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Abstract 

Partiality abounds in specifications and programs. We present a three-valued typed logic for 

reasoning equationally about programming in the presence of partial functions. The logic in 
essence is a combination of the equational logic E and typed LPF. Of course, there are already 
many logics in which some classical theorems acquire the status of neither-true-nor-false. What 
is distinctive here is that we preserve the equational reasoning style of E, as well as most 
of its main theorems. The principal losses among the theorems are the law of the excluded 
middle, the anti-symmetry of implication, a small complication in the trading law for existential 
quantification, and the requirement to show delinedness when using instantiation. The main loss 

among proof methods is proof by mutual implication; we present some new proof strategies that 
make up for this loss. Some proofs are longer than in E, but the heuristics commonly used in 
the proof methodology of E remain valid. We present a Hilbert-style axiomatisation of the logic 
in which modus ponens and generalisation are the only inference rules. The axiomatisation is 
easily modified to yield a classical axiomatisation of E itself. We suggest that the logic may 
be readily extended to a many-valued logic, and that this will have its uses. @ 1999 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

Partiality abounds in programs and reasoning about programs. A simple example 

is the following statement about the behaviour of the head and tail functions on a 

sequence s: 

s= () V(heads)^(tails)=s (*) 

Such a statement must be given a clear meaning so that we can know its meaning 

even when s denotes the empty sequence; for example, does (*) preserve its meaning 

* Corresponding author. Fax: +44 1413304913; e-mail: jmm@dcs.glasgow.ac.uk 
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when the two sides of the disjunction are commuted. There are many approaches 

to handling partiality; for a discussion of them see [6]. One approach is to allow 

formulae with non-denoting terms to be neither-true-nor-false, and to extend the logical 

connectives and quantifiers to cope with this third value. For example, when s denotes 

the empty sequence in (*), we view the term (heads)-(tail s) as non-denoting, and the 

formula (heads)-(tails) =s as neither-true-nor-false. We then extend the meaning of 

disjunction so that P V Q is true when one of P and Q is true, regardless of the 

value of the other, and hence we can say that (*) holds for all S. In short, this 

approach yields a three-valued logic for reasoning about partiality. We present such a 

logic. 

Our logic is to a large extent a marriage of the equational logic E originating 

with Dijkstra and Feijen [7,8], and typed LPF (“logic of partial functions”) [ 111. We 

call the union E3. E is essentially a treatment of traditional predicate logic based 

on the equivalence connective. Proof construction resembles familiar manipulation 

of expressions, in that the development proceeds mainly by substituting equals for 

equals. Although the strongest evidence for the efficacy of equational proofs comes 

from experience, there are technical reasons why this way of proving may be gen- 

uinely advantageous; see [13] for a discussion of this. LPF [4] is a logic developed 

for reasoning about the specification language VDM [IO]. A typed version of LPF 

is developed in [ 111, formulated as a sequent calculus for proofs in natural deduc- 

tion style. For arguments in favour of the LPF approach to handling partiality see 

[6]. With LPF we share the definitions of A, V, 1, and the quantifiers. From E 

we have taken the central role of = (which in E3 becomes so-called “strong equal- 

ity”) and its proof techniques. The element that bridges the two theories is an im- 

plication connective which is different from that in either E or LPF, as we shall 

see. 

We present the logic as a Hilbert-style axiomatisation, with modus ponens and gen- 

eralisation as the only inference rules. This presentation holds good for E (one need 

only add the axiom that says that all terms are defined), and so as a by-product 

we obtain a classical presentation of E itself. It will turn out that E3 retains the 

propositional part of E to a great extent, and that the predicate part survives virtually 

intact. The main propositional losses are the law of the excluded middle, associativ- 

ity of --, the absorption law that allows us to discard “7P V” in PA (-P V Q), and 

the anti-symmetry of implication. These still appear in E3, but with an obligation 

to show that some or all of the constituent formulae are well defined. Virtually, the 

only change in the predicate part of the logic is in the law of instantiation: we are 

now required to show that terms used to instantiate a formula are well defined. Of 

the proof methods of E, the main loss is proof of equivalence by mutual implica- 

tion. 

As well as presenting the logic formally, we give a model-theoretic semantics against 

which soundness and completeness can be established, we show that the equational 

reasoning of E is valid in E3, and we present some new proof strategies that make up 

for the loss of proof by mutual implication. 
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2. Design criteria 

2.1. Monotonic operators 

With the three boolean values being denoted by True, False, and I (pronounced 

“bottom”, representing neither-true-nor-false), we adopt the following truth-tables for 

negation, conjunction, and disjunction: 

7 

EK 

A True False _L V True False J- 

True False True True False _L True True True True 

False True False False False False False True False l_ 

I J_ I I False _L -L True I l_ 

These connectives have a long pedigree, traced in [3]. They are monotonic in all 

arguments with respect to the partial ordering & that places I below True and False. 

