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Let k be an algebraically closed field of characteristic 0, let R be
a commutative k-algebra, and let M be a torsion free R-module
of rank one with a connection ∇ . We consider the Lie–Rinehart
cohomology with values in EndR (M) with its induced connection,
and give an interpretation of this cohomology in terms of the
integrable connections on M . When R is an isolated singularity of
dimension d � 2, we relate the Lie–Rinehart cohomology to the
topological cohomology of the link of the singularity, and when R
is a quasi-homogenous hypersurface of dimension two, we give a
complete computation of the cohomology.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Rinehart introduced Lie–Rinehart cohomology in Rinehart [16] as a generalization of de Rham
cohomology. Later, Lie–Rinehart cohomology has been considered by several authors, see for instance
Huebschmann [11] and Casas, Ladra and Pirashvili [3]. In singularity theory, Huang, Luk and Yau [10]
studied the so-called punctured de Rham cohomology, and although it is not mentioned in their
paper, it turns out that this cohomology coincides with the Lie–Rinehart cohomology.

The purpose of this paper is to study the Lie Rinehart cohomology when R is a representative
of an isolated singularity, and to interpret this cohomology in terms of integrable connections on
R-modules of rank one. The emphasis is on explicit results and examples.

Let k be an algebraically closed field of characteristic 0, let R be a commutative k-algebra and let M
be a torsion free R-module of rank one with a (not necessarily integrable) connection ∇ : Derk(R) →
Endk(M). We consider the Lie–Rinehart cohomology Hn

Rin(Derk(R),EndR(M)) where EndR(M) has the

* Corresponding author.
E-mail addresses: eeriksen@hio.no (E. Eriksen), trond.s.gustavsen@hibu.no (T.S. Gustavsen).
0021-8693/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2009.09.015

https://core.ac.uk/display/82214365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:eeriksen@hio.no
mailto:trond.s.gustavsen@hibu.no
http://dx.doi.org/10.1016/j.jalgebra.2009.09.015


4284 E. Eriksen, T.S. Gustavsen / Journal of Algebra 322 (2009) 4283–4294
(integrable) connection induced by ∇. We give the following interpretation of this cohomology for
n = 1,2:

Theorem A. Let R be a complete reduced local k-algebra and let M be a torsion free R-module of rank one.
Then we have:

(1) There is a canonical obstruction class ic(M) ∈ H2
Rin(Derk(R),EndR(M)) which vanishes if and only if there

is an integrable connection on M.

(2) If ic(M) vanishes, then H1
Rin(Derk(R),EndR(M)) is the moduli space of integrable connections on M up

to equivalence.

Using a spectral sequence, we relate H∗
Rin(Derk(R),EndR(M)) to the topological cohomology of the

link of the singularity:

Theorem B. Let R be a finitely generated Cohen–Macaulay domain over C of dimension d � 2 with a unique
isolated singularity x ∈ X = Spec(R). Then EndR(M) ∼= R and there is a natural exact sequence

0 → H1
Rin

(
Der(R), R

) → H1(Uan,C) → E0,1
2 → H2

Rin

(
Der(R), R

) → H2(Uan,C),

where E0,1
2 = ker(H1(U ,OX ) → H1(U ,Ω1

X )) and U = X \ {x}. Moreover, if d � 3, then E0,1
2 = 0.

We give an example to show that H1
Rin(Der(R), R) and H1(Uan,C) are not in general isomorphic in

dimension d = 2. To further clarify the case d = 2, we show the following result:

Theorem C. Let R = k[x1, x2, x3]/( f ) be an integral quasi-homogenous surface singularity. The grading on R
induces a grading on H∗

Rin(Derk(R), R), and

H0
Rin

(
Derk(R), R

) = H0
Rin

(
Derk(R), R

)
0
∼= R0 = k,

Hi
Rin

(
Derk(R), R

) = Hi
Rin

(
Derk(R), R

)
0
∼= Rd−d1−d2−d3 for i = 1,2,

Hi
Rin

(
Derk(R), R

) = 0 for i � 3,

as graded k-vector space, where di = deg xi for i = 1,2,3 and d = deg f � 2.

In particular, we have that Hi
Rin(Derk(R), R) ∼= Rd−1−1−1 = Rd−3 when R is the cone over a plane

curve, so that

dimC Hi
Rin

(
Derk(R), R

) = (d − 1)(d − 2)

2

is the genus of the curve V ( f ) in P2 for i = 1,2.

Our Theorem C is related to the work of Huang, Luk and Yau [10] on the punctured local de Rham
cohomology Hi

h(V , x) of a germ of a complex analytic space. When (V , x) is a hypersurface singularity
of dimension d � 2 with local ring R, Hi

h(V , x) coincides with Hi
Rin(DerC(R), R) for i � 1.

