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Cavitating turbulent flow around hydrofoils was simulated using the Partially-Averaged Navier-Stokes
(PANS) method and a mass transfer cavitation model with the maximum density ratio (pi/pycip) effect
between the liquid and the vapor. The predicted cavity length and thickness of stable cavities as well
as the pressure distribution along the suction surface of a NACA66(MOD) hydrofoil compare well with
experimental data when using the actual maximum density ratio (pi/py,qip =43391) at room tempera-
ture. The unsteady cavitation patterns and their evolution around a Delft twisted hydrofoil were then
simulated. The numerical results indicate that the cavity volume fluctuates dramatically as the cavitating
flow develops with cavity growth, destabilization, and collapse. The predicted three dimensional cavity
structures due to the variation of attack angle in the span-wise direction and the shedding cycle as well
as its frequency agree fairly well with experimental observations. The distinct side-lobes of the attached
cavity and the shedding U-shaped horse-shoe vortex are well captured. Furthermore, it is shown that the
shedding horse-shoe vortex includes a primary U-shaped vapor cloud and two secondary U-shaped vapor
clouds originating from the primary shedding at the cavity center and the secondary shedding at both
cavity sides. The primary shedding is related to the collision of a radially-diverging re-entrant jet and
the attached cavity surface, while the secondary shedding is due to the collision of side-entrant jets
and the radially-diverging re-entrant jet. The local flow fields show that the interaction between the cir-
culating flow and the shedding vapor cloud may be the main mechanism producing the cavitating horse-
shoe vortex. Two side views described by iso-surfaces of the vapor volume fraction for a 10% vapor vol-
ume, and a non-dimensional Q-criterion equal to 200 are used to illustrate the formation, roll-up and
transport of the shedding horse-shoe vortex. The predicted height of the shedding horse-shoe vortex
increases as the vortex moves downstream. It is shown that the shape of the horse-shoe vortex for the
non-dimensional Q-criterion is more complicated than that of the 10% vapor fraction iso-surface and is
more consistent with the experiments. Further, though the time-averaged lift coefficient predicted by
the PANS calculation is about 12% lower than the experimental value, it is better than other predictions
based on RANS solvers.

© 2012 Elsevier Ltd. Open accessunder CC BY-NC-ND license.

1. Introduction

extensively for two-dimensional cases (Coutier-Delgosha et al.,
2003; Goncalves, 2011; Gopalan and Katz, 2000; Huang and Wang,

The unsteady behavior of cavitating flows and cavity shedding
still attract much attention since they seriously affect the hydrody-
namic performance of blades and propellers. Cavitation control is
expected to improve the performance and reliability of hydraulic
machines (Arndt, 1981).

In the past decades, much research, including experiments and
simulations, have been conducted to understand the mechanisms
of unsteady cavity shedding with unsteady cavitation studied
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2011; Kawanami et al., 1997; Kjeldsen et al., 2000; Kunz et al.,
2000; Laberteaux and Ceccio, 2001a; Le et al., 1993; Pham et al.,
1999; Senocak and Shyy, 2004b; Stutz and Reboud, 1997). Though
they are valuable as basic studies, blades and propellers on hydrau-
lic machines have not only three-dimensional geometries but also
non-uniform loading in the span-wise direction. Thus, the cavita-
tion topology and the three-dimensional effects on cavitation
should be investigated. De Lange and De Bruin (1998) tested trans-
parent hydrofoils in a cavitation tunnel to show that the re-entrant
jet velocity component normal to the cavity closure line was re-
flected into the cavity in the three-dimensional case, though the
jet for the two-dimensional hydrofoil was directed upstream.
Laberteaux and Ceccio (2001b) showed for a series of swept
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wedges that the cavity instability was greatly influenced by the
span-wise pressure gradients and the re-entrant jet may be direc-
ted away from the cavity interface, allowing sheet cavitation to
form a cloud cavitation far downstream. Dular et al. (2007) numer-
ically and experimentally investigated re-entrant jet reflection at
an inclined cavity closure line around a hydrofoil with an asym-
metric leading edge. Dang and Kuiper (1999) numerically studied
a re-entrant jet using a hydrofoil with various angles of attack in
the spanwise direction. They found that the direction of the re-en-
trant jet was strongly influenced by the cavity topology and the
change in the cavity shape was determined not by the sweep angle
but by the loading. Saito et al. (2007) investigated cavitating flows
around a three-dimensional hydrofoil with uniform profiles and
uniform attack angles along the spanwise direction and pointed
out that the sidewall effect is the main reason for generation of
the U-shaped cavitation. Kawanami et al. (2002) experimentally
demonstrated that cloud cavitation consisted of one vortex cavity
with many cavity bubbles surrounding the main vortex which
might be a U-shaped structure as a whole (one head and two legs).
Schnerr et al. (2008) modeled the three-dimensional cloud cavita-
tion around a 3D twisted hydrofoil and analyzed the 3D shock
dynamics produced by the collapsing vapor cloud, which was con-
sistent with experimental tests (Reisman et al., 1998). Koop and
Hoeijmakers (2009) used a compressible unsteady Euler solver to
predict the structure and dynamics of three sheet cavities and ana-
lyzed the collapse of the shedding vapor structure as well as the
resulting high pressure. Recently, the cavitating flows around the
Delft twisted hydrofoil, which was studied experimentally by
Foeth et al. (Foeth, 2008; Foeth et al., 2006; Foeth et al., 2008), were
utilized as benchmark data in two workshops, VIRTURE WP4 (Sal-
vatore et al., 2009) and SMP11 (Hoekstra et al., 2011), because it
resembles propeller cavitation well defined and easily studied.
They clarified that the shedding of the sheet cavity was governed
by the direction and momentum of the re-entrant and side-entrant
jets and their impingement on the free surface of the cavity.

This paper presents unsteady numerical simulations of cavitat-
ing turbulent flow around the 3D twisted Delft hydrofoil to predict
the 3D shedding cavity structure, including the cavitation develop-
ment, cavity shedding and collapse. The calculations involve a
mass transfer cavitation model based on the maximum density ra-
tio effect with the PANS method for the turbulent modeling to se-
cure better accuracy. Calculