
Science of
Computer

ELSEVIER Science of Computer Programming 34 (1999) 141-158
Programming

www.elsevier.nlilocate/scico

E3:
A logic for reasoning

in the presence of
equationally
partiality

Joseph M. Morris *, Alexander Bunkenburg

Depurtment of Computing Science, University of Glasgow, Glasgow G12 8QQ. Scotland, UK

Communicated by C.B. Jones; received 5 May 1996; received in revised form 15 May 1998

Abstract

Partiality abounds in specifications and programs. We present a three-valued typed logic for

reasoning equationally about programming in the presence of partial functions. The logic in
essence is a combination of the equational logic E and typed LPF. Of course, there are already
many logics in which some classical theorems acquire the status of neither-true-nor-false. What
is distinctive here is that we preserve the equational reasoning style of E, as well as most
of its main theorems. The principal losses among the theorems are the law of the excluded
middle, the anti-symmetry of implication, a small complication in the trading law for existential
quantification, and the requirement to show delinedness when using instantiation. The main loss

among proof methods is proof by mutual implication; we present some new proof strategies that
make up for this loss. Some proofs are longer than in E, but the heuristics commonly used in
the proof methodology of E remain valid. We present a Hilbert-style axiomatisation of the logic
in which modus ponens and generalisation are the only inference rules. The axiomatisation is
easily modified to yield a classical axiomatisation of E itself. We suggest that the logic may
be readily extended to a many-valued logic, and that this will have its uses. @ 1999 Elsevier
Science B.V. All rights reserved.

Keywords: Three-valued logic; Equational reasoning; Partial expressions

1. Introduction

Partiality abounds in programs and reasoning about programs. A simple example

is the following statement about the behaviour of the head and tail functions on a

sequence s:

s= () V(heads)^(tails)=s (*)

Such a statement must be given a clear meaning so that we can know its meaning

even when s denotes the empty sequence; for example, does (*) preserve its meaning

* Corresponding author. Fax: +44 1413304913; e-mail: jmm@dcs.glasgow.ac.uk

0167-6423/99/$-see front matter @ 1999 Elsevier Science B.V. All rights reserved.

PII: SOl67-6423(98)00019-7

142 J.M. Morris, A. BunkenburylScience oJ’ Computer Proyramminy 34 11999) 141-158

when the two sides of the disjunction are commuted. There are many approaches

to handling partiality; for a discussion of them see [6]. One approach is to allow

formulae with non-denoting terms to be neither-true-nor-false, and to extend the logical

connectives and quantifiers to cope with this third value. For example, when s denotes

the empty sequence in (*), we view the term (heads)-(tail s) as non-denoting, and the

formula (heads)-(tails) =s as neither-true-nor-false. We then extend the meaning of

disjunction so that P V Q is true when one of P and Q is true, regardless of the

value of the other, and hence we can say that (*) holds for all S. In short, this

approach yields a three-valued logic for reasoning about partiality. We present such a

logic.

Our logic is to a large extent a marriage of the equational logic E originating

with Dijkstra and Feijen [7,8], and typed LPF (“logic of partial functions”) [111. We

call the union E3. E is essentially a treatment of traditional predicate logic based

on the equivalence connective. Proof construction resembles familiar manipulation

of expressions, in that the development proceeds mainly by substituting equals for

equals. Although the strongest evidence for the efficacy of equational proofs comes

from experience, there are technical reasons why this way of proving may be gen-

uinely advantageous; see [13] for a discussion of this. LPF [4] is a logic developed

for reasoning about the specification language VDM [IO]. A typed version of LPF

is developed in [111, formulated as a sequent calculus for proofs in natural deduc-

tion style. For arguments in favour of the LPF approach to handling partiality see

[6]. With LPF we share the definitions of A, V, 1, and the quantifiers. From E

we have taken the central role of = (which in E3 becomes so-called “strong equal-

ity”) and its proof techniques. The element that bridges the two theories is an im-

plication connective which is different from that in either E or LPF, as we shall

see.

We present the logic as a Hilbert-style axiomatisation, with modus ponens and gen-

eralisation as the only inference rules. This presentation holds good for E (one need

only add the axiom that says that all terms are defined), and so as a by-product

we obtain a classical presentation of E itself. It will turn out that E3 retains the

propositional part of E to a great extent, and that the predicate part survives virtually

intact. The main propositional losses are the law of the excluded middle, associativ-

ity of --, the absorption law that allows us to discard “7P V” in PA (-P V Q), and

the anti-symmetry of implication. These still appear in E3, but with an obligation

to show that some or all of the constituent formulae are well defined. Virtually, the

only change in the predicate part of the logic is in the law of instantiation: we are

now required to show that terms used to instantiate a formula are well defined. Of

the proof methods of E, the main loss is proof of equivalence by mutual implica-

tion.

As well as presenting the logic formally, we give a model-theoretic semantics against

which soundness and completeness can be established, we show that the equational

reasoning of E is valid in E3, and we present some new proof strategies that make up

for the loss of proof by mutual implication.