We also introduce strict equality which we denote by = (operations are said to be 

“strict” if they yield I whenever _L is an argument). Strict equality is also known as 

“weak equality”. 

2.2. Non-monotonic operators 

We include strong equality -, which differs from weak equality in that l. rX is 

true when X is replaced by I, and is otherwise false. It is convenient to have a unary 

operator A such that AP is True whenever P is well defined, and otherwise False. 

AP is definable in terms of existing operators, for example, as (P 3 True) E P. Avron 

[l] investigates various three-valued implications, of which the most attractive for our 

purposes equates P + Q with (P $ True) V Q (equivalently, 1P V TAP V Q). Among 

the nice properties of this implication is that it preserves the deduction theorem. Avron 

[2] attributes the earliest use of this implication to Monteiro [ 121. This implication is not 

antisymmetric, which means that we cannot prove equivalence by mutual implication 

(unless we show that both arguments are defined). Note that implication is monotonic 

with respect to C in its second argument but not its first. 

2.3. Quantijers 

In two-valued logic, universal quantification is a generalised conjunction, and we 

retain that interpretation. In (Vx: T . P), where T stands for a type, x is quantified over 

the proper elements of T (i.e. the non-l elements of T). Analogously, we retain the 

view of existential quantification as a generalised disjunction. A consequence is the 

continued equivalence of (3x: T . P) and +x: T .lP). 
There is some subtlety in these definitions. Taking 3 as an example, (3x: T. P) may 

be either true (if P is true for some x), false (if P is false for every x), or neither-true- 

nor-false (if P is neither-true-nor-false for some x and false for any remaining x). This 

requires us to exercise some care in encoding informal statements as quantifications, 
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because it is easy to mis-translate a false/true statement into a false/true/neither-true- 

nor-false statement. Take as an example the encoding of the statement “function f (on 

the integers) has at least one zero” - a statement we mean to be interpreted as either 

true or false. We might naively encode this as (3x: Z . fx = 0), but consider: (i) if f 
has a zero, (3x: Z . fx = 0) is true, as we would like; (ii) if f has no zero and fx 
is defined for all x, then (3x: Z - fx = 0) is false, as we would like; (iii) if f has no 

zero and fx is undefined for some x then (3x: Z. fx = 0) is undefined, which is not 

as we would like. We must encode the statement as, for example, (3x: Z - fx z 0), or 

(3x:Z.(fx=O)~True), or (3x:Z. fx=O)=True. 

Quantifications over subtypes are written as (Vx: TIR - P) and (3x: T/R - P), respec- 

tively, where in each case R is called the “range”. In two-valued logic, (Vx: TIR . P) 

encodes “P is true for all x that satisfy R”, and (3x: T/R. P) encodes “P is true for 

some x that satisfies R”. For the three-valued case, we have to decide whether an x 

for which R is neither-true-nor-false is deemed “in” or “out” of the quantification, or 

even whether the existence of such an x might render the whole quantification neither- 

true-nor-false. In deciding this, the properties we first look to are the so-called “trading 

laws”, which in the case of ‘d is 

(Vx: T(R . P) = (k’x: T . R + P). 

Such laws are important in equational reasoning, because they provide a simple cal- 

culational mechanism for manipulating P in ways that exploit the limited range of x. 

To retain the trading laws we interpret (Vx: TIR . P) as “P is true for all x for which 

R is (defined and) true”. Crudely expressed, in ranges, neither-true-nor-false is not 

distinguished from false. If we want to preserve de Morgan’s laws, and we do, we 

must define existential quantifications over subtypes by (3x: TIR . P) = ~(VX: T/R. ,P). 

This produces a trading law for 3 that is less attractive than the two-valued version 

- (3x: TJR. P)= (3x: T e -$R+ ,P)) - but we shall have to live with this. Observe 

that quantifications over subtypes are not monotonic with respect to E in their range 

argument. 

2.4. Catlea ts 

Non-monotonic&y has ramifications for program refinement. We extract a program 

from a specification by refining its constituent parts, so that gradually the non- 

algorithmic constructs are replaced by algorithmic substitutes. In refining term E to 

term F (think of E and F as a specification or program or some kind of hybrid 

specification/program) we do not, in general, require that E and F be equivalent (in 

their context), but only that they be equivalent wherever E is defined. (Actually, the 

story is more complex for non-flat domains and/or in the presence of nondeterminacy, 

but we can ignore such complications for the moment.) We write E C F when it is 

safe to replace E with F in this sense (this re-use of the symbol C is safe, because the 

two uses of C on the booleans coincide). For example, x +x E (2 *x + 1) f (2 *x + 1) 

holds for any integer, but not x f x E (2 * x + 1) f (2 * x + 1) because the right-hand 
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side is always defined, even when x is 0. Program refinement depends fundamentally 

on substitution being monotonic with respect to C, i.e. if E L F then G C G’ where G’ 

is obtained from G by replacing one or more occurrences of E with F - this is the 

essential property that enables us to program by stepwise refinement. However, E L F 

does not imply G L G’ if E occurs in G as an operand of a non-monotonic operator 

such as =+-, In that case we can only replace E with an expression that is equivalent 
to it. For example, although x + x C (2 * x + 1) + (2 * x + 1) holds for any integer x, it 

is not the case that 

x+x=1 =+ x#O c (2*x+1)+(2*x+1)=1 3 x#O 

because for x = 0 the left-hand side yields True, while the right-hand side yields False. 

The practical consequences are simply that we have to exercise care when we refine 

terms in non-monotonic positions, only substituting equals for equals. 

We also have to exercise some extra care with recursively defined functions. Every 

recursively defined function f depends for its meaning on the existence of the “least 

fixed point” of a related function F, and for the least fixed point of F to exist, occur- 

rences of f in the definition of F must be in monotonic positions (with respect to 5). 

This means that we cannot write a recursive function with a shape such as, say, 

f A fuux: N * . ..f(x- l)* . . . 

In practice, this is unlikely to be limiting in any substantive way, because it can be 

shown that the operators 1 and V, with the constants True and _L, are expressively 

complete for the class of all monotonic truth-valued functions (see [5]). 

Implementations of the three-valued A and V are expensive because they require 

the parallel evaluation of their arguments. We therefore have to replace them in a fi- 

nal program with so-called “conditional operators” that evaluate their arguments left to 

right. For example, the conditional conjunction ii behaves like strict conjunction except 

that False 7? I yields False. The replacement of monotonic operators with conditional 

ones is, in practice, a minor clerical exercise. If PA Q is well defined, at most one 

of P and Q is undefined, say Q, and so PA Q can be re-written as P ii Q, and sim- 

ilarly for v’. There are counter-examples to this simple strategy; for example, in the 

function 

fAfunn:N, x:{O,l}.if n=O then 0 

else if x+x=lV(l -x)+(1 -x)=1 

then f(n- 1,l -x) 

fi 

the expression x + x = 1 V (1 - x) + (1 - x) = 1 is always well defined and true but it 

cannotbereplacedeitherbyx+x=lv(l-x)+(1-x)=1 or(l-x)+(1-x)=lvxt 

x = 1. Such examples are probably just curiosities, and do not appear to arise in practice. 
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2.5. Types 

It is traditional in logic to have terms of only two types: those which denote boolean 

entities - these are usually called “formulae” - and those which denote objects in 

another unspecified type. Our treatment will admit of an arbitrary number of types, 

one of which will be the booleans, and we will regard “formula” as a synonym for an 

expression of type boolean. Note that we do not present a type system as such, but 

merely admit a family of type symbols which denote unknown types; this is the same 

approach as adopted in [ 111. 

3. The logic 

3.1. Syntax 

We assume a set of type symbols; the letters T and U will stand for arbitrary-type 

symbols. Each term is associated with a type. The letters E, F, G, t, and u stand 

for terms in general. For each type we are given a supply of “variable symbols” (in 

programming we are free to introduce variables as we go along, and to choose their 

names, but that is a minor syntactic issue that is not a concern at the current level 

of discussion.) We use the letters x,y, and z to stand for variable symbols. Variable 

symbols are terms, and as such have the type with which they are initially associated. 

For each type we are given a supply of atomic terms of the type, called “constants”. 

We are also given a supply of “operator symbols”; compound terms are made from 

more elementary terms using the operator symbols. An operator symbol combines a 

sequence of terms, each of a type determined by the operator; the resulting combination 

is a term of a type fixed by the operator called the “result type”. It follows that the 

type of each term is statically decidable. The operators z-, $, = and # are exceptions 

in that they accept arguments of any type, but the result type is fixed in each case 

(and of course is boolean). 

We are given one type symbol B (pronounced “bool”). Terms of type B are called 

“formulae”; we let P, Q, R, S, V, W, X, Y, Z stand for formulae. True and False are 

constants of type B. The “boolean operators” are A, V, +, A, 1, -, $, =, #, and 

the quantifiers V and 3, with a syntax as explained in the preceding section. Whenever 

we write a quantification (Vx: T . P), etc. we require that x be of type T, but we will 

not explicitly say so on each occasion. 

Brackets may be omitted using the following operator precedence (highest first): 

(i) A (ii) 7 (iii) A and V (iv) + (v) s and $ (vi) = and #. It turns out that A and 

v are associative, and we will use this fact from the outset to omit brackets. 1 and A 

bracket to the right. 