We also prove that if R is a curve, then any connection on a torsion free R-module (of any rank)
is integrable. Moreover, if R = k[Γ ] is an affine monomial curve and M is a graded torsion free
R-module of rank one with a connection ∇ , then Hi

Rin(Derk(R), M,∇) = 0 for i � 1.
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2. Connections and cohomology

Let k be an algebraically closed field of characteristic 0, and let R be a commutative k-algebra.
Assume that R is a reduced noetherian k-algebra, and that M is a rank one torsion free finitely
generated R-module. In this section, we relate the set of integrable connections on M to Lie–Rinehart
cohomology.

Let S ⊂ R be the set of regular elements, and let Q = Q (R) = S−1 R be the total ring of fractions.
Then by assumption, M → M ⊗R Q is injective and M ⊗R Q is a free Q -module of rank one. More-
over, fixing an embedding M ⊆ Q , we identify R := EndR(M) as {ψ ∈ Q : ψM ⊆ M}. We view the
R-algebra R as a commutative extension of R with R ⊆ R ⊆ Q .

Let g be a Lie–Rinehart algebra and assume that there is a g-connection ∇ on M , see Eriksen
and Gustavsen [6] for definitions and basic properties. Then there is an induced g-connection ∇ on
R = EndR(M), given by ∇D(φ) = ∇D φ − φ∇D for D ∈ g and φ ∈ EndR(M).

Proposition 2.1. Let ∇ be a (not necessarily integrable) g-connection on M.

(1) The induced g-connection ∇ : g → Endk(R) is given by ∇D(φ) = D(φ) for φ ∈ R, where φ is identi-
fied with an element in Q and D is extended to Q . In particular, ∇ is an integrable connection that is
independent of ∇.

(2) If R is normal, then R = R, and ∇ is the action τ : g → Derk(R).

Proof. We first prove (1). An element D ∈ g has a lifting to a derivation on Q (which we also denote
by D). For any connection ∇ on M , we may consider ∇D and D as maps from M ⊆ Q into Q . Then
∇D − D is in HomR(M, Q ), so that ∇D = D + ψD for some ψD ∈ Q . A calculation shows that

∇D(φ) = (∇Dφ − φ∇D) = (D + ψD)φ − φ(D + ψD)

= Dφ − φD = D(φ),

where we consider φ as an element in Q . In other words, g acts on R through ∇ by extending the
action of g to Q .

To prove (2), note that R ⊆ Q is integral over R since R is a finitely generated R-module. By
assumption, R is normal, hence R = R. �

With assumptions as above and with ∇ as in the proposition, we will consider the Lie–Rinehart
cohomology groups Hn

Rin(g, R) = Hn
Rin(g, R,∇) of (R,∇), see Huebschmann [11], Casas, Ladra and Pi-

rashvili [3] and Maakestad [14] for definitions and properties. We shall give an interpretation of these
cohomology groups for n = 1 and n = 2:

Proposition 2.2. If M admits a g-connection, then there is a canonical class

ic(M) ∈ H2
Rin(g, R)

called the integrability class, such that ic(M) = 0 if and only if M admits an integrable g-connection.

Proof. Let ∇ be a g-connection on M and let ∇ be the induced g-connection on R = EndR(M). It
follows from the Bianchi identity

(
d2(K∇)

)
(D1 ∧ D2 ∧ D3) = ∇D1 K∇(D2 ∧ D3) − ∇D2 K∇(D1 ∧ D3)

+ ∇D3 K∇(D1 ∧ D2) − K∇
([D1, D2] ∧ D3

)
+ K∇

([D1, D3] ∧ D2
) − K∇

([D2, D3] ∧ D1
) = 0
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that K∇ is a 2-cocycle in the Rinehart complex C∗
Rin(g, R). We define ic(M) = [K∇] ∈ H2

Rin(g, R), and
see that ic(M) = 0 if and only if K∇ = d1(τ ) for some potential τ ∈ C1

Rin(g, R). A calculation shows that
this condition holds if and only if ∇ − τ is an integrable g-connection on M , since K∇′ = K∇ + d1(P )

when ∇′ = ∇ + P . �
Definition 2.3. Let ∇ and ∇′ be two g-connections on M. We will say that ∇ and ∇′ are equivalent
if there is an R-linear automorphism ϕ of M such that the diagram

M

ϕ

∇D
M

ϕ

M
∇′

D
M

commutes for all D ∈ g.

One may consider the category of modules with g-connections, see Section 1 in Eriksen and Gus-
tavsen [6]. Then ∇ ∼ ∇′ if and only if (M,∇) and (M,∇′) are isomorphic in this category.

Theorem 2.4. Assume that (R,m) is a reduced complete local noetherian k-algebra with residue field k, and
let (M,∇) be a rank one torsion free finitely generated R-module with an integrable g-connection. Then there
is a bijective correspondence between H1

Rin(g, R) and the set of equivalence classes of integrable g-connections
on M.

Proof. Let τ ∈ HomR(g, R). We claim that ∇ − τ is an integrable g-connection if and only if τ is
a 1-cocycle in C∗

Rin(g, R). By definition, d1(τ )(D1 ∧ D2) = ∇D1τ (D2) − ∇D2τ (D1) − τ ([D1, D2]) and
therefore

K∇−τ (D1 ∧ D2) = K∇(D1 ∧ D2) + d1(τ )(D1 ∧ D2) + [
τ (D1), τ (D2)

]
.

Since R is commutative, [τ (D1), τ (D2)] = 0 and this proves the claim.
The correspondence between H1(g, R) and equivalence classes of integrable g-connections is in-

duced by τ �→ ∇ − τ . We must show that τ ∈ im d0 if and only if ∇ and ∇ − τ are equivalent.
Assume τ = d0(φ), where φ ∈ EndR(M) ∼= C0

Rin(g, R). This means that τ (D) = ∇D(φ) for all D ∈ g.

We claim that there exists an automorphism ψ ∈ R such that ψ∇D = (∇D − τ (D))ψ for all D ∈ g. In
fact, we have τ (D) = D(φ) and ∇Dψ − ψ∇D = D(ψ) by Proposition 2.1, so ψ∇D = (∇D − τ (D))ψ if
and only if D(ψ) = D(φ)ψ . Since R is a finitely generated R-module, R/mR is an artinian ring. We
have that J ∩ R = m where J is the Jacobson radical in R, and it follows that Jn ⊆ mR for some n.

Thus R is complete in the J -adic topology. It follows that R is a product of complete local rings with
residue field k. We have kr ⊂ R and R/ J ∼= kr for some r. If e is any idempotent and D a k-linear
derivation, it follows that D(e) = 0. Hence d0(kr) = 0 and we may assume that τ = D(φ) for φ ∈ J . It
follows that ψ = exp(φ) is in R and ψ∇D = (∇D − τ (D))ψ .

Conversely, assume that there is an automorphism ψ ∈ R such that ψ∇D = (∇D − τ (D))ψ for all
D ∈ g. Since ψ is a unit, we can take φ = log(ψ), and by an argument similar to the one above φ ∈ R.

This implies τ = d0(φ). �
3. The curve case

In this section we assume that R is reduced noetherian k-algebra of dimension one, and consider
in some detail the case when R is a monomial curve.
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Proposition 3.1. Let g ⊆ Derk(R) be a Lie–Rinehart algebra and let M be a torsion free R-module. Then any
g-connection on M is integrable.

Proof. If dim R = 1, one has that HomR(∧2g,EndR(M)) = 0 when g ⊂ Derk(R) since EndR(M) is
torsion free and ∧2g ⊆ ∧2 Derk(R) is a torsion module. If there exists a connection ∇ on M, the
curvature, which is an R-linear map K∇ : g ∧ g → EndR(M), is necessarily zero. Thus the connection
is automatically integrable. �

Let R = k[Γ ] be a monomial curve singularity given by a numerical semigroup Γ ⊆ N0, where
H = N0 \ Γ is a finite set. We consider a finitely generated graded torsion free R-module M of rank
one. Up to graded isomorphism and a shift, we may assume that M has the form M = k[Λ], where Λ

is a set such that Γ ⊆ Λ ⊆ N0 and Γ + Λ ⊆ Λ. Let Γ (1) = {w ∈ H: w + (Γ \ {0}) ⊆ Γ } and let E be
the Euler derivation. Then the set {E} ∪ {t w E: w ∈ Γ (1)} is a minimal generating set for g = Derk(R)

as a left R-module, see Eriksen [4].

Theorem 3.2. Let R = k[Γ ] be a monomial curve singularity given by a numerical semigroup Γ ⊆ N0 , where
N0 \ Γ is a finite set, and let M be a finitely generated graded torsion free R-module of rank one. If ∇ is a
connection on M, then

Hi
Rin

(
Derk(R), M,∇) = 0 for i � 1.