J. M. Morris, A. BunkenburglScience of Computer Programming 34 (1999) 141-158 143

2. Design criteria

2.1. Monotonic operators

With the three boolean values being denoted by True, False, and I (pronounced

“bottom”, representing neither-true-nor-false), we adopt the following truth-tables for

negation, conjunction, and disjunction:

7

EK

A True False _L V True False J-

True False True True False _L True True True True

False True False False False False False True False l_

I J_ I I False _L -L True I l_

These connectives have a long pedigree, traced in [3]. They are monotonic in all

arguments with respect to the partial ordering & that places I below True and False.

We also introduce strict equality which we denote by = (operations are said to be

“strict” if they yield I whenever _L is an argument). Strict equality is also known as

“weak equality”.

2.2. Non-monotonic operators

We include strong equality -, which differs from weak equality in that l. rX is

true when X is replaced by I, and is otherwise false. It is convenient to have a unary

operator A such that AP is True whenever P is well defined, and otherwise False.

AP is definable in terms of existing operators, for example, as (P 3 True) E P. Avron

[l] investigates various three-valued implications, of which the most attractive for our

purposes equates P + Q with (P $ True) V Q (equivalently, 1P V TAP V Q). Among

the nice properties of this implication is that it preserves the deduction theorem. Avron

[2] attributes the earliest use of this implication to Monteiro [121. This implication is not

antisymmetric, which means that we cannot prove equivalence by mutual implication

(unless we show that both arguments are defined). Note that implication is monotonic

with respect to C in its second argument but not its first.

2.3. Quantijers

In two-valued logic, universal quantification is a generalised conjunction, and we

retain that interpretation. In (Vx: T . P), where T stands for a type, x is quantified over

the proper elements of T (i.e. the non-l elements of T). Analogously, we retain the

view of existential quantification as a generalised disjunction. A consequence is the

continued equivalence of (3x: T . P) and +x: T .lP).
There is some subtlety in these definitions. Taking 3 as an example, (3x: T. P) may

be either true (if P is true for some x), false (if P is false for every x), or neither-true-

nor-false (if P is neither-true-nor-false for some x and false for any remaining x). This

requires us to exercise some care in encoding informal statements as quantifications,

144 J.M. Morris. A. Bunkenburg IScience of Computer Programming 34 (1999) 141-158

because it is easy to mis-translate a false/true statement into a false/true/neither-true-

nor-false statement. Take as an example the encoding of the statement “function f (on

the integers) has at least one zero” - a statement we mean to be interpreted as either

true or false. We might naively encode this as (3x: Z . fx = 0), but consider: (i) if f
has a zero, (3x: Z . fx = 0) is true, as we would like; (ii) if f has no zero and fx
is defined for all x, then (3x: Z - fx = 0) is false, as we would like; (iii) if f has no

zero and fx is undefined for some x then (3x: Z. fx = 0) is undefined, which is not

as we would like. We must encode the statement as, for example, (3x: Z - fx z 0), or

(3x:Z.(fx=O)~True), or (3x:Z. fx=O)=True.

Quantifications over subtypes are written as (Vx: TIR - P) and (3x: T/R - P), respec-

tively, where in each case R is called the “range”. In two-valued logic, (Vx: TIR . P)

encodes “P is true for all x that satisfy R”, and (3x: T/R. P) encodes “P is true for

some x that satisfies R”. For the three-valued case, we have to decide whether an x

for which R is neither-true-nor-false is deemed “in” or “out” of the quantification, or

even whether the existence of such an x might render the whole quantification neither-

true-nor-false. In deciding this, the properties we first look to are the so-called “trading

laws”, which in the case of ‘d is

(Vx: T(R . P) = (k’x: T . R + P).

Such laws are important in equational reasoning, because they provide a simple cal-

culational mechanism for manipulating P in ways that exploit the limited range of x.

To retain the trading laws we interpret (Vx: TIR . P) as “P is true for all x for which

R is (defined and) true”. Crudely expressed, in ranges, neither-true-nor-false is not

distinguished from false. If we want to preserve de Morgan’s laws, and we do, we

must define existential quantifications over subtypes by (3x: TIR . P) = ~(VX: T/R. ,P).

This produces a trading law for 3 that is less attractive than the two-valued version

- (3x: TJR. P)= (3x: T e -$R+ ,P)) - but we shall have to live with this. Observe

that quantifications over subtypes are not monotonic with respect to E in their range

argument.

2.4. Catlea ts

Non-monotonic&y has ramifications for program refinement. We extract a program

from a specification by refining its constituent parts, so that gradually the non-

algorithmic constructs are replaced by algorithmic substitutes. In refining term E to

term F (think of E and F as a specification or program or some kind of hybrid

specification/program) we do not, in general, require that E and F be equivalent (in

their context), but only that they be equivalent wherever E is defined. (Actually, the

story is more complex for non-flat domains and/or in the presence of nondeterminacy,

but we can ignore such complications for the moment.) We write E C F when it is

safe to replace E with F in this sense (this re-use of the symbol C is safe, because the

two uses of C on the booleans coincide). For example, x +x E (2 *x + 1) f (2 *x + 1)

holds for any integer, but not x f x E (2 * x + 1) f (2 * x + 1) because the right-hand

J.M. Morris, A. BunkenburglScience of Computer Programming 34 (1999) 141-158 145

side is always defined, even when x is 0. Program refinement depends fundamentally

on substitution being monotonic with respect to C, i.e. if E L F then G C G’ where G’

is obtained from G by replacing one or more occurrences of E with F - this is the

essential property that enables us to program by stepwise refinement. However, E L F

does not imply G L G’ if E occurs in G as an operand of a non-monotonic operator

such as =+-, In that case we can only replace E with an expression that is equivalent
to it. For example, although x + x C (2 * x + 1) + (2 * x + 1) holds for any integer x, it

is not the case that

x+x=1 =+ x#O c (2*x+1)+(2*x+1)=1 3 x#O

because for x = 0 the left-hand side yields True, while the right-hand side yields False.

The practical consequences are simply that we have to exercise care when we refine

terms in non-monotonic positions, only substituting equals for equals.

We also have to exercise some extra care with recursively defined functions. Every

recursively defined function f depends for its meaning on the existence of the “least

fixed point” of a related function F, and for the least fixed point of F to exist, occur-

rences of f in the definition of F must be in monotonic positions (with respect to 5).

This means that we cannot write a recursive function with a shape such as, say,

f A fuux: N * . ..f(x- l)* . . .

In practice, this is unlikely to be limiting in any substantive way, because it can be

shown that the operators 1 and V, with the constants True and _L, are expressively

complete for the class of all monotonic truth-valued functions (see [5]).

Implementations of the three-valued A and V are expensive because they require

the parallel evaluation of their arguments. We therefore have to replace them in a fi-

nal program with so-called “conditional operators” that evaluate their arguments left to

right. For example, the conditional conjunction ii behaves like strict conjunction except

that False 7? I yields False. The replacement of monotonic operators with conditional

ones is, in practice, a minor clerical exercise. If PA Q is well defined, at most one

of P and Q is undefined, say Q, and so PA Q can be re-written as P ii Q, and sim-

ilarly for v’. There are counter-examples to this simple strategy; for example, in the

function

fAfunn:N, x:{O,l}.if n=O then 0

else if x+x=lV(l -x)+(1 -x)=1

then f(n- 1,l -x)

fi

the expression x + x = 1 V (1 - x) + (1 - x) = 1 is always well defined and true but it

cannotbereplacedeitherbyx+x=lv(l-x)+(1-x)=1 or(l-x)+(1-x)=lvxt

x = 1. Such examples are probably just curiosities, and do not appear to arise in practice.

146 J.M. Morris, A. BunkenburglScience of Computer Programming 34 (1999) 141-1.58

2.5. Types

It is traditional in logic to have terms of only two types: those which denote boolean

entities - these are usually called “formulae” - and those which denote objects in

another unspecified type. Our treatment will admit of an arbitrary number of types,

one of which will be the booleans, and we will regard “formula” as a synonym for an

expression of type boolean. Note that we do not present a type system as such, but

merely admit a family of type symbols which denote unknown types; this is the same

approach as adopted in [111.

3. The logic

3.1. Syntax

We assume a set of type symbols; the letters T and U will stand for arbitrary-type

symbols. Each term is associated with a type. The letters E, F, G, t, and u stand

for terms in general. For each type we are given a supply of “variable symbols” (in

programming we are free to introduce variables as we go along, and to choose their

names, but that is a minor syntactic issue that is not a concern at the current level

of discussion.) We use the letters x,y, and z to stand for variable symbols. Variable

symbols are terms, and as such have the type with which they are initially associated.

For each type we are given a supply of atomic terms of the type, called “constants”.

We are also given a supply of “operator symbols”; compound terms are made from

more elementary terms using the operator symbols. An operator symbol combines a

sequence of terms, each of a type determined by the operator; the resulting combination

is a term of a type fixed by the operator called the “result type”. It follows that the

type of each term is statically decidable. The operators z-, $, = and # are exceptions

in that they accept arguments of any type, but the result type is fixed in each case

(and of course is boolean).

We are given one type symbol B (pronounced “bool”). Terms of type B are called

“formulae”; we let P, Q, R, S, V, W, X, Y, Z stand for formulae. True and False are

constants of type B. The “boolean operators” are A, V, +, A, 1, -, $, =, #, and

the quantifiers V and 3, with a syntax as explained in the preceding section. Whenever

we write a quantification (Vx: T . P), etc. we require that x be of type T, but we will

not explicitly say so on each occasion.

Brackets may be omitted using the following operator precedence (highest first):

(i) A (ii) 7 (iii) A and V (iv) + (v) s and $ (vi) = and #. It turns out that A and

v are associative, and we will use this fact from the outset to omit brackets. 1 and A

bracket to the right.

We denote by E[x := t] the term got by substituting each free occurrence of x in E

with t, where x and t are of the same type. This is the usual substitution mechanism

whereby bound variables in E are renamed as necessary to avoid free variables in

J.M. Morris, A. Bunkenburg IScience of Computer Programming 34 (1999) 141-158 147

t becoming bound as a result of the substitution. Whenever we write a substitution

expression E[x := t] we will assume that the requirement that x and t be of the same

type is understood, without explicitly mentioning it. Substitution binds tightest of all.