We denote by E[x := t] the term got by substituting each free occurrence of x in E 

with t, where x and t are of the same type. This is the usual substitution mechanism 

whereby bound variables in E are renamed as necessary to avoid free variables in 
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t becoming bound as a result of the substitution. Whenever we write a substitution 

expression E[x := t] we will assume that the requirement that x and t be of the same 

type is understood, without explicitly mentioning it. Substitution binds tightest of all. 

3.2. Model theory 

Terms and type symbols are interpreted with respect to a set containing at least 

the values True, False, and I; such a set is called the “domain of interpretation”, or 

simply the “domain”. (Note that we are re-using the symbols True, False, and I to 

denote values in the domain; context should resolve any possible ambiguity). Each 

type symbol T is interpreted as a subset of the domain containing i and at least 

one other element. Interpretations of constants (of type T, say) are constrained to be 

non-l elements in the subset corresponding to T. Every operator symbol is associ- 

ated with a “matching” total function on the domain. By “matching” we mean that 

the operator and the function take the same number of arguments, and that when the 

arguments of the function are type-correct then so is the result. The arguments of 

an interpreting function f are type-correct if they are interpretations of corresponding 

type-correct arguments of the operator. Terms are interpreted by induction on their 

structure. 

The interpretation of B is {True, False, I}, with True in the logic being identified 

with True in the domain. The interpretations of the A, V, =F, and 1 must be in 

agreement with the definitions of the preceding section. 

The interpretation of c is the function on the domain that yields True or False 

according to whether its arguments are identical or not, and analogously for $. The 

interpretations of = is a function that behaves like z when its arguments are proper, 

and otherwise yields 1. The interpretation of LIE is False or True according to whether 

the interpretation of E is I or not. 

A “valid interpretation” is a domain D and a mapping from types to subsets of D, 

and from terms without free variables or quantifiers to elements of D, that respects the 

requirements set out above. A valid interpretation extends naturally to terms with free 

variables by giving each variable symbol an interpretation. Interpretations of variables 

(of type T, say), are constrained to be non-J_ values in the subset of the domain 

corresponding to T. A mapping from the set of variable symbols to their respective 

interpretations that meets this requirement is called a “state”, and we refer to the 

interpretation of terms “with respect to” or “in” or “for” that state. It follows that 

for every valid interpretation, every term without quantifiers but possibly with free 

variables has an interpretation for each state. 

Finally, we extend interpretations to terms with quantifiers. For any valid interpre- 

tation, we say that two states are “x-equivalent” if they are similar except possibly 

for the assignments to variable x. We also say that a state “satisfies” (“dissatisfies”) 

formula P iff P is interpreted as True (respectively, False) in that state. For any 

valid interpretation, (Vx: TIR - P) is interpreted as True in a state iff P is satisfied by 

all x-equivalent states that satisfy R. (Vx: TIR - P) is interpreted as False in a state 
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iff some x-equivalent state that satisfies R dissatisfies P. (Vx: T. P) is interpreted as 

(K-c: TlTrue -P); (3x: TIR -P) is interpreted as ~(VX: TJR - ,P); and (3x: T -P) is in- 

terpreted as +x: T - 1P). 

We want each formula to be classified as a theorem if and only if every valid 

interpretation of it is True in every state. A logic which satisfies the “if” part of the 

preceding statement is said to be “sound”, and one that satisfies the “only if” part is 

said to be “complete”. It is pretty routine to show soundness, by checking that each 

axiom given below is interpreted as True for every valid interpretation and every state, 

and that this is preserved by the inference rules. As regards completeness, we can 

prove that every theorem of LPF is also a theorem of E3. The essence of the proof is 

that every inference rule in LPF is a derived inference rule in E3, allowing for minor 

differences in the two languages. The proof is omitted for brevity. 

3.3. Proof theory 

The axioms are all substitution instances of the formulae of Fig. 1. The theorems are 

the smallest subset of the formulae such that (i) every axiom is a theorem; (ii) if P 

and P 3 Q are theorems, then so is Q, and (iii) if P is a theorem, then so is (Kc: T - P) 

where x is of type T. A “proof” of P, i.e. a demonstration that P is a theorem, consists 

of a sequence of formulae whose final member is P, and such that each member of 

the sequence is an axiom or follows from preceding formulae in the sequence by an 

application of the inference rules modus ponens, or “MP” for short, and “generalisation 

(over x)“: 

MP PJ'+Q P 

Q 
Generalisation (~xjc: T . p) 

4. Reasoning in E3 

Proofs in E look very different from the simple sequence of lines described above, 

and indeed proofs in E rarely make explicit use of modus ponens at all. The archetypi- 

cal proof in E consists of a sequence of equivalent formulae beginning with the formula 

we are trying to prove, and ending with a known theorem. Each formula (except the 

first) is derived from its predecessor P by replacing P or a sub-term in P with an 

equivalent expression. We now show that this technique, and variations on it, are valid 

in both E and E3. 

