(y, z) ≥ d(x, z), for all x, y, z ∈ X .
Then d is called a cone metric on X , and (X, d) is called a cone metric space.

Definition 3 ([1]). Let (X, d) be a conemetric space, and let {xn} be a sequence in X and x ∈ X . If for every c ∈ E with 0� c ,
there is n0 ∈ N such that

d(xn, x)� c, for all n > n0,

then {xn} is said to be convergent and {xn} converges to x.

Definition 4 ([1]). Let (X, d) be a cone metric space, and let {xn} be a sequence in X . We say that {xn} is a Cauchy sequence
if for any c ∈ E with 0� c , there is N such that

d(xn, xm)� c, for all n,m > N.

Definition 5 ([1]). Let (X, d) be a conemetric space. If every Cauchy sequence is convergent in X , then X is called a complete
cone metric space.

Remark 1 ([1]). If P is a normal cone, then {xn} converges to x if and only if d(xn, x) → 0 as n → ∞. Further, in this case,
{xn} is a Cauchy sequence if and only if d(xn, xm)→ 0 asm, n→∞.

Let (X, d) be a cone metric space, T : X → X and x0 ∈ X . Then T is continuous at x0 if for any sequence {xn} in X with
d(xn, x0)→ 0, we have d(Txn, Tx0)→ 0.

Definition 6. Let (X, d) be a cone metric space, and let S, F : X → X be two single-valued functions. We say that S and F
are compatible if

lim
n→∞

d(SFxn, FSxn) = 0

whenever {xn} is a sequence in X such that limn→∞ d(Fxn, Sxn) = 0.
In particular, d(SFx, FSx) = 0 if d(Fx, Sx) = 0 on taking xn = x for all n.

Recall the notion of the Meir–Keeler type function. A function ψ : <+ → <+ is said to be a Meir–Keeler type function
(see [2]) if for each η ∈ <+, there exists δ = δ(η) > 0 such that for t ∈ <+ with η ≤ t < η + δ, we have ψ(t) < η. We
now define a new weaker Meir–Keeler type function, as follows:

Definition 7. Let (X, d) be a conemetric spacewith cone P , and letψ : int P∪{0} → int P∪{0}. Then the functionψ is called
a weaker Meir–Keeler type function if for each η, 0 � η, there exists δ, 0 � δ such that for t ∈ int P with η ≤ t � δ + η,
there exists n0 ∈ N such that ψn0(t)� η.

2. Main results

In the sequel, we let the function ψ : int P ∪ {0} → int P ∪ {0} satisfy the following conditions:
(i) ψ is a weaker Meir–Keeler type function;
(ii) for each t ∈ int P , we have 0� ψ(t)� t;
(iii) for tn ∈ int P , if limn→∞ tn = γ � 0, then limn→∞ ψ(tn)� γ ;
(iv) {ψn(t)}n∈N is nonincreasing.

Moreover, we call this mapping a ψ-mapping.

Theorem 1. Let (X, d) be a complete cone metric space with regular cone P such that d(x, y) ∈ int P for all x, y ∈ X with x 6= y,
and let F ,G, S, T : X → X be four single-valued functions with SX ⊂ GX and TX ⊂ FX such that for all x, y ∈ X,

d(Sx, Ty) ≤ ψ
(
max

{
d(Fx,Gy), d(Fx, Sx), d(Gy, Ty),

1
2
[d(Fx, Ty)+ d(Gy, Sx)]

})
.
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If S and F are compatible, T and G are compatible, and if either F or G is continuous, then S, T , F and G have a unique common
fixed point z in X.

Proof. Given x0 ∈ X , define the sequence {xn} recursively as follows:

Gx2n+1 = Sx2n = z2n, Fx2n+2 = Tx2n+1 = z2n+1.