3.2. Model theory

Terms and type symbols are interpreted with respect to a set containing at least

the values True, False, and I; such a set is called the “domain of interpretation”, or

simply the “domain”. (Note that we are re-using the symbols True, False, and I to

denote values in the domain; context should resolve any possible ambiguity). Each

type symbol T is interpreted as a subset of the domain containing i and at least

one other element. Interpretations of constants (of type T, say) are constrained to be

non-l elements in the subset corresponding to T. Every operator symbol is associ-

ated with a “matching” total function on the domain. By “matching” we mean that

the operator and the function take the same number of arguments, and that when the

arguments of the function are type-correct then so is the result. The arguments of

an interpreting function f are type-correct if they are interpretations of corresponding

type-correct arguments of the operator. Terms are interpreted by induction on their

structure.

The interpretation of B is {True, False, I}, with True in the logic being identified

with True in the domain. The interpretations of the A, V, =F, and 1 must be in

agreement with the definitions of the preceding section.

The interpretation of c is the function on the domain that yields True or False

according to whether its arguments are identical or not, and analogously for $. The

interpretations of = is a function that behaves like z when its arguments are proper,

and otherwise yields 1. The interpretation of LIE is False or True according to whether

the interpretation of E is I or not.

A “valid interpretation” is a domain D and a mapping from types to subsets of D,

and from terms without free variables or quantifiers to elements of D, that respects the

requirements set out above. A valid interpretation extends naturally to terms with free

variables by giving each variable symbol an interpretation. Interpretations of variables

(of type T, say), are constrained to be non-J_ values in the subset of the domain

corresponding to T. A mapping from the set of variable symbols to their respective

interpretations that meets this requirement is called a “state”, and we refer to the

interpretation of terms “with respect to” or “in” or “for” that state. It follows that

for every valid interpretation, every term without quantifiers but possibly with free

variables has an interpretation for each state.

Finally, we extend interpretations to terms with quantifiers. For any valid interpre-

tation, we say that two states are “x-equivalent” if they are similar except possibly

for the assignments to variable x. We also say that a state “satisfies” (“dissatisfies”)

formula P iff P is interpreted as True (respectively, False) in that state. For any

valid interpretation, (Vx: TIR - P) is interpreted as True in a state iff P is satisfied by

all x-equivalent states that satisfy R. (Vx: TIR - P) is interpreted as False in a state

148 J.M. Morris, A. BunkenburglScience of Computer Programming 34 (1999) 141-158

iff some x-equivalent state that satisfies R dissatisfies P. (Vx: T. P) is interpreted as

(K-c: TlTrue -P); (3x: TIR -P) is interpreted as ~(VX: TJR - ,P); and (3x: T -P) is in-

terpreted as +x: T - 1P).

We want each formula to be classified as a theorem if and only if every valid

interpretation of it is True in every state. A logic which satisfies the “if” part of the

preceding statement is said to be “sound”, and one that satisfies the “only if” part is

said to be “complete”. It is pretty routine to show soundness, by checking that each

axiom given below is interpreted as True for every valid interpretation and every state,

and that this is preserved by the inference rules. As regards completeness, we can

prove that every theorem of LPF is also a theorem of E3. The essence of the proof is

that every inference rule in LPF is a derived inference rule in E3, allowing for minor

differences in the two languages. The proof is omitted for brevity.

3.3. Proof theory

The axioms are all substitution instances of the formulae of Fig. 1. The theorems are

the smallest subset of the formulae such that (i) every axiom is a theorem; (ii) if P

and P 3 Q are theorems, then so is Q, and (iii) if P is a theorem, then so is (Kc: T - P)

where x is of type T. A “proof” of P, i.e. a demonstration that P is a theorem, consists

of a sequence of formulae whose final member is P, and such that each member of

the sequence is an axiom or follows from preceding formulae in the sequence by an

application of the inference rules modus ponens, or “MP” for short, and “generalisation

(over x)“:

MP PJ'+Q P

Q
Generalisation (~xjc: T . p)

4. Reasoning in E3

Proofs in E look very different from the simple sequence of lines described above,

and indeed proofs in E rarely make explicit use of modus ponens at all. The archetypi-

cal proof in E consists of a sequence of equivalent formulae beginning with the formula

we are trying to prove, and ending with a known theorem. Each formula (except the

first) is derived from its predecessor P by replacing P or a sub-term in P with an

equivalent expression. We now show that this technique, and variations on it, are valid

in both E and E3.