4.1. Equational reasoning 

Equational reasoning proceeds using the following derived inference rules: 

P,P=Q 
Equanimity ___ 

Q 
Leibniz E - F, P[x := El 

P[x := F] 
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s-reflexivity: 
=-symmetry: 
&ruth: 

Equivalence E ~ c 

(E=F)z(F=E) 
((E=F)sTrue)=(E=F) 

Negation 

exchange: (YPsQ)‘(+JQ’P) 
S-definition: (ES F)=-$E=F) 
False-definition: False = -True 

v-symmetry: 
v-associativity: 
v-idempotency: 
v-zero: 
v-truth: 

Disjunction 

PvQ=QvP 
Pv(QvR)=(PvQ)vR 
PvP=P 
PvTrue=True 
((PvQ)=True)r(P=True)v(Q=True) 

Conjunction 

h-definition: 
Ah: 

consistency: 
,+Wlth: 

P/\Q=‘(‘Pv+J) 
PA(QvR)=(PAQ)v(PAR) 
(PI\QEP)I(PvQ=Q) 
(PhQ=Tnte)=(P=True)A(QrTrue) 

Implication 

=+detinition: 
*I=: 
=-weakening: 
Leibniz: 

P*Q=(PZTrue)vQ 
P=,(Q=R)=((P*Q)=(P*R)) 
V’=Q)-P-Q) 
(E E F) a (G[x:=E] = G[x:=Fj) 

Boolean definedness 

A-definition: 
one-l: 

AP = ((P = True) = P) 
APvAQv(P=Q) 

V/X 
V/W 

V’t: 

v-truth: 

interchange: 
renaming: 
trading: 

%definition: 
3Idefinition: 
%tntth: 

Universal quantification 

(Vx:T l P h Q) = (Vx:T l P) A (Vx:T l Q) 
(Vx:T l P v Q) = P v (Vx:T l (2) if x does not occur bee in P. 
(Vx:T . P E Q) ti ((Vx:T l P) I (Vx:T l Q)) 
((Vx:T l P) I True) = (Vx:T l P E True) 
(Vx:T . (Vy:U . P)) r (Vy:U l (Vx:T l P)) 
(Vx:T l P) = (Vy:T l P[x:=y]) where y is fresh 
(Vx:TIR l P) = (Vx:T l R =) P) 

Existential quantification 

(3x:T l P) = l(Vx:T l -,P) 
(3x:TIR l P) = l(Vx:TIR l -P) 
((3x:T l P) s True) E (3x:T l P = True) 

instantiation: 
variables defined: 

Term dcfincdness 

(Vx:T . P) A At 2 P[X:=t] 

Ax 

=detinedness: 
=definition: 
Z-definition: 

Weak equality 

A(E=F)-AEAAF 
A(E=F)=((E=F)a(E=F)) 
E#F=-(E=F) 

Fig. 1. Axioms of E3. 
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Transitivity 
E-F,F-G 

True-introduction 
P 

E-G PzTrue 

False-introduction 
-P 

P z False 

(The symmetry of = gives rise to trivial variations on each of the above.) In E and 

E3, proof P is a theorem is typically laid out as follows: 

P 

f ‘tjustification 1” 

Q 
= ‘$stification 2” - 

R - Theorem “T” 

This is short hand for: 

(i) P 3 Q - “justification 1” 

(ii) Q = R - “justification 2” 

(iii) P-R - (i), (ii), Transitivity 

(iv) R - Theorem “T” 

(v) P - (iii), (iv), Equanimity 

Each “justification” is a short text explaining why the associated equivalence X G Y 

(for any X and Y) is valid. It takes one of the following forms. Firstly, it may be a 

reference to where X = Y has been established as a theorem. Secondly, if X and Y are 

similar in structure except that X has a subexpression E where Y has subexpression 

F, then X = Y can be cast in the form .Z[x := E] =Z[x := F] where x stands for a 

fresh variable. In that case, the justification consists of a reference to where E = F 

has been established as a theorem. The truth of Z[X := E] s Z[x := F] follows from 

axiom Leibniz and an application of MP. Alternatively, if X = Y can be cast in the 

form Z[x := P] = Z[x := True], its justification consists of a reference to where P has 

been established as a theorem. The conclusion follows as before, with an additional 

appeal to True-introduction to infer P c True. Similarly, if X = Y can be cast in the 

form Z[x:= P] =Z[x :=False], the justification consists of a reference to where -P 

has been established as a theorem. The conclusion follows as above, except we appeal 

to False-introduction. Occasionally, a reference to where Es F has been established 

is packaged as a pair of references, one to where P+ (E = F) has been established 

for some P, and another to where P has been established; E = F follows from an 

application of MP. 

