
INFORMATION AND CONTROL 1, 113-126 (1958) 

A Paradox Concerning Rate of Information 

I .  J .  GOOD AND K .  CAJ DOOG 

Government Communications Headquarters, Cheltenham, England 

A natural definition of the rate of transmission of information is given, 
arising out of the usual theory. We call it the "Riemannian" rate of 
transmission. It is shown that the definition leads to a paradox if taken 
in con]unction with the notion of (time-unlimited) band-limited white 
noise. A mathematical model can hardly contain both these notions at 
the same time. The Riemannian rate of transmission does however lead 
to sensible results if used in conjunction with periodic band-limited white 
noise. In particular it leads to the Hartley-Wiener-Tuller-Sullivan- 
Shannon formula without the necessity of introducing Shannon's notion 
of "dimension rate." The discussion refers to matrix signMGo-noise 
ratios and to the entropy of singular multivariate normal distributions. 

I. INTRODUCTION 

Leg S be a population or ensemble of source or sent signals, N a sta- 
tistically independent ensemble of noise, and R = S + N an ensemble 
of received signals. The addition here may be interpreted as ordinary 
addition of amplitudes at each instant of time. The expected amount of 
information concerning S provided by R, or the entropy concerning S 
provided by R, ent (S: R), is formally defined as the expected log-asso- 
ciation-factor between S and R, i.e. the expectation of 

P(S & R) (1) 
log P(S)P(R) 

where S and R are particular realizations of the source and received sig- 
nals. (The units are bits, tits, digs, or nits, depending on whether the 
base of the logarithms is 2, 3, 10, or e.) In practice there can be technical 
difficulties in giving this formal definition a precise interpretation. 

One of the aims of the theory of information is to give finite measures 
of information. For continuous information it is well known to be neces- 
sary to allow for the existence of noise in order to achieve finiteness. 
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Moreover, if t ime is allowed to go on forever in the mathematical  model, 
then it is naturally necessary to talk in terms of a rate of transmission, 

J = lira 1 ~ ~ ent (s:  R), (2) 

where now S and R have to be interpreted as the ensembles restricted 
to a time-interval of length T. 

Nor is this enough to achieve finiteness; the highly abstract notion of 
dimension rate (Shannon, 1948, Appendix 7) was also introduced in 
order to cover the most general problems, although this notion does not 
seem to have been developed in detail. One of our aims is to discuss the 
problem without explicit mention of dimension rates. 

We shall need the familiar formula 

ent (S: R) = ent R -- ent (R I S), (3) 

which, when 'addition' is such that  N is uniquely determined by R and S 
and is causally independent of S, gives 

ent ( S : R )  = ent R -- ent N. (4) 

(Cf. Shannon 1~, Theorem 16. For  a discussion of the notation as used 
here see GoodS.) The rate of transmission, J ,  is 

J = lim 1 1 ~ ~, ent R -- T~lim ~ ent N, (5) 

the difference in the entropy rates of the received signal and of the noise. 
(If these rates are to be calculated separately we may  think of the ampli- 
tudes as expressed to 10!!!i places of decimals, and use the definition of 
entropy for discrete sequences; or we may  use the definition of entropy 
adapted to continuous information. In our opinion the second method, 
although mathematically more convenient, is philosophically less satis- 
factory.) 

R I E M A N N I A N  RATE OF TRANSMISSION 

Let  t be an arbi t rary instant of t ime and let the amplitudes of S, N, R 
at t ime t be S t ,  N t ,  R t  • Suppose that  we have made observations of R at 
times t~, t~, • • • , t~, namely R ~1, R t ~ ,  • . .  , Rt~ • The  corresponding 
random variables are R t I ,  R t 2 ,  " " ,  R t , .  If we think of v as made 
larger and larger and the instants of time made closer and closer to- 
gether then we should expect diminishing returns to set in (regarding the 
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amount  of information obtained concerning S). In  fact if this did not  
happen we should say tha t  we had run into a paradox. This opinion 
leads us to make the following definition: 

Let  

~) = (0  = tl < t2 < - . -  < t~ < T)  

be a dissection of the interval [0, T), closed on the left, open on the right. 
(We have avoided making 4 = h + T, in order to prevent  misunder- 
standings later on, when T will be taken as a period of our t ime series.) 
Let 

1 
J ( ~ )  : ~ ent (S: Rti ,  At2, "" ,  Rt~). (6) 

If  J(~)) tends to a limit as ~ -~ ~ and the "fineness" of ~ (i.e. its maxi- 
m u m  interval) tends to zero, then we call this limit the Riemannian rate 
of transmission of information over the interval T, 

J r  = lira J ( ~ ) .  (7) 

(If we allow v to be enumerably infinite then we should get a definition 
of the "Lebesguian rate of transmission.") 

When we applied this definition to the classical case in which N is 
band-limited white noise and S has the statistical properties of band- 
limited white noise we found tha t  J r  was infinite. We thought  tha t  the 
logical basis of information theory was collapsing about  our sensory or- 
gans. 

In the next section we shall show how this paradox arises. In Section 
III we show that the paradox does not arise if we think of our time series 
as having a (long) period T. The paradox may be regarded as arising 
through taking too seriously the idea that time goes on forever. 

The more use one makes of the mathematically convenient notions of 
continuity and infinity, the greater the chance of running into a paradox. 
One of the main implications of modern information theory is to show 
the truth of this remark. Previously it had been customary to think about 
noiseless continuous channels and to avoid error by the simple expedient 
of avoiding rigor. We do not wish to defend extremes of rigor, not even 
in pure mathematics, but it is not always easy to judge how much rigor 
is appropriate. 

Band-limited noise is certainly more realistic than "purely random" 
Gaussian noise, which has infinite entropy rate under any reasonable 
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definition. If we try to be still more realistic by assuming time-limited 
band-limited noise, then we run into trouble. For one thing, anything 
that is time-limited cannot be a stationary time series, unless it is the 
constant zero. We can retain stationarity by assuming periodic band- 
limited noise in our mathematical model, the period, T, being so long 
that the periodicity has no practical significance. 

Periodic random functions have previously been discussed, for ex- 
ample, by Brillouin (1956, pp. 93-97) but we believe that  our discussion 
sheds further light on the subject. 

It  might be suggested that if we wish to be thoroughly realistic we 
should use only discrete models. But the theory of numbers is as difficult 
as any part of mathematics. The real problem in formulating a mathe- 
matical model is to find an adequate compromise between realism and 
mathematical convenience. By using the notion of periodic band-limited 
noise in the place of time-unlimited band-limited noise we have been 
neither more nor less realistic, but have traded one metaphysics for 
another one. 

It seems that the definition of the Riemannian rate of transmission 
must be complemented by a further statement, namely that when we 
apply the definition we must regard our time series as either being of 
finite extent (and therefore not stationary) or as having a finite (possibly 
long) period, T. We can, however, let the period tend to infinity at the 
end of the calculations, and we define J as the limit of J r  • 

II. THE PARADOX 

We first recall the Whittaker-Shannon sampling theorem (Whit- 
taker, 1915; Shannon, 1949) : 

If 

f_ ~ f ( t ) e  2~itw' dt = 0 
oo 

whenever [ W' ] > W, then 

f ( t )  = , = - = f  ~ 7r(2Wt - n)  ' (8) 

so that f ( t )  is completely determined by its wlues at a set of points at, 
distances apart of 1 / 2 W .  

White noise limited to the band (0, W) is defined as 

x~ sin ~-(2Wt - n) 
f(t) . . . .  2_, x~  ~ (2wt  - n )  ' ( 9 )  
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where the random variables Xn have independent normal distributions 
of mean 0 and variance N, the mean "noise power." (The symbol N 
previously meant a realisation of N, but no confusion should arise.) 
The autoeovarianee function (see, for example, Rice, 1945, §3.2) is 

N sin 2rWr (10) 
~ -= W 27rr 

Each X ,  has entropy 1/~ log (2~reN) and it is entirely natural to say tha t  
the entropy rate is 

l l o g ( 2 v e N )  + 1 _ Wlog(2veN) .  
2 2W 

If the source signal has the statistical properties of white noise with 
the same band-limitation then the received signal has the entropy rate 
W log (2~re(N + S)), where S is the mean power of the source signal. 
Then, from (5), we get the Hartley-Wiener-Tuller-Sullivan-Shannon 
formula 

w log (1 + S/N) (11) 

for the expected rate of transmission of information concerning the source 
signal. 

But what if we use some representation of white noise other than (9)? 
The set of values of the noise amplitudes at v instants of time, tl ,  t2, • • • , 
t~ have a multivariate normal distribution with eovariance matrix, or 
"power matr ix" (as we may call it since it is the natural generalization 
to v dimensions of the noise power), 

N = {Ng%_tj} (12) 

where 6T is defined by equation (10). (Note that  we have now given a 
new meaning to N, and will later use S for the covariance or power 
matrix of S. There seems to be little danger of confusion.) Now the en- 
tropy of this multivariate normal distribution is (see I Appendix A) 

~/~ log [(2~e)~ I N 1 ], (13) 

where I N ] means the determinant of N (which is non-singular; see Ap- 
pendix C). If the source signal also has the statistical properties of 
Gaussian noise, with covariance matrix S, then the covarianee matrix 

1 The  appendices  are an essent ia l  pa r t  of th is  paper  and  are placed a t  the  end 
only so t h a t  the  res t  can be read wi thou t  in te r rup t ion .  
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of the received signal is N + S, and the expected amount  of information 
concerning the source signal, provided by  the received signal when ob- 
served at times tl ,  t2, • • • , t~ is, by  equation (4), 

_1 l o g J N  + S [  _ l l o g l i +  S / N I .  (14) 
2 N 2 

We may call S /N  the matrix signal-to-noise ratio. (I is the identi ty 
matrix.) If, in particular, the source signal has the statistics of white 
noise, band-limited to the same band as is N, then 

L N + S [/[ N ] -- (N + S ) V N  ~ (15) 

and the expected amount  of information is 1/~ , log [1 q- (S/N)]. This is 
true however closely packed are the time-instants 6 ,  t2, • • • , t~. The 
Riemannian rate of transmission of information seems to be infinite. 
The conclusion can be avoided by throwing the argument away and 
using another one (such as Shannon's argument depending on degrees 
of freedom) but what is wrong with the argument as it stands? We 
believe that the answer must be that either the definition of the Rieman- 
nian rate of transmission must go, or else the notion of unlimited-time 
band-limited noise must go. Each of these notions can be used, but they 
cannot both be used in the same model. In the next section we show that 
the Riemannian rate can be retained provided that we make use of 
periodic time series. 

III. PERIODIC BAND-LIMITED NOISE 

If a function f(t) with period T is such that  its Fourier series in (0, T) 
has no frequency as great as W = no~T, i.e. 

fo T f(t) dt = 0; (16) e--2~rint] T 

whenever no is a positive integer, n is an integer, and I n I ) no, then 
f(t) is completely determined by its values at any set of (2n0 - 1) points 
in (0, T). (See Appendix B.) The (2n0 - 1 = n~) points do not need to 
be uniformly spaced, but  if they are we have the formula 

f(t) = ~_, f . (17) 
nl sin 7r 



A P A R A D O X  C O N C E R N I N G  R A T E  O F  I N F O R M A T I O N  119 

(See, for example, Goldman (1953, p. 368), Brillouin (1956, pp. 95-96), 
Good (1955c); and, for applications of the basic idea to pure mathe- 
matics, D. G. Kendall (1942-1943), Good (1955b). A short proof is 
given in Appendix B.) 

Periodic band-limited white noise of period T and mean power N, 
band-limited to (0, W), may  be defined as 

n,-1 sin ~r ( n  - ~ )  
f(t) = ~_, X~ (18) 

nl sin rr - 

w h e r e  the X~ are independently normally distributed with zero means 
and variances N. Of course X ,  = f (nT /n l ) .  In spite of its periodicity, (18) 
really does define a stat ionary time series, that  is to say the joint dis- 
tr ibution of the values of f(t) at any set of instants is unchanged if a 
constant is added to all these instants. This follows from the three facts 
(i) that  the joint distribution is multivariate Gaussian, (ii) that  the mean 
of f(t) is always zero, (iii) that  an autocovariance function exists. The 
first two of these facts are obvious, whereas it is proved in Appendix B 
that  the auto-covariance is 

¢~ _- N sin (~nlr /T)  (19) 
n l  sin (~rT/T) " 

(Compare Eq. (10).) Natural ly CT = N if r is a multiple of T. 
Now we can return to our problem in information theory. Any (2n0 - 