4.1. Equational reasoning

Equational reasoning proceeds using the following derived inference rules:

P,P=Q
Equanimity ___

Q
Leibniz E - F, P[x := El

P[x := F]

J.M. Morris, A. BunkenburglScience of Computer Programming 34 (1999) 141-1.58 149

s-reflexivity:
=-symmetry:
&ruth:

Equivalence E ~ c

(E=F)z(F=E)
((E=F)sTrue)=(E=F)

Negation

exchange: (YPsQ)‘(+JQ’P)
S-definition: (ES F)=-$E=F)
False-definition: False = -True

v-symmetry:
v-associativity:
v-idempotency:
v-zero:
v-truth:

Disjunction

PvQ=QvP
Pv(QvR)=(PvQ)vR
PvP=P
PvTrue=True
((PvQ)=True)r(P=True)v(Q=True)

Conjunction

h-definition:
Ah:

consistency:
,+Wlth:

P/\Q=‘(‘Pv+J)
PA(QvR)=(PAQ)v(PAR)
(PI\QEP)I(PvQ=Q)
(PhQ=Tnte)=(P=True)A(QrTrue)

Implication

=+detinition:
*I=:
=-weakening:
Leibniz:

P*Q=(PZTrue)vQ
P=,(Q=R)=((P*Q)=(P*R))
V’=Q)-P-Q)
(E E F) a (G[x:=E] = G[x:=Fj)

Boolean definedness

A-definition:
one-l:

AP = ((P = True) = P)
APvAQv(P=Q)

V/X
V/W

V’t:

v-truth:

interchange:
renaming:
trading:

%definition:
3Idefinition:
%tntth:

Universal quantification

(Vx:T l P h Q) = (Vx:T l P) A (Vx:T l Q)
(Vx:T l P v Q) = P v (Vx:T l (2) if x does not occur bee in P.
(Vx:T . P E Q) ti ((Vx:T l P) I (Vx:T l Q))
((Vx:T l P) I True) = (Vx:T l P E True)
(Vx:T . (Vy:U . P)) r (Vy:U l (Vx:T l P))
(Vx:T l P) = (Vy:T l P[x:=y]) where y is fresh
(Vx:TIR l P) = (Vx:T l R =) P)

Existential quantification

(3x:T l P) = l(Vx:T l -,P)
(3x:TIR l P) = l(Vx:TIR l -P)
((3x:T l P) s True) E (3x:T l P = True)

instantiation:
variables defined:

Term dcfincdness

(Vx:T . P) A At 2 P[X:=t]

Ax

=detinedness:
=definition:
Z-definition:

Weak equality

A(E=F)-AEAAF
A(E=F)=((E=F)a(E=F))
E#F=-(E=F)

Fig. 1. Axioms of E3.

150 J. M. Morris, A. Bunkenburg I Science of’ Computer Programming 34 (I 999) 141-158

Transitivity
E-F,F-G

True-introduction
P

E-G PzTrue

False-introduction
-P

P z False

(The symmetry of = gives rise to trivial variations on each of the above.) In E and

E3, proof P is a theorem is typically laid out as follows:

P

f ‘tjustification 1”

Q
= ‘$stification 2” -

R - Theorem “T”

This is short hand for:

(i) P 3 Q - “justification 1”

(ii) Q = R - “justification 2”

(iii) P-R - (i), (ii), Transitivity

(iv) R - Theorem “T”

(v) P - (iii), (iv), Equanimity

Each “justification” is a short text explaining why the associated equivalence X G Y

(for any X and Y) is valid. It takes one of the following forms. Firstly, it may be a

reference to where X = Y has been established as a theorem. Secondly, if X and Y are

similar in structure except that X has a subexpression E where Y has subexpression

F, then X = Y can be cast in the form .Z[x := E] =Z[x := F] where x stands for a

fresh variable. In that case, the justification consists of a reference to where E = F

has been established as a theorem. The truth of Z[X := E] s Z[x := F] follows from

axiom Leibniz and an application of MP. Alternatively, if X = Y can be cast in the

form Z[x := P] = Z[x := True], its justification consists of a reference to where P has

been established as a theorem. The conclusion follows as before, with an additional

appeal to True-introduction to infer P c True. Similarly, if X = Y can be cast in the

form Z[x:= P] =Z[x :=False], the justification consists of a reference to where -P

has been established as a theorem. The conclusion follows as above, except we appeal

to False-introduction. Occasionally, a reference to where Es F has been established

is packaged as a pair of references, one to where P+ (E = F) has been established

for some P, and another to where P has been established; E = F follows from an

application of MP.

The foregoing describes a proof carried out in two steps; the generalisation to any

number of steps is obvious. Comparing the proof presentation above with its first

expansion (i.e. (i)-(v)), we see that step (iii) establishes PER. It follows that we

may prove P = R using just this proof presentation, but without a justification of R in

the final line. In short, we may prove an equivalence by reducing one side to the other.

This is much used in E and continues to be valid in E3.

J.M. Morris, A. BunkenburglScience of Computer Programming 34 (1999) 141-158 151

4.2. Reasoning with implication

A proof of P =s R may proceed just as described in the preceding section, or it may

be laid out in a style typified by

P

* “justification 1”

Q

3 ‘justification 2”

R

This abbreviates the proof steps P + Q followed by Q =S R, the conclusion, P + R,
following from an application of the derived inference rule

Implication Transitivity
P+Q,Q*R

P=+R

See [8] for further details and minor variations. Just as with proofs of equivalence, this

style may be viewed as a macro-language for traditional derivations that use only the

originally given inference rules.

4.3. Other inference rules

E occasionally employs proof by mutual implication and A-introduction:

Mutual Implication
P*Q,Q*P f’, Q

P=Q
A-introduction -

PAQ
Mutual Implication is not valid in E3, and its absence occasionally increases the proof

burden; we shall introduce other inference rules later to make up for this loss. /\-

introduction continues to hold in E3.