Proof. Let g = Derk(R). Consider the set S = {λ ∈ Λ: λ + Γ (1) � Λ} and let l be the cardinality of S .
There are three possibilities:

(1) l = 0: ∇E = E − c defines an integrable connection on M for all c ∈ k.
(2) l = 1: ∇E = E − c defines an integrable connection on M iff c = λ0 is the unique element in S .
(3) l � 2: there are no connections on M

Assume l � 1 and consider the connection given by ∇E = E − c, where c ∈ k if l = 0 and c = λ0 if
l = 1. Let r : HomR(g, M) → M be given by φ �→ φ(E). Then the composition

M d0−→ HomR(g, M)
r−→ M

is the operator ∇E . We claim that r is injective with image k[Λ \ {c}] ⊆ M . In fact, if φ ∈ HomR(g, M)

with φ(E) = 0, then φ(t w E) = t wφ(E) = 0 since M is torsion free. Therefore r is injective. Consider
tλ with λ ∈ Λ \ {c}. Since λ /∈ S , we have that Γ (1) + λ ⊆ Λ. Therefore, φ(E) = tλ and φ(t w E) = t wtλ

for w ∈ Γ (1) defines a well-defined R-linear map φ : g → M . Moreover, we clearly have tc /∈ im(r).
Since r is a graded homomorphism, this proves that im(r) = k[Λ \ {c}] ⊆ M. If φ ∈ HomR(g, M) is
homogenous of degree w , then φ(E) ∈ M is homogenous of degree w and w �= c. This implies
that d0(φ(E)/(w − c)) = φ and therefore d0 is surjective. We conclude that H1

Rin(g, M) = 0. Since

Ci
Rin(g, M,∇) = HomR(∧ig, M) = 0 for i � 2, Hi

Rin(Derk(R), M,∇) = 0 for i � 1. �
Given a graded torsion free R-module M of rank one on a monomial curve R, it does not nec-

essarily exist a connection on M, see Section 5.2 in Eriksen and Gustavsen [6]. However, if there
exists a connection, it is integrable and unique up to analytic isomorphism by Theorem 2.4 and the
proposition above.

4. The case of an isolated normal singularity

In this section, we assume that R is a noetherian Cohen–Macaulay domain over k of dimension
d � 2 with a unique isolated singularity. For any finitely generated torsion free R-module M of rank
one, R = EndR(M) = R from Proposition 2.1 since R is normal by Serre’s normality criterion. Moreover,
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if M admits a connection ∇, then the induced connection ∇ on R is the standard action of Derk(R)

on R.

From Proposition 2.2, we know that H2
Rin(Derk(R), R) contains the obstruction for the existence of

an integrable connection on M . If it vanishes, then it follows from Theorem 2.4 that H1
Rin(Derk(R), R)

is a moduli space for the integrable connections on M, up to analytic equivalence.
When k = C is the complex numbers, there are also other interpretations of the k-vector spaces

H1
Rin(Derk(R), R) and H2

Rin(Derk(R), R): In this section, we will relate the Lie–Rinehart cohomology
H∗

Rin(Derk(R), R) to the topological cohomology H∗(Uan,C) where U = X \ {x}, X = Spec(R) and x ∈ X
is the singular point. The Lie–Rinehart cohomology H∗

Rin(Derk(R), R) is also closely related to the
punctured de Rham cohomology of Huang, Luk and Yau [10] and therefore to the μ and τ invariants.

Theorem 4.1. Let R be a finitely generated Cohen–Macaulay domain over C of dimension d � 2 with a unique
isolated singularity x ∈ X = Spec(R). Then there is a natural exact sequence

0 → H1
Rin

(
Der(R), R

) → H1(Uan,C) → E0,1
2 → H2

Rin

(
Der(R), R

) → H2(Uan,C),

where E0,1
2 = ker(H1(U ,OX ) → H1(U ,Ω1

X )) and U = X \ {x}. Moreover, if d � 3, then E0,1
2 = 0.

Proof. The definition of the Lie–Rinehart complex generalizes to give a complex C∗
Rin(ΘX ,OX ) of

sheaves on X, given by

Cn
Rin(ΘX ,OX ) = HomOX

(∧nΘX ,OX
)

with the natural action of the tangent sheaf ΘX on OX . In particular, there is a restricted complex
C∗

Rin|U = C∗
Rin(ΘU ,OU ) of sheaves on U . Denote by Hi = Hi(U ,C∗

Rin|U ) the hypercohomology of the
sheafified Lie–Rinehart complex, see for instance 5.7.9 in Weibel [19]. From the five term sequence,
we get

0 → E1,0
2 → H1 → E0,1

2 → E2,0
2 → H2,

where E p,q
2 = I E p,q

2
∼= Hp(Hq(U ,C∗

Rin|U )). Consider in particular the vector spaces

E p,0
2 = Hp(

H0(U ,C∗
Rin

∣∣
U

))
.