Since

d(z2n, z2n+1) = d(Sx2n, Tx2n+1)

≤ ψ

(
max

{
d(Fx2n,Gx2n+1), d(Fx2n, Sx2n), d(Gx2n+1, Tx2n+1),

1
2
[d(Fx2n, Tx2n+1)+ d(Gx2n+1, Sx2n)]

})
≤ ψ

(
max

{
d(z2n−1, z2n), d(z2n−1, z2n), d(z2n, z2n+1),

1
2
[d(z2n−1, z2n)+ d(z2n, z2n+1)]

})
,

we hence have

d(z2n, z2n+1)� d(z2n−1, z2n).

Similarly,

d(z2n+1, z2n+2)� d(z2n, z2n+1).

Generally, we have

d(zn, zn+1)� d(zn−1, zn), and
d(zn, zn+1) ≤ ψ(d(zn−1, zn)) ≤ · · · ≤ ψn(d(z0, z1)).

Since {ψn(d(z0, z1))}n∈N is nonincreasing, it must converge to some η, 0 ≤ η. We claim that η = 0. On the contrary,
assume that 0� η. Then by the definition of the weaker Meir–Keeler type function, there exists δ, 0� δ such that for 0�
d(z0, z1) with η ≤ d(z0, z1) � δ + η, there exists n0 ∈ N such that ψn0(d(z0, z1)) � η. Since limn→∞ ψn(d(z0, z1)) = η,
there existsm0 ∈ N such that η ≤ ψmd(z0, z1)� δ+ η, for allm ≥ m0. Thus, we conclude thatψm0+n0(d(z0, z1))� η. So
we get a contradiction. So limn→∞ ψn(d(z0, z1)) = 0, and so limn→∞ d(zn, zn+1) = 0.
Next, we let cm = d(zm, zm+1), and we claim that the following result holds:

for each γ > 0, there is n0(γ ) ∈ N such that for allm, n ≥ n0(γ ),

d(zm, zn) < γ . (∗)

We shall prove (∗) by contradiction. Suppose that (∗) is false. Then there exists some γ > 0 such that for all k ∈ N , there
aremk, nk ∈ N withmk > nk ≥ k satisfying:

(i) mk is even and nk is odd,
(ii) d(zmk , znk) ≥ γ , and
(iii) mk is the smallest even number such that the conditions (i), (ii) hold (see [3]).

Since cm ↘ 0, by (ii), we have limk→∞ d(zmk , znk) = γ , and

γ ≤ d(zmk , znk) = d(Sxmk , Txnk)

≤ ψ

(
max

{
d(Fxmk ,Gxnk), d(Fxmk , Sxmk), d(Gxnk , Txnk),

1
2
[d(Fxmk , Txnk)+ d(Gxnk , Sxmk)]

})
≤ ψ

(
max

{
d(zmk−1, znk−1), cmk − 1, cnk − 1,

1
2
[d(zmk−1, znk)+ d(znk−1, znk)+ d(znk−1, zmk)]

})
≤ ψ

(
max

{
cmk−1 + d(zmk , znk)+ cnk−1, cmk − 1, cnk − 1,

1
2
[cmk−1 + d(zmk , znk)+ cnk−1 + d(zmk , znk)]

})
≤ ψ(cmk−1 + d(zmk , znk)+ cnk−1).

Since limk→∞ cmk−1+d(zmk , znk)+cnk−1 = γ , and by the condition (iii) of theψ-mapping, we have γ ≤ limk→∞ ψ(cmk−1+
cnk−1 + d(zmk , znk)) < γ , a contradiction. It follows from (∗) that the sequence {zn}must be a Cauchy sequence; hence {zn}
converges to some z ∈ X . So, d(Fx2n, z)→ 0, d(Gx2n+1, z)→ 0, d(Sx2n, z)→ 0 and d(Tx2n+1, z)→ 0 as n→∞.
Assume F is continuous. Then we have

d(F 2x2n, Fz)→ 0 and d(FSx2n, Fz)→ 0 as n→∞.

Since S and F are compatible and d(Sx2n, Fx2n)→ 0 as n→∞, we have

d(SFx2n, Fz) ≤ d(SFx2n, FSx2n)+ d(FSx2n, Fz),
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and so,

d(SFx2n, Fz)→ 0, as n→∞.