5. Propositional logic

5.1. Theorems

“Propositional logic” is that part of the logic in which the only type is 5, the axioms

are those of equivalence, negation, disjunction, conjunction, implication, and boolean

definedness, and MP is the only inference rule. The propositional part of E is retained

in large measure in E3.

l Negation is an involution.

l Conjunction and disjunction are associative, symmetric, and idempotent. They retain

their distribution properties with respect to one another. True and False behave as

their zeros and units, De Morgan’s laws hold.

152 J.M. Morris. A. BunkenburglScience of Computer Programming 34 (1999) 141-158

l Implication is reflexive and transitive. False implies everything, and everything im-

plies True. Implication distributes over A, V, and + on the right.

l The weakening and strengthening laws hold (i.e. P + P V Q, and PA Q+ P), as

does the shunting law (i.e. PA Q + R is equivalent to P =s (Q =+ R)).

l Almost all the monotonicity properties of operators with respect to + continue to

hold (for example, (P + Q) =+ (P V R + Q V R)).

The following theorems of E are not theorems of E3:

True is a unit of= (P=True)EP

Excluded middle PVTP

V distributes over z (PV(Q=R))=((PvQ)=(PvR))

absorption PA(~PVQ)zPr\Q

J/E/A (P+(Q=R))-((PAQ)=(PAR)).

In each case, they become theorems if they are prefixed with “AP+“. Some of them

can be weakened in other ways. For example, P V 1P $False is a theorem. The fol-

lowing weakened versions of the absorption law holds:

absorption’ (PA(~PVQ)zTrue)=(PAQ=True).

Neither do the following theorems of E hold in E3, unless we show that all arguments

are well defined:

= is associative, and =+ is anti-symmetric

golden rule (PAQsP)z(PVQZQ)

Afrom=+ P=+Qz(PAQzP)

contrapositive law (P+Q)=(lQ+-P)

7-import/export l(P - Q) = (-P 3 Q).

The following substitution laws of E continue to hold in E3:

A-substitution: (E~F)AP[x:=E]~(EzF)AP[x:=F]

=+substitution: (ErF)*P[x:=E]E(EEF)*P[x:=F].

The operator A is not interesting in two-valued logic. In E3 it enjoys the properties:

A(E = F), A(E $ F), ATrue, AFalse, AAP

(PzTrue)+PAAP

PvTPVTAP

AP=kPV7P and PVTP+AP.

Although AP and P V 7P imply one another, they are not equivalent - to conclude

equivalence from mutual implication we would have to show that both terms are well-

defined, and we cannot prove A(P V -P).

J.M. Morris, A. BunkenburgIScience of Computer Programming 34 (1999) 141-158 153

5.2. Few or many J-s

All of the theorems up to this point are provable without appealing to axiom one-i,

but this changes when we come to what would seem to be a reasonable encoding of A:

AP s (P $7P).

It turns out that without one-l the axiomatisation of the propositional part of the logic

does not exclude the possibility of many boolean bottoms, and the above equivalence

does not hold in all such worlds. For example, the axiomatisation admits of two im-

proper boolean values J-0 and ii, the four booleans constituting a chain lattice with

elements False, 10, Ii, and True in that order, A and V being the lattice operations,

and 10 and Ii being one another’s complement. Axiom one-l excludes such possibil-

ities. We remark that the fact that we can pass to an n-valued logic, n > 3, with hardly

any loss over the 3-valued version is interesting, because there are some settings in

which it is desirable to have more than one improper value, in which case all of the

theorems except the preceding one (which is not very important) are valid.

We have not included I as a designated value in the logic; we can do so if we

wish by adding the axiom

-L-definition: TAJ-.

We observe finally, that we can reduce E3 to E by adding the axiom

AE.

This produces a classical two-valued logic by excluding the possibility of improper

values in any type. Alternatively, we can add the axiom of the excluded middle which

guarantees that the booleans are 2-valued while leaving open the possibility of assigning

no meaning to integer expressions such as 5 + 0.

5.3. Proof strategies

Proofs of propositional theorems are in the main no more difficult in E3 than in E.

Surprisingly, the loss of the law of the excluded middle was not a big impediment to

finding proofs, because an alternative route was usually evident. Perhaps the main loss

is that of proof of equivalence by mutual implication: in E3 we have to live with the

weakened form

Mutual Implication
P+-Q,Q+P,AP,AQ

P-Q

When we cannot guarantee the well-definedness of both sides of the equivalence, we

can resort to the rule of Truth Cases:

Truth Cases (P s True) = (Q = True), (P = False) = (Q = False)

P=Q

154 J.M. Morris, A. BunkenburglScience of‘ Computer Programming 34 (1999) 141-158

The justification of Truth Cases relies on axiom one-l. It is a brute force method, to

be applied as a last resort.

The following derived inference rules are useful in three-valued logic:

True-elimination ’ Zy
~_Truth (P E True) + (Q E True)

P+Q

(and, of course, they are also valid in two-valued logic.) Their primary value is that

they allow us to work with well-defined formulae such as P z True instead of P.