1) sampled values of the noise will completely determine it. If we sample 
values, where ~ > (2n0 - 1), we still get a multivariate normal distri- 

bution but  it will be a singular (=  degenerate) one. (See Appendix C.) 
Moreover the rank will be 2n0 - 1 = n l ,  so tha t  the amount of informa- 
tion concerning the source signal is not increased by  sampling more than 
nl points. These nl points need not be uniformly spaced. In the mathe- 
matical model using time-unlimited band-limited noise we do not get a 
singular covariance matrix no mat ter  how many (distinct) points are 
sampled, provided that  the number of them remains finite. If there is a 
direct resolution of the paradox it would have to be via the theory of 
infinite matrices and Hilbert  space. The model would then be logically 
more difficult to handle, though it may  sometimes be mathematically 
easier in a formal sense. 

In the periodic model we have just seen that  the same amount  of 
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information is obtained concerning the source signal whatever the nl 
sampling points may  be (in the interval [0, T)). In practice it seems 
likely to be unprofitable to select the sampling points too close together. 
There is a source of noise not taken into account in the Gaussian model, 
namely the difficulty of making measurements to a great many places 
of decimals. This 'rounding off' of the measurements may be regarded as 
an additional source of noise that  applies more or less independently to 
each measurement. 2 I t  is reasonable to conjecture that  when allowance 
is made for rounding-off noise then the uniform spacing (or "timing") of 
the sampling points would be at  least approximately optimal, in the 
sense of maximizing the expected amount of information for a specified 
number of sampling points. (It is easier to interpolate than to extrapo- 
late.) I t  may  be true rather generally for models in which the source 
signal and the noise are not both Gaussian (or even if they are but the 
number of sampling points is less than nl) that  the sampling points 
should be well spaced or uniformly spaced, in order to maximize the 
expected amount of information concerning the source signal. I t  would 
also be of some interest to know what the effect would be on the variance 
of the amount of information. (We are here taking seriously the distinc- 
tion between amounts of information and expected amounts, but we do 
not know whether it would be better to minimize or to maximize the 
variance. I t  may depend on the application: if for some purpose the 
expected amount of information is less than is required then we should 
like the variance to be large, whereas if the expected amount is more 
than is required then we should like the variance to be small. A few 
further remarks are made in Appendix D concerning the distribution of 
the amount of information.) 

I t  may  be further conjectured that  if allowance is made for rounding 
off then even the ordinary non-periodic model may be used in conjunc- 
tion wi th  the definition of Riemannian rate of transmission! 

We conclude this section with some remarks that  are perhaps obvious 
at  this stage. In our periodic model, if we sample at least nl points (in- 
stants of time), and if the source signal has the same band limitation as 
the noise, then the entropies of R and 1%1 can easily be seen to differ by 

n~ log N -5 S T W  - log 1 -5 
2 N 

2 The rounding off is not quite independent of the source signal, so that equa- 
tion (4) is not now accurate. 
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so that  the Riemannian rate of transmission is 

( W -  ~ T ) l o g  (1 + S ) .  (20) 

When T --~ oo this expression tends to the Hartley-Wiener-Tuller-Sulli- 
van-Shannon formula (11). 

APPENDIX A. THE ENTROPY OF MULTIVARIATE 
NORMAL DISTRIBUTIONS 

It  is remarked by Shannon (1948, § 20) that  the entropy of the n-di- 
mensional multivariate normal distribution with density 

- - -  a ~ j x l x  (21) P (2~-) (l/~)~ exp 2 ~, i=1 

is 

~ log ((2~e) ~ a 1-1), (22) 

where a = I a~j}. Perhaps the quickest proof of this result is to quote the 
more general fact that  the distribution of the quadratic form 

a ( x )  = . ~  a i~x~xj  (23) 
% 2 

is that  of a gamma-variate (chi-squared) with n degrees of freedom. 
(See, for example, Wilks, 1946, p. 104.) I t  follows that the expectation 
of the quadratic form is n and formula ( 2 2 )  follows at once. We can say 
more about  the distribution of - l o g  p. For 

--log p = 1/t log ((2~r) '~ I A 1-1) + 1/~Xt~ (24) 

where xt.32 is a gamma-variate with n degrees of freedom. 
The n-dimensional characteristic function (Fourier transform) of (21) 

is 

where u l ,  u2, . - .  , us are the variables of the characteristic function. 
(See, for example, Wilks, 1946, p. 70; or Cram6r, 1946, p. 31l.) Here 
A = {Ai~.} = a -~, and is the covariance matrix. The convolution of two 
statistically independent multivariate normal distributions is obtained 
by adding their covariance matrices. 