Since C
p
Rin|U is sheaf of reflexive modules for p � 0 by Corollary 1.2 in Hartshorne [9], we get from

Proposition 1.6(iii) in [9] that H0(U ,C∗
Rin|U ) = C∗

Rin(Der(R), R). Thus E p,0
2

∼= H
p
Rin(Der(R), R). Note

further that since U is smooth, C∗
Rin|U coincides with the de Rham complex, so by Grothendieck’s

algebraic de Rham theorem, Hi = Hi(U ,C∗
Rin|U ) ∼= Hi(Uan,C), see [8]. On the other hand, we see that

E0,1
2 = H0(H1(U ,C∗

Rin

∣∣
U

)) ∼= ker
(
H1(U ,OX ) → H1(U ,Ω1

X

))
.

For the last part, we notice that H1(U ,OX ) = H2{x}(OX ), where the last group is the local cohomol-
ogy with respect to the closed subscheme {x}, see for instance 4.6.2 in Weibel [19]. By Corollary 4.6.9
in [19], this group vanishes if d � 3. In particular, it follows that E0,1

2 = 0 in this case. �
For surface singularities, it is in general difficult to compute E0,1

2 directly. We have the following
partial results:
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Remark 4.2. For a rational complex surface singularity with link L, it is known that H1(L,C) = 0,

see Mumford [15], and by Poincarè duality, H2(L,C) = 0. For simplicity, we assume that R is quasi-
homogenous (for instance a quotient singularity). In this case, we have Hi(Uan,C) = Hi(L,C) = 0 for
i = 1 and 2. Thus H1

Rin(Der(R), R) = 0 and E0,1
2

∼= H2
Rin(Der(R), R).

Remark 4.3. For simple elliptic complex surface singularities, Kahn has shown that H1
Rin(Der(R), R) ∼=

C, see [12]. One the other hand, H1(Uan,C) ∼= C2, so E0,1
2 �= 0 in this case.

Remark 4.4. Lie–Rinehart cohomology is related to the punctured local holomorphic de Rham coho-
mology Hi

h(V , x) introduced in Huang, Luk and Yau [10] for a germ (V , x) of a complex analytic space.
In fact, for a hypersurface singularity R of dimension d � 2, Hi

h(V , x) coincides with Hi
Rin(DerC(R), R)

for i � 1, see Lemma 2.7 in [10] and Proposition 1.6(iii) in Hartshorne [9]. The main theorem in
Huang, Luk and Yau [10] states that when R = C[[x0, . . . , xd]]/( f ) is an isolated singularity of dimen-
sion d � 2, then

(1) dimC Hi
Rin(DerC(R), R) = 0 for 1 � i � d − 2,

(2) dimC Hd
Rin(DerC(R), R) − dimC Hd−1

Rin (DerC(R), R) = μ − τ ,

where μ is the Milnor number and τ is the Tjurina number of the singularity.

5. The case of a quasi-homogenous surface

In this section, we compute the Lie–Rinehart cohomology H∗
Rin(Derk(R), R) in the case of a integral

quasi-homogenous surface singularity R = k[x1, x2, x3]/( f ). We write di = deg xi for i = 1,2,3, d =
deg f � 2 and put ωi = di/d, δ = ω1 + ω2 + ω3 − 1.

The Lie–Rinehart complex C∗ = C∗
Rin(Derk(R), R) in the present case is given as

C0 = R d0−→ C1 = HomR
(
Derk(R), R

) d1−→ C2 = HomR
(∧2 Derk(R), R

) → 0

since ∧3 Derk(R) is supported at the singular locus of Spec(R). The map d0 is given by d0(r)(D) = D(r)
for r ∈ R, D ∈ Derk(R) and d1 is given by

d1(ϕ)
(
(D1 ∧ D2)

) = D1
(
ϕ(D2)

) − D2
(
ϕ(D1)

) − ϕ
([D1, D2]

)

for ϕ ∈ HomR(Derk(R), R) and D1, D2 ∈ Derk(R). Note that Hi
Rin(Derk(R), R) = 0 for i � 3.

It is clear that C1 = HomR(Derk(R), R) and C2 = HomR(∧2 Derk(R), R) are graded, and that d0

and d1 are homogenous of degree zero. It follows from properties of an isolated quasi-homogenous
singularity that Derk(R) is naturally generated by the Euler derivation E (homogenous of degree 0)
and the Kozul derivations D1, D2, D3 (homogenous of degree d − d1 − d2, d − d1 − d3, d − d2 − d3
respectively), given by

E = ω1x1
∂

∂x1
+ ω2x2

∂

∂x2
+ ω3x3

∂

∂x3
, D1 = ∂ f

∂x2

∂

∂x1
− ∂ f

∂x1

∂

∂x2
,

D2 = ∂ f

∂x3

∂

∂x1
− ∂ f

∂x1

∂

∂x3
, D3 = ∂ f

∂x3

∂

∂x2
− ∂ f

∂x2

∂

∂x3
.