The foregoing describes a proof carried out in two steps; the generalisation to any 

number of steps is obvious. Comparing the proof presentation above with its first 

expansion (i.e. (i)-(v)), we see that step (iii) establishes PER. It follows that we 

may prove P = R using just this proof presentation, but without a justification of R in 

the final line. In short, we may prove an equivalence by reducing one side to the other. 

This is much used in E and continues to be valid in E3. 
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4.2. Reasoning with implication 

A proof of P =s R may proceed just as described in the preceding section, or it may 

be laid out in a style typified by 

P 

* “justification 1” 

Q 

3 ‘justification 2” 

R 

This abbreviates the proof steps P + Q followed by Q =S R, the conclusion, P + R, 
following from an application of the derived inference rule 

Implication Transitivity 
P+Q,Q*R 

P=+R 

See [8] for further details and minor variations. Just as with proofs of equivalence, this 

style may be viewed as a macro-language for traditional derivations that use only the 

originally given inference rules. 

4.3. Other inference rules 

E occasionally employs proof by mutual implication and A-introduction: 

Mutual Implication 
P*Q,Q*P f’, Q 

P=Q 
A-introduction - 

PAQ 
Mutual Implication is not valid in E3, and its absence occasionally increases the proof 

burden; we shall introduce other inference rules later to make up for this loss. /\- 

introduction continues to hold in E3. 

5. Propositional logic 

5.1. Theorems 

“Propositional logic” is that part of the logic in which the only type is 5, the axioms 

are those of equivalence, negation, disjunction, conjunction, implication, and boolean 

definedness, and MP is the only inference rule. The propositional part of E is retained 

in large measure in E3. 

l Negation is an involution. 

l Conjunction and disjunction are associative, symmetric, and idempotent. They retain 

their distribution properties with respect to one another. True and False behave as 

their zeros and units, De Morgan’s laws hold. 
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l Implication is reflexive and transitive. False implies everything, and everything im- 

plies True. Implication distributes over A, V, and + on the right. 

l The weakening and strengthening laws hold (i.e. P + P V Q, and PA Q+ P), as 

does the shunting law (i.e. PA Q + R is equivalent to P =s (Q =+ R)). 

l Almost all the monotonicity properties of operators with respect to + continue to 

hold (for example, (P + Q) =+ (P V R + Q V R)). 

The following theorems of E are not theorems of E3: 

True is a unit of= (P=True)EP 

Excluded middle PVTP 

V distributes over z (PV(Q=R))=((PvQ)=(PvR)) 

absorption PA(~PVQ)zPr\Q 

J/E/A (P+(Q=R))-((PAQ)=(PAR)). 

In each case, they become theorems if they are prefixed with “AP+“. Some of them 

can be weakened in other ways. For example, P V 1P $False is a theorem. The fol- 

lowing weakened versions of the absorption law holds: 

absorption’ (PA(~PVQ)zTrue)=(PAQ=True). 

Neither do the following theorems of E hold in E3, unless we show that all arguments 

are well defined: 

= is associative, and =+ is anti-symmetric 

golden rule (PAQsP)z(PVQZQ) 

Afrom=+ P=+Qz(PAQzP) 

contrapositive law (P+Q)=(lQ+-P) 

7-import/export l(P - Q) = (-P 3 Q). 

The following substitution laws of E continue to hold in E3: 

A-substitution: (E~F)AP[x:=E]~(EzF)AP[x:=F] 

=+substitution: (ErF)*P[x:=E]E(EEF)*P[x:=F]. 

The operator A is not interesting in two-valued logic. In E3 it enjoys the properties: 

A(E = F), A(E $ F), ATrue, AFalse, AAP 

(PzTrue)+PAAP 

PvTPVTAP 

AP=kPV7P and PVTP+AP. 

Although AP and P V 7P imply one another, they are not equivalent - to conclude 

equivalence from mutual implication we would have to show that both terms are well- 

defined, and we cannot prove A(P V -P). 
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5.2. Few or many J-s 

All of the theorems up to this point are provable without appealing to axiom one-i, 

but this changes when we come to what would seem to be a reasonable encoding of A: 

AP s (P $7P). 

It turns out that without one-l the axiomatisation of the propositional part of the logic 

does not exclude the possibility of many boolean bottoms, and the above equivalence 

does not hold in all such worlds. For example, the axiomatisation admits of two im- 

proper boolean values J-0 and ii, the four booleans constituting a chain lattice with 

elements False, 10, Ii, and True in that order, A and V being the lattice operations, 

and 10 and Ii being one another’s complement. Axiom one-l excludes such possibil- 

ities. We remark that the fact that we can pass to an n-valued logic, n > 3, with hardly 

any loss over the 3-valued version is interesting, because there are some settings in 

which it is desirable to have more than one improper value, in which case all of the 

theorems except the preceding one (which is not very important) are valid. 