For any n ∈ N ,

d(SFx2n, Tx2n+1) ≤ ψ
(
max

{
d(F 2x2n,Gx2n+1), d(F 2x2n, SFx2n),

d(Gx2n+1, Tx2n+1),
1
2
[d(F 2x2n, Tx2n+1)+ d(Gx2n+1, SFx2n)]

})
.

(1) If

max
{
d(F 2x2n,Gx2n+1), d(F 2x2n, SFx2n), d(Gx2n+1, Tx2n+1),

1
2
[d(F 2x2n, Tx2n+1)+ d(Gx2n+1, SFx2n)]

}
= d(F 2x2n,Gx2n+1),

then we have limn→∞ d(F 2x2n,Gx2n+1) = d(Fz, z), and

lim
n→∞

d(SFx2n, Tx2n+1) ≤ lim
n→∞

ψ(d(F 2x2n,Gx2n+1)) < d(Fz, z),

that is, d(Fz, z) < d(Fz, z), which implies that Fz = z.
(2) If

max
{
d(F 2x2n,Gx2n+1), d(F 2x2n, SFx2n), d(Gx2n+1, Tx2n+1),

1
2
[d(F 2x2n, Tx2n+1)+ d(Gx2n+1, SFx2n)]

}
= d(F 2x2n, SFx2n),

then we have limn→∞ d(F 2x2n, SFx2n) = 0, and

lim
n→∞

d(SFx2n, Tx2n+1) ≤ 0,

which implies that Fz = z.
(3) If

max
{
d(F 2x2n,Gx2n+1), d(F 2x2n, SFx2n), d(Gx2n+1, Tx2n+1),

1
2
[d(F 2x2n, Tx2n+1)+ d(Gx2n+1, SFx2n)]

}
= d(Gx2n+1, Tx2n+1),

then we have limn→∞ d(Gx2n+1, Tx2n+1) = 0, and

lim
n→∞

d(SFx2n, Tx2n+1) ≤ 0,

which implies that Fz = z.
(4) If

max
{
d(F 2x2n,Gx2n+1), d(F 2x2n, SFx2n), d(Gx2n+1, Tx2n+1),

1
2
[d(F 2x2n, Tx2n+1)+ d(Gx2n+1, SFx2n)]

}
=
1
2
[d(F 2x2n, Tx2n+1)+ d(Gx2n+1, SFx2n)],

then we have limn→∞ 1
2 [d(F

2x2n, Tx2n+1)+ d(Gx2n+1, SFx2n)] = d(Fz, z)+ d(Fz, z), and

lim
n→∞

d(SFx2n, Tx2n+1) ≤ lim
n→∞

ψ(d(F 2x2n,Gx2n+1)) < d(Fz, z),

that is, d(Fz, z) < d(Fz, z), which implies that Fz = z.

Follow (1)–(4), we get Fz = z.
For any n ∈ N ,

d(Sz, Tx2n+1) ≤ ψ
(
max

{
d(Fz,Gx2n+1), d(Fz, Sz), d(Gx2n+1, Tx2n+1),

1
2
[d(Fz, Tx2n+1)+ d(Gx2n+1, Sz)]

})
.

(5) If

max
{
d(Fz,Gx2n+1), d(Fz, Sz), d(Gx2n+1, Tx2n+1),

1
2
[d(Fz, Tx2n+1)+ d(Gx2n+1, Sz)]

}
= d(Fz,Gx2n+1),
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then we have limn→∞ d(Fz,Gx2n+1) = d(Fz, z) = 0, and

lim
n→∞

d(Sz, Tx2n+1) = d(Sz, z) ≤ lim
n→∞

ψ(d(F 2x2n,Gx2n+1)) < 0,

which implies that Sz = z.
(6) If

max
{
d(Fz,Gx2n+1), d(Fz, Sz), d(Gx2n+1, Tx2n+1),

1
2
[d(Fz, Tx2n+1)+ d(Gx2n+1, Sz)]