In fact, we may consider Derk(R) as the submodule of R ⊗ Derk(k[x1, x2, x3]) of derivations D such
that D( f ) ∈ ( f ). Replacing D with D + rE for some r ∈ k[x1, x2, x3], we may assume that D( f ) = 0.

Since R has an isolated singularity, ∂ f
∂x ,

∂ f
∂x ,

∂ f
∂x is a regular sequence, and from this it follows that
1 2 3
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D is in the submodule of Derk(R) generated by D1, D2 and D3. For details on derivations on quasi-
homogenous singularities, see Saito [17] and Scheja and Wiebe [18].

To give a description of C1 = HomR(Derk(R), R), we define

ϕ =
⎛
⎜⎝

f1 f2 f3 0
ω2x2 −ω1x1 0 f3
ω3x3 0 −ω1x1 − f2

0 ω3x3 −ω2x2 f1

⎞
⎟⎠ and ψ =

⎛
⎜⎝

ω1x1 f2 f3 0
ω2x2 − f1 0 f3
ω3x3 0 − f1 − f2

0 ω3x3 −ω2x2 ω1x1

⎞
⎟⎠ ,

where f i = ∂ f /∂xi .

Lemma 5.1. The matrices (ϕ,ψ) give a matrix factorization of Derk(R) and the transposed matrices (ϕT ,ψ T )

give a matrix factorization of HomR(Derk(R), R).

Proof. This follows from Lemma 1.5 in Yoshino and Kawamoto [20] and Proposition 2.1 in Behnke [1].
For the last part see for instance Lemma 11 in Eriksen and Gustavsen [6]. �

Mapping HomR(Derk(R), R) into R4 by evaluation on (E, D1, D2, D3), we obtain the rows ψ(i) in
ψ as generators for HomR(Der(R), R) in R4. We see that degψ(i) = di for i = 1,2,3, and deg ψ(4) =
d1 + d2 + d3 − d = dδ.

To give a description of C2 = HomR(∧2 Derk(R), R), we consider the element � = ∂ f
∂x3

∂
∂x1

∧ ∂
∂x2

−
∂ f
∂x2

∂
∂x1

∧ ∂
∂x3

+ ∂ f
∂x1

∂
∂x2

∧ ∂
∂x3

of degree d − d1 − d2 − d3 = −dδ. A calculation gives

E ∧ D1 = ω3x3�, E ∧ D2 = −ω2x2�, E ∧ D3 = ω1x1�,

D1 ∧ D2 = ∂ f

∂x1
�, D1 ∧ D3 = ∂ f

∂x2
�, D2 ∧ D3 = ∂ f

∂x3
�,

and we conclude that ∧2 Derk(R) = (x1, x2, x3)�. From this, we get the following isomorphisms of
graded modules:

HomR
(∧2 Derk(R), R

) = HomR(m�, R) ∼= HomR(R�, R) ∼= R[−deg �].

We compute the map d1 and get

d1(rψ(1)
)
(E ∧ D3) = E

(
rψ(1)

) − D3
(
rψ(1)(E)

) − rψ(1)
([E, D3]

) = −ω1x1 D3(r),

d1(rψ(2)
)
(E ∧ D2) = E

(
rψ(2)

) − D2
(
rψ(2)

)
(E) − rψ(2)

([E, D2]
) = −ω2x2 D2(r),

d1(rψ(3)
)
(E ∧ D1) = E

(
rψ(3)

) − D1
(
rψ(3)

)
(E) − rψ(3)

([E, D1]
) = −ω3x3 D1(r),

d1(rψ(4)
)
(E ∧ D1) = E

(
rψ(4)

) − D1
(
rψ(4)

)
(E) − rψ(4)

([E, D1]
) = ω3x3

(
E(r) + δr

)
,

using

[E, D1] = (1 − ω1 − ω2)D1, [E, D2] = (1 − ω1 − ω3)D2, [E, D3] = (1 − ω2 − ω3)D3.