6. Predicate logic

6.1. Derived inference rules

In proofs involving quantifiers and variables, E relies on the following set of infer-

ence rules:

t/-Leibniz 1
tru

(Yx: TJR[y := t] - P[y := t]) E (Vx: TIR[y := u] * P[y := u])

V-Leibniz 2
R*(t=u)

(Vx: ZJR * P[y := t]) E (Vx: TIR - P[y := u])

We also have the rules 3-Leibniz 1 and 3-Leibniz 2 by replacing V with 3 in the

above, respectively. In the preceding rules, it is not excluded that x and y are identical

symbols.

V-monotonicity 1
RAP+Q

(Vx: TIR -P) =+ (Vx: TIR . Q)

Q-monotonicity 2
R+S

(Vx: TIS -P) + (Vx: TIR - P)

We also have the rules 3-monotonicity 1 and 3-monotonicity 2 by replacing V with 3

in the above, respectively.

Instantiation
(Vx: T -P)

P

All of these derived inference rules remain valid in E3.

The deduction theorem continues to hold in E3; standard proofs (see for example

[9]) rely only on theorems which are valid in E3.

With the quantifiers, there are some additional ways of justifying steps in proof

presentations. Briefly, when a proof step (i.e. a pair of lines in a proof, together with

their connecting 3 or =+) is an instance of the conclusion of one of the inference rules

above, the justification will be the corresponding hypothesis (or a justification thereof).

It follows that proofs in E or E3 can be mechanically translated to proofs that employ

MP and Generalisation as the only inference rules.

J.M. Morris, A. BunkenburgIScience of Computer Programming 34 (1999) 141-158 155

4.2. Theorems

Just about all the theorems of the predicate logic part of E hold in E3. The principle

exceptions are those which arise from the axiom of instantiation, which must now be

prefixed with “At +” where t stands for the instantiating term; for example:

At =+ (P[x := t] =+ (3x: T ’ P)).

A second source of differences arises from the trading law for existential quantification,

which in one form can be expressed as:

(3x: TIR - P) c (3x: T - (R s True) A P).

Weak equality behaves as in two-valued logic except that reflexivity has a definedness

requirement, as have the one-point and shifting rules. For example, the one-point rule

for V is

(Vx: Tlx = E - P) =P[x := E] V 1AE where x not free in E

and the shifting rule for V is

(Vx: TIR - P) = (Vx: TJR[x := E] . P[x := E])

provided that as a Iunction of x, E is surjective and total, i.e. (Yy: T - (3x: T . y = E))

and (t/x: 2’ - (3~: T * y = E)) (or equivalently, (Vx: T - AE)). This differs from E in the

addition of the totality requirement.

The theorem E = F + (E = F) allows us to use weak equality in place of strong

equality in the hypotheses of inference rules and the antecedents of implications. As a

consequence, we can use E = F as a justification in proof steps where previously we

have required E E F.

6.3. Proof strategies

Predicate logic proofs in E3 are in the main pretty similar to proofs in E, although

they tend to be a bit longer and on occasion more difficult. The main irritant in proofs

in E3 is the obligation to show definedness of a term prior to instantiation. We illustrate

with an example. In [4,6, 111, the theorem (V&j: h - i >j =+ f(i,j) = i - j) is used to

highlight differences among alternative logics, where

f g fun i,j: Z -if i =j then 0 else f(i,j + 1) + 1.

We give a proof in E3 for comparison, It is obvious that we shall have to use induction

on variable j, and so we re-write the demonstrandum as (Vi: Z - (Vj: Z. i >j + f(i. j)

= i-j)) (nesting the induction variable inside is simpler, though not always adequate).

Appealing to generalisation over i, we need only prove (Vj: H - i 2 j + f(i, j) = i - j).
We shall use obvious properties of the integers, indicating such use by the hint

156 J.M. Morris, A. Bunkenburg IScienre of Computer Programming 34 (1999) 141-158

“arithmetic”. We shall also use simple properties of function application and if.. .

then . . . else.. . . As far as the definedness of integer terms is concerned, we only need

the fact that addition, subtraction, and the relational operators are strict, and that dc

holds for all integer constants c.

(Vj: z * i >j + f(i,j) = i - j)

= “shifting with j := (i - j), noting that the surjectivity -

- (vk: z * (gj: Z * k = i - j)) - and totality

- (vj: Z . d(i - j)) - requirements are met”

(Vj:Z*i>i-j*f(i,i-j)=i-(i-j))

E “arithmetic”

(Vj:Z*j2O*f(i,i-j)=j)

= “trading” -

(Vj:j:lj>O*f(i,i-j)=j)

=“(kkz(X3o.P)~(VX: N .P),’ -

(Vj: N - f(i, i - j) =j)

= “induction on N” -

f(i,i--O)=OA(Vj:N*f(i,i-j)=j*f(i,i--(j+l))=j+l)

= “arithmetic” -

f(i,i)=OA(Vj:N.f(i,i-j)=j*f(i,i-(j+l))=j+l)

By A-introduction, we prove each conjunct separately. Firstly,

f (i, i) = 0

= “definition of f"