We have not included I as a designated value in the logic; we can do so if we 

wish by adding the axiom 

-L-definition: TAJ-. 

We observe finally, that we can reduce E3 to E by adding the axiom 

AE. 

This produces a classical two-valued logic by excluding the possibility of improper 

values in any type. Alternatively, we can add the axiom of the excluded middle which 

guarantees that the booleans are 2-valued while leaving open the possibility of assigning 

no meaning to integer expressions such as 5 + 0. 

5.3. Proof strategies 

Proofs of propositional theorems are in the main no more difficult in E3 than in E. 

Surprisingly, the loss of the law of the excluded middle was not a big impediment to 

finding proofs, because an alternative route was usually evident. Perhaps the main loss 

is that of proof of equivalence by mutual implication: in E3 we have to live with the 

weakened form 

Mutual Implication 
P+-Q,Q+P,AP,AQ 

P-Q 

When we cannot guarantee the well-definedness of both sides of the equivalence, we 

can resort to the rule of Truth Cases: 

Truth Cases (P s True) = (Q = True), (P = False) = (Q = False) 

P=Q 
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The justification of Truth Cases relies on axiom one-l. It is a brute force method, to 

be applied as a last resort. 

The following derived inference rules are useful in three-valued logic: 

True-elimination ’ Zy 
~_Truth (P E True) + (Q E True) 

P+Q 

(and, of course, they are also valid in two-valued logic.) Their primary value is that 

they allow us to work with well-defined formulae such as P z True instead of P. 

6. Predicate logic 

6.1. Derived inference rules 

In proofs involving quantifiers and variables, E relies on the following set of infer- 

ence rules: 

t/-Leibniz 1 
tru 

(Yx: TJR[y := t] - P[y := t]) E (Vx: TIR[y := u] * P[y := u]) 

V-Leibniz 2 
R*(t=u) 

(Vx: ZJR * P[y := t]) E (Vx: TIR - P[y := u]) 

We also have the rules 3-Leibniz 1 and 3-Leibniz 2 by replacing V with 3 in the 

above, respectively. In the preceding rules, it is not excluded that x and y are identical 

symbols. 

V-monotonicity 1 
RAP+Q 

(Vx: TIR -P) =+ (Vx: TIR . Q) 

Q-monotonicity 2 
R+S 

(Vx: TIS -P) + (Vx: TIR - P) 

We also have the rules 3-monotonicity 1 and 3-monotonicity 2 by replacing V with 3 

in the above, respectively. 

Instantiation 
(Vx: T -P) 

P 

All of these derived inference rules remain valid in E3. 

The deduction theorem continues to hold in E3; standard proofs (see for example 

[9]) rely only on theorems which are valid in E3. 

With the quantifiers, there are some additional ways of justifying steps in proof 

presentations. Briefly, when a proof step (i.e. a pair of lines in a proof, together with 

their connecting 3 or =+) is an instance of the conclusion of one of the inference rules 

above, the justification will be the corresponding hypothesis (or a justification thereof). 

It follows that proofs in E or E3 can be mechanically translated to proofs that employ 

MP and Generalisation as the only inference rules. 
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4.2. Theorems 

Just about all the theorems of the predicate logic part of E hold in E3. The principle 

exceptions are those which arise from the axiom of instantiation, which must now be 

prefixed with “At +” where t stands for the instantiating term; for example: 

At =+ (P[x := t] =+ (3x: T ’ P)). 

A second source of differences arises from the trading law for existential quantification, 

which in one form can be expressed as: 

(3x: TIR - P) c (3x: T - (R s True) A P). 

Weak equality behaves as in two-valued logic except that reflexivity has a definedness 

requirement, as have the one-point and shifting rules. For example, the one-point rule 

for V is 

(Vx: Tlx = E - P) =P[x := E] V 1AE where x not free in E 

and the shifting rule for V is 

(Vx: TIR - P) = (Vx: TJR[x := E] . P[x := E]) 

provided that as a Iunction of x, E is surjective and total, i.e. (Yy: T - (3x: T . y = E)) 

and (t/x: 2’ - (3~: T * y = E)) (or equivalently, (Vx: T - AE)). This differs from E in the 

addition of the totality requirement. 

The theorem E = F + (E = F) allows us to use weak equality in place of strong 

equality in the hypotheses of inference rules and the antecedents of implications. As a 

consequence, we can use E = F as a justification in proof steps where previously we 

have required E E F. 

6.3. Proof strategies 

Predicate logic proofs in E3 are in the main pretty similar to proofs in E, although 

they tend to be a bit longer and on occasion more difficult. The main irritant in proofs 

in E3 is the obligation to show definedness of a term prior to instantiation. We illustrate 

with an example. In [4,6, 111, the theorem (V&j: h - i >j =+ f(i,j) = i - j) is used to 

highlight differences among alternative logics, where 

f g fun i,j: Z -if i =j then 0 else f(i,j + 1) + 1. 

We give a proof in E3 for comparison, It is obvious that we shall have to use induction 

on variable j, and so we re-write the demonstrandum as (Vi: Z - (Vj: Z. i >j + f(i. j) 

= i-j)) (nesting the induction variable inside is simpler, though not always adequate). 

Appealing to generalisation over i, we need only prove (Vj: H - i 2 j + f(i, j) = i - j). 
We shall use obvious properties of the integers, indicating such use by the hint 
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“arithmetic”. We shall also use simple properties of function application and if.. . 

then . . . else.. . . As far as the definedness of integer terms is concerned, we only need 

the fact that addition, subtraction, and the relational operators are strict, and that dc 

holds for all integer constants c. 

(Vj: z * i >j + f(i,j) = i - j) 

= “shifting with j := (i - j), noting that the surjectivity - 

- (vk: z * (gj: Z * k = i - j)) - and totality 

- (vj: Z . d(i - j)) - requirements are met” 

(Vj:Z*i>i-j*f(i,i-j)=i-(i-j)) 

E “arithmetic” 

(Vj:Z*j2O*f(i,i-j)=j) 

= “trading” - 

(Vj:j:lj>O*f(i,i-j)=j) 

=“(kkz(X3o.P)~(VX: N .P),’ - 

(Vj: N - f(i, i - j) =j) 

= “induction on N” - 

f(i,i--O)=OA(Vj:N*f(i,i-j)=j*f(i,i--(j+l))=j+l) 

= “arithmetic” - 

f(i,i)=OA(Vj:N.f(i,i-j)=j*f(i,i-(j+l))=j+l) 

By A-introduction, we prove each conjunct separately. Firstly, 

f (i, i) = 0 

= “definition of f" 

(fun i,j:Z.if i=j then 0 else f(i,j+ I)+ l)(i,i)=O 

s “function application, A i (substitution requires definedness)” 

(if i = i then 0 else f(i, i + 1) + 1) = 0 

s “reflexivity of =, Ai” 

(if True then 0 else f(i, i + 1) + 1) = 0 

= “(if True then E else F) G E” - 

0 = 0 - reflexivity of =, A0 



J. M. Morris, A. Bunkenburg /Science of Computer Programming 34 (1999) 141-158 157 

For the second conjunct (Vj: N . f(i, i -j) =j + f(i, i - (j + 1)) =j + I), we begin by 
appealing to generalisation: 

f(i, i - j) =j * f(i, i - (j + 1)) =j + 1 

E “assume f(i, i - j) = j (here we are using the deduction theorem)” 

f(i,i-(j+l))=j+l 

= “definition of f” - 

(fun i,j: Z-if i=j then 0 else f(i,j+ l)+l)(i,i-(j+ l))=j+ 1 

E “function application, di, d( i - (j + 1))” 

(if i=i-(j+ 1) then 0 else f(i,i-(j+ I)+ l)+ 1)-j+ 1 

= “arithmetic” 

(ifj+l=OthenOelsef(i,i-j)+l)=j+l 

s “f(i, i - j) = j by assumption” 

(ifj+l=OthenOelsej+l)=j+l 

= “elementary property of if” 

(if j-l-1=0 then j+l else j+l)=j+l 

= “elementary property of if (using d( j + 1 = 0) y’ - 

j+l=j+ 1 -reflexivity of =,d(j+ 1) 

7. Concluding remarks 

We have presented a logic for reasoning equationally about programming in the 

presence of partiality. It is a combination of E and LPF, and is designed to cover 

the full gamut from programs to specifications to reasoning about specifications. The 

logic is presented as a classical Hilbert-style axiomatisation in which modus ponens 

and generalisation are the only inference rules. Almost all the proof methods of E 

continue to be valid, as well as most of the main theorems. The principal changes in 

the body of theorems are the loss of the law of the excluded middle and anti-symmetry 

of implication, a small complication in the trading law for existential quantification, and 

the requirement to show definedness before using instantiation. With some exceptions, 

proofs tend to be but marginally more difficult than proofs in E. Much of the added 

difficulty stems from the unavailability of proof by mutual implication, but there are 

alternative proof strategies to overcome this, albeit at the price of longer proofs on 

occasion. The axiomatisation is easily modified to yield a classical axiomatisation of 

E itself. As an aside, we observe that most of the theorems continue to hold without 
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the assumption of a single improper value, and so the logic should readily admit of 

extension to a many-valued logic. This could be important in some contexts. 
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