From this we conclude that

d1(rψ(1)
)
(�) = −D3(r), d1(rψ(2)

)
(�) = D2(r),

d1(rψ(3)
)
(�) = −D (r), d1(rψ(4)

)
(�) = E(r) + δr,
1
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and in conclusion we have reached a very concrete description of the Lie–Rinehart complex
C∗

Rin(Derk(R), R). Using this, we are able to prove the following result:

Theorem 5.2. Let R = k[x1, x2, x3]/( f ) be an integral quasi-homogenous surface singularity. Then the grading
on R induces a grading on H∗

Rin(Derk(R), R), and

H0
Rin

(
Derk(R), R

) = H0
Rin

(
Derk(R), R

)
0
∼= R0 = k,

Hi
Rin

(
Derk(R), R

) = Hi
Rin

(
Derk(R), R

)
0
∼= Rd−d1−d2−d3 for i = 1,2,

Hi
Rin

(
Derk(R), R

) = 0 for i � 3,

as graded k-vector space, where di = deg xi for i = 1,2,3 and d = deg f � 2.

Proof. For simplicity, we write Hi = Hi
Rin(Derk(R), R) for i � 0. We have that H0 = {r ∈ R:

D(r) = 0, ∀D ∈ Derk(R)}. If r ∈ H0
ω, then E(r) = ωr = 0 implies that ω = 0 or r = 0. Thus

H0 = R0 = k.

We have that H2 = coker d1 = C2 / im d1 ∼= R[−dδ]/ im d1 and im d1 is spanned by Di(r) for
i = 1,2,3 and E(r) + δr = (

deg r
d + δ)r as r runs through all homogenous elements in R. Since

deg Di = −dδ + di, for i = 1,2,3, it follows that Di(r) ∈ R−dδ+di+deg r = C2
di+deg r

for i = 1,2,3. Fur-

thermore, deg r
d + δ = 0 if and only if deg r = −δd. We conclude that im d1 = C2�=0, and hence

H2 = C2
0
∼= Rd−d1−d2−d2 .

To compute H1, we note that im d0
0 = 0 and ker d1

0
∼= R−dδ · ψ(4) by the argument above. It follows

that H1
0

∼= R−dδ · ψ(4) ∼= Rd−d1−d2−d2 . We claim that H1
ω = 0 for ω �= 0. To prove the claim, we first

note that since H2
ω = 0 for ω �= 0, it follows that d1

ω induces an isomorphism C1
ω /ker d1

ω
∼= C2

ω for
ω �= 0. Also, im d0

ω
∼= C0

ω for ω �= 0. Thus

dimk H1
ω = dimk ker d1

ω − dimk im d0
ω = dimk C1

ω −dimk C2
ω −dimk C0

ω

for ω �= 0. To compute these dimensions, recall the Auslander sequence

0 → ωR → E → m → 0,

where ωR is the canonical module, E is the fundamental module and m is the maximal graded ideal
of R. From (the proof of) Proposition 2.1 in Behnke [1], we have that ωR ∼= HomR(∧2 Derk(R), R) =
C2 and E ∼= HomR(Derk(R), R) = C1 as graded modules, since R is quasi-homogenous, see also
Lemma 1.2 in Yoshino and Kawamoto [20]. Since there are homogenous isomorphisms Ext1

R(m,ωR) ∼=
Ext2

R(R/m,ωR) ∼= R/m of degree zero, see Definition 3.6.8, Example 3.6.10 and Proposition 3.6.12 in
Bruns and Herzog [2], it follows that the Auslander sequence is homogenous of degree zero. Thus
dim C1

ω = dim C2
ω +dim C0

ω for ω �= 0. This proves the claim that H1
ω = 0 for ω �= 0. �

Remark 5.3. It follows from Theorem 4.4 that H1
Rin(Derk(R), R) ∼= H2

Rin(Derk(R), R) when R ∼=
k[x1, x2x3]/( f ) is a quasi-homogenous surface singularity, since it is known that μ = τ in the quasi-
homogenous case. From Theorem 5.2 it follows that H1

Rin(Derk(R), R) ∼= H2
Rin(Derk(R), R) as graded

k-vector spaces.

Remark 5.4. We see that all cohomology is concentrated in degree 0 in the case covered by the theo-
rem. It follows from the proof of Proposition 2.2 that integrability class ic(M) lies in H2

Rin(Derk(R), R)0
for any graded torsion free rank one module M. Moreover, if ic(M) = 0, it follows from the proof of
Theorem 2.4 and Theorem 5.2 that H1

Rin(Derk(R), R)0 is a moduli space for integrable connections.
Hence up to analytic equivalence, all integrable connections are homogenous.
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Example 5.5. We consider the singularity R = C[x1, x2, x3]/( f ), where f is homogenous of degree d,

with d1 = d2 = d3 = 1. Then Hi
Rin(Derk(R), R) ∼= Rd−1−1−1 = Rd−3 so that

dimC Hi
Rin

(
Derk(R), R

) =
(

d − 3 + 2

d − 3

)
=

(
d − 1

d − 3

)
= (d − 1)(d − 2)

2

for i = 1,2. This number is the genus of the curve V ( f ) in P2, and therefore also the genus the
exceptional curve in the minimal resolution of R.