A singular multivariate normal distribution is defined as one with a 
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characteristic function of the form (25) but  for which the matrix A is 
singular. (See Cram6r, 1946, p. 312.) The matrix A is then positive semi- 
definite instead of being positive definite, and the distribution is con- 
centrated in an r-dimensional manifold, where r is the rank of A. The 
entropy of a singular multivariate normal distribution may be defined 
by  restricting our at tention to the r-dimensional submanifold. This 
entropy is 

log (2re) r f I M  (26) 

where hi, ~2, • • • , h~ are the positive eigenvalues of the real symmetric 
positive semi-definite matrix A. In the particular case in which r = n, 
i.e. when the distribution is non-singular, formula (26) reduces to 

~/~ log ((2~e)~ ] A t ), (27) 

which agrees with formula (22). 

APPENDIX B. PERIODIC BAND-LIMITED FUNCTIONS 

If f(t) has period T and has no frequency as large as W -- no/T in its 
Fourier series, then it is equal to exp ( -2~i (no  - 1) /T)  multiplied by a 
polynomial in exp (2ori/T) of degree 2n0 - 2, and therefore it is com- 
pletely determined by  its values at any n~ = 2n0 - 1 points. If we can 
conjure up a formula that  takes the right values at the right points, and 
is periodic with period T, and band-limited to frequencies less than W, 
then it is the right formula. Such a formula is given by the following 
analogue of Lagrange's interpolation formula. I t  is given in Whit taker  
and Robinson (1924, 1940) under the heading of "trigonometrical inter- 
polation." 

n l - - 1  

f(t) = ~ f(t,) X 
n ~ O  

sin or ~ (t -- 6) sin ~ ~ (t -- t~) 

or 
• . .  sin ~, ~" (t -- t~_~) sin ~ (t -- t,+~) - . .  sin or,~ (t -- t.~) (28) 

7~ sin ~ or (& -- 6) sin ~ (t~ -- re) 

~r ( t~  - t ~ l )  • . .  sin or ~, (t~ - t~_~) sin ~ or (t~ - t.+~) . . .  s i n ~  
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Formula (17), which copes with the case when the points are uniformly 
spaced, follows by exactly the same argument (once it is written down). 
The following slight generalization of Formula (17) can also be proved in 
the same way:  For all a, 

( n l ( t -  a)) 
,~_~ sin ~r n 

f(t) = ~, f(t, + a) T (29) 

n~ sin 7r T 

We shall now prove Formula (19) for the autocovariance of periodic 
band-limited white noise. We have, if f(t) is defined by (18), 

g(f(t)f(t + r)) 

~1-1 sin ~r ( n  -- ~ )  s i nT r (n  nl(t + r ) )  T (30) 
° 

~=0 tn~ T )  (n~ t + v )  nl sin 7r -- nl sin 7r T 

If in (29) we replace t by r and then replace a by - t  we obtain an equa- 
tion which, on putting 

N sin (~rnl"r/T) 
f ( ~ )  = no sin (~rr/T) ' 

is found to sum the right-hand side of Eq. (30). The result is inde- 
pendent of t and may  therefore be denoted by  ~ , and Formula (19) 
is established. 

APPENDIX C. ON THE RANKS OF COVARIANCE MATRICES 
OF STATIONARY TIME SERIES 

We have iust seen that  for periodic band-limited white noise we have 
a covariance of the form of a scalar product: 

nl--1 

~'t~-t~ = ~ ~(h)~( t~) .  (31) 
n=0 

The determinant of the covariance matrix is therefore a "Gram deter- 
minant" and it vanishes if the number of rows or columns exceeds n~, 
the dimensionality of the vectors whose scalar products are the elements 
of the determinant. (See Hilbert and Courant, 1931, Chapter 1, §5.) 
This result is a special case of the result proved below. 