(fun i,j:Z.if i=j then 0 else f(i,j+ I)+ l)(i,i)=O

s “function application, A i (substitution requires definedness)”

(if i = i then 0 else f(i, i + 1) + 1) = 0

s “reflexivity of =, Ai”

(if True then 0 else f(i, i + 1) + 1) = 0

= “(if True then E else F) G E” -

0 = 0 - reflexivity of =, A0

J. M. Morris, A. Bunkenburg /Science of Computer Programming 34 (1999) 141-158 157

For the second conjunct (Vj: N . f(i, i -j) =j + f(i, i - (j + 1)) =j + I), we begin by
appealing to generalisation:

f(i, i - j) =j * f(i, i - (j + 1)) =j + 1

E “assume f(i, i - j) = j (here we are using the deduction theorem)”

f(i,i-(j+l))=j+l

= “definition of f” -

(fun i,j: Z-if i=j then 0 else f(i,j+ l)+l)(i,i-(j+ l))=j+ 1

E “function application, di, d(i - (j + 1))”

(if i=i-(j+ 1) then 0 else f(i,i-(j+ I)+ l)+ 1)-j+ 1

= “arithmetic”

(ifj+l=OthenOelsef(i,i-j)+l)=j+l

s “f(i, i - j) = j by assumption”

(ifj+l=OthenOelsej+l)=j+l

= “elementary property of if”

(if j-l-1=0 then j+l else j+l)=j+l

= “elementary property of if (using d(j + 1 = 0) y’ -

j+l=j+ 1 -reflexivity of =,d(j+ 1)

7. Concluding remarks

We have presented a logic for reasoning equationally about programming in the

presence of partiality. It is a combination of E and LPF, and is designed to cover

the full gamut from programs to specifications to reasoning about specifications. The

logic is presented as a classical Hilbert-style axiomatisation in which modus ponens

and generalisation are the only inference rules. Almost all the proof methods of E

continue to be valid, as well as most of the main theorems. The principal changes in

the body of theorems are the loss of the law of the excluded middle and anti-symmetry

of implication, a small complication in the trading law for existential quantification, and

the requirement to show definedness before using instantiation. With some exceptions,

proofs tend to be but marginally more difficult than proofs in E. Much of the added

difficulty stems from the unavailability of proof by mutual implication, but there are

alternative proof strategies to overcome this, albeit at the price of longer proofs on

occasion. The axiomatisation is easily modified to yield a classical axiomatisation of

E itself. As an aside, we observe that most of the theorems continue to hold without

158 J. M. Morris, A. BunkenburglScience of Computer Programming 34 (1999) 141-1.58

the assumption of a single improper value, and so the logic should readily admit of

extension to a many-valued logic. This could be important in some contexts.

Acknowledgements

The axiomatisation of the propositional part of the logic is based on an earlier version

in which Sharon Flynn also took part. The presentation has been much improved by the

suggestions of two referees. Cliff Jones suggested the strategy for proving completeness.

References

[1] A. Avron, Foundations and proof theory of 3-valued logics, LFCS Report Series ECS-LFCS-88-48,

Laboratory for the Foundations of Computer Science, Edinburgh University, 1988.

[2] A. Avron, Natural 3-valued logics - characterisation and proof theory, J. Symbolic Logic 56 (1991)

276-294.

[3] A. Blikle, Three-valued predicates for software specification and development, in: R. Bloomfield et al.

(Eds.), VDM - The Way Ahead, Lecture Notes in Computer Science, Vol. 328, Springer, Berlin, 1988,

pp. 243-266.

[4] H. Barringer, J.H. Cheng, C.B. Jones, A logic covering undefinedness in program proofs, Acta

Informatica 21 (1984) 251-269.

[5] J.H. Cheng, A logic of partial functions, Ph.D. Thesis, University of Manchester, Dept. of Computer

Science Technical Report UMCS-86-7-1, 1986.

[6] J.H. Cheng, C.B. Jones, On the usability of logics which handle partial functions, in: C. Morgan,

J.C.P. Woodcock (Eds.), 3rd Refinement Workshop, Workshops in Computing, Springer, London, 1991,

pp. 51-69.

[7] E.W. Dijkstra, C.S. Scholten, Predicate Calculus and Program Semantics, Springer, New York, 1990.

[8] D. Cities, F.B. Schneider, A Logical Approach to Discrete Math., Springer, New York, 1993.

[9] A.G. Hamilton, Logic for Mathematicians, Cambridge University Press, Cambridge, 1988.

[lo] C.B. Jones, Systematic Software Development Using VDM, 2nd ed., Prentice-Hall International,

New York, 1990.

[11] C.B. Jones, CA. Middelburg, A typed logic of partial functions reconstructed classically, Acta

Informatica 31 (1994) 3999430.

[12] A. Monteiro, Construction des algbbres de Lukasiewicz trivalentes dans les algibres de Boole

monadiques I, Mathematics Japonica 12 (1967) l-23.

[13] L.A. Wallen, On form, formalism, and equivalence, in: W.H.J. Feijen et al. (Eds.), Beauty is our

Business - A Birthday Salute to Edsger W. Dijkstra, Springer, New York, 1990.