Example 5.6. The minimally elliptic singularity C[x1, x2, x3]/(x3
1 + x4

2 + x4
3) has d = 12,d1 = 4,d2 =

d3 = 3, so Hi
Rin(Derk(R), R) ∼= R12−4−3−3 = R2 = 0 for i = 1,2.

Corollary 5.7. Let R = k[x1, x2, x3]/( f ) be an integral quasi-homogeneous surface singularity, and let M be
any finitely generated torsion free graded R-module of rank one. Then any homogenous connection on M is
integrable.

Proof. Let ∇ be an arbitrary homogenous connection on M , and let

0 ← M ← L0
d0←− L1

be a graded presentation of M , where {ei} and { f i} are homogeneous bases of L0 and L1, and d0 =
(aij) is the matrix of d0 with respect to these bases. Then we have deg(aij) = deg( f j)− deg(ei) for all
i, j. We consider the diagonal matrix P with entries ε j = (deg(e j)− deg(e1))/d on the diagonal. Since
we have

E(d0) = 1

d
deg(aij)(aij) = 1

d

(
deg( f j) − deg(ei)

)
(aij),

we see that E(d0) + Pd0 = d0 Q for some Q ∈ EndR(L1). Therefore, ∇′
E = E + P ∈ Endk(L0) induces an

operator ∇′
E ∈ Endk(M) such that ∇′

E (rm) = E(r)m + r∇′
E (m) for all r ∈ R and m ∈ M. Since ∇E −∇′

E ∈
EndR(M)0 = R0 = k, it follows that ∇E = E + P + λI for some λ ∈ k.

We claim that the curvature K∇ = 0. Since K∇ ∈ HomR(∧2 Derk(R), R), it follows from the cal-
culations preceding Theorem 5.2 that it is enough to show that K∇(E ∧ D1) = 0. We also have
[E, D1] = 1

d (d − d1 − d2)D1. Write ∇D1 = D1 + Q , where Q = (qij) ∈ EndR(L0) and deg(qij) =
deg(e j) − deg(ei) + (d − d1 − d2). Then:

K∇(E ∧ D1) = ∇E∇D1 − ∇D1∇E − ∇[E,D1]

= (E + P + λI)(D1 + Q ) − (D1 + Q )(E + P + λI) − 1

d
(d − d1 − d2)(D1 + Q )

= E(Q ) − D1(P + λI) + [P + λI, Q ] − 1

d
(d − d1 − d2)Q

= E(Q ) + [P , Q ] − 1

d
(d − d1 − d2)Q .

A direct computation gives [P , Q ] = (− 1
d )(deg(e j) − deg(ei))(qij), and we clearly have E(Q ) =

1
d (d − d1 − d2)Q + 1

d (deg(e j) − deg(ei))(qij). �
Example 5.8. Let R = k[x, y, z]/(x3 + y3 + z3). The module M with presentation matrix
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(
x −y2 + yz − z2

y + z x2

)

is a maximal Cohen–Macaulay of rank one, see Laza et al. [13]. The derivation module Derk(R) is
generated by the four derivations

E = x
∂

∂x
+ y

∂

∂ y
+ z

∂

∂z
, D1 = 3y2 ∂

∂x
− 3x2 ∂

∂ y
,

D2 = 3z2 ∂

∂x
− 3x2 ∂

∂z
, D3 = 3z2 ∂

∂ y
− 3y2 ∂

∂z
,

where E is the Euler derivation and D1, D2 and D3 are the Kozul derivations. Using our Singular [7]
library Connections.lib [5], we find that a connection is represented by

∇E = E +
( 2

3 0
0 2

3

)
, ∇D1 = D1 +

(
0 2x

−2y + z 0

)
,

∇D2 = D2 +
(

0 2x
y − 2z 0

)
, ∇D3 = D3 +

(−2y + 2z 0
0 y − z

)
.

Again using [5], we check that this is an integrable connection. Further one finds that the connection
represented by

∇′
E = E +

( 2
3 0
0 2

3

)
, ∇′

D1
= D1 +

(
xz 2x

−2y + z xz

)
,

∇′
D2

= D2 +
( −xy 2x

x2 + y − 2z xz

)
, ∇′

D3
= D3 +

(
x2 − 2y + 2z 0

0 x2 + y − z

)

is not integrable.
The integrability class ic(M) = 0 in H2

Rin(Derk(R), R) which means that ∇′ becomes integrable after
removing terms of degree different from zero. In fact, we see that this gives ∇.

We also find that H1
Rin(Derk(R), R) ∼= k, which means that there is a one parameter family of

integrable connections on M.
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