We need a few preliminary statements. 
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For stationary time series the covariances are proportional to the 
correlations; therefore, it makes no difference to the ranks whether we 
use covariance or correlation matrices. The Wiener-Khintchine theorem 
[see, for example, Bartlett, 1955, p. 161, equation (4)] states that the 
correlation function of a stationary time-series is of the form ;o 

p('r) =- e ~'~ dF(o~), (32) 

where F(oJ) has all the properties of a distribution function. I t  is called 
the spectral funct ion of the time series. We may write 

F(~o) = F~(~) -t-F~(c0) (33) 

where F~ is absolutely continuous and F2 is a step function. If Fi vanishes 
then we say that the spectrum is discrete, and the values of o~ at which 
F2 has jumps may be called the spectral lines. We can prove that i f  a 
stationary time series has a discrete spectrum with only a finite number, 
hi ,  of lines, then no covariance matr ix  of the time series can have rank 
greater than nl . 

Proof: The correlation function is of the form 
n l  

p ( r )  = 
n = l  

Therefore p(tl - t2) is the Scalar product of the two vectors 

[ai exp (iti~i), . . -  , an1 exp (itico,l) ] 
and 

[a~ exp (it~¢o~), . . .  , a~  exp (it2o~)]. 

The result now follows from the same property of Gram determinants 
used before, generalised in the obvious way to complex numbers. (In a 
complex scalar product one takes the coniugates of the components of 
the second vector.) For real time series there is a corresponding proof 
using cosines and sines instead of complex exponentials. 

For periodic band-limited white noise the spectral function can be ob- 
tained by expanding Eq. (19) in a (finite) cosine Fourier series. 

For time-unlimited band-limited white noise the spectral function in- 
creases linearly from 0 to 1 in the interval (-27rW, 2~rW) and is there- 
fore absolutely continuous. It follows that the covariance matrices are 
never singular (assuming of course that the sampling time instants, 
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t l ,  t2, • • • , t, are distinct). We can prove more generally that  i f  F1 does 
not vanish identically then all covariance matrices are non-singular. 

Proof: The determinant of the covariance matrix is non-negative, as 
in Bartlett ,  1955, p. 161. In virtue of the Wiener-Khintchine theorem the 
determinant can be expressed as a multiple Stielties integral of I {cos 
(tl - tj)x~} t = C, say. (We are considering real t ime series for definite- 
ness.) The required result will be proved if we can show that  the inte- 
grand, C, cannot vanish identically throughout  any  v-dimensional 
sub-domain. If it did it would vanish identically throughout the entire 
domain of values of x l ,  x~, • • • , x~ (since it is an integral function). On 
expanding as a power series in the neighbourhood of the origin we would 
get I { t i -  t~.)m~} ] = 0 for all sets of non-negativeintegers ml ,  m2, . . -  , 
m,  and hence that  I {g~(t~ - ti)} I for all sets of functions gl,  g2, "" • , g~ 
regular at the origin. In particular we would have 

K + t~ -- 

for all non-zero values of K;  and, if the numbers t l ,  t2, • • • ,  t, are distinct 
this is impossible, as we can see from the evaluation of Cauehy's "alter- 
nant . "  (See, for example, Aitken, 1951, p. 134, example 8.) 

A P P E N D I X  D.  T H E  D I S T R I B U T I O N  OF A M O U N T  OF I N F O R M A T I O N  

Towards the end of Section I I I  we became interested not merely in the 
expected amount  of information concerning the source signal provided 
by  a knowledge of the amplitudes of the received signal, but  in the 
complete distribution of the amount  of information. In the notation 
used by  Good 3 (1955a), for ("unexpeetated")  amounts of information, 
we have 

I ( S :  R)  = I ( R )  - I ( R  [ S) = I ( R )  - I ( N ) .  (32) 

(Compare Eqs. (1) and (2).) For periodic Gaussian processes we see that  
the question of the distribution of I ( S  : R)  can be expressed in terms of 
the distribution of a quadratic form in a finite number of variables. (For 
non-periodic processes the number of variables would be infinite.) 

RECEIVED: Ma y  3, 1957. 

3 The  paper  conta ined  four mispr in ts ,  one of which may  have been misleading.  
In  the  discussion of the  connect ion  between sufficient s ta t i s t ics  and  (unexpec- 
tared)  a m o u n t  of in fo rmat ion  the  first  occurrence of 0 should be replaced by  0. 
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