}
= d(Fz, Sz),

then we have

lim
n→∞

d(Sz, Tx2n+1) = d(Sz, z) ≤ lim
n→∞

ψ(d(Fz, Sz)) < d(Fz, Sz),

a contradiction, which implies that Sz = z.
(7) If

max
{
d(Fz,Gx2n+1), d(Fz, Sz), d(Gx2n+1, Tx2n+1),

1
2
[d(Fz, Tx2n+1)+ d(Gx2n+1, Sz)]

}
= d(Gx2n+1, Tx2n+1),

then we have limn→∞ d(Fz,Gx2n+1) = 0, and

lim
n→∞

d(Sz, Tx2n+1) = d(Sz, z) ≤ lim
n→∞

ψ(d(Fz,Gx2n+1)) < 0,

which implies that Sz = z.
(8) If

max
{
d(Fz,Gx2n+1), d(Fz, Sz), d(Gx2n+1, Tx2n+1),

1
2
[d(Fz, Tx2n+1)+ d(Gx2n+1, Sz)]

}
=
1
2
[d(Fz, Tx2n+1)+ d(Gx2n+1, Sz)],

then we have limn→∞ 1
2 [d(Fz, Tx2n+1)+ d(Gx2n+1, Sz)] =

1
2d(Sz, z), and

lim
n→∞

d(Sz, Tx2n+1) = d(Sz, z) ≤ lim
n→∞

ψ

(
1
2
[d(Fz, Tx2n+1)+ d(Gx2n+1, Sz)]

)
<
1
2
d(Sz, z),

a contradiction, which implies that Sz = z.
Following (5)–(8), we get Sz = z.
Select z ′ ∈ X such that Gz ′ = z = Sz. Then TGz ′ = Tz, and

d(z, Tz ′) = d(Sz, Tz ′)

≤ ψ

(
max

{
d(Fz,Gz ′), d(fz, Sz), d(Gz ′, Tz ′),

1
2
[d(Fz, Tz ′)+ d(Gz ′, Sz)]

})
≤ ψ(max{0, 0, d(z, Tz ′), d(z, Tz ′)}),

which implies that Tz ′ = z and so GTz ′ = Gz.
Since T and G are compatible and d(Tz ′,Gz ′) = 0, we get d(Tz,Gz) = d(TGz ′,GTz ′) = 0, which implies Tz = Gz. Since

d(z, Tz) = d(Sz, Tz)

≤ ψ

(
max

{
d(Fz, gz), d(Fz, Sz), d(Gz, Tz),

1
2
[d(Fz, Tz)+ d(Gz, Sz)]

})
≤ ψ

(
max

{
d(z, Tz), 0, 0,

1
2
[d(z, Tz)+ d(z, Tz)]

})
= ψ(d(z, Tz)),

we have d(z, Tz) = 0, and so Tz = z.
Hence z is a common fixed point of S, T , F and Gwith Sz = Tz = z = Fz = Gz.
Let y be a common fixed point of S, T , F and G. We have

d(y, z) ≤ d(Sy, Tz)

≤ ψ

(
max

{
d(Fy,Gz), d(Fy, Sy), d(Gz, Tz),

1
2
[d(Fy, Tz)+ d(Gz, Sy)]

})
= ψ(d(y, z)).

This implies y = z. Hence z is the unique common fixed point of S, T , F and G.
Similarly, we can prove the continuity of G. �
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For the case F = G = I (identity mapping), we have the following corollary.

Corollary 1. Let (X, d) be a complete cone metric space with regular cone P such that d(x, y) ∈ int P for all x, y ∈ X with x 6= y,
and let S, T : X → X be two single-valued functions such that for all x, y ∈ X,

d(Sx, Ty) ≤ ψ
(
max

{
d(x, y), d(x, Sx), d(y, Ty),

1
2
[d(x, Ty)+ d(y, Sx)]

})
.

Then S and T have a unique common fixed point z in X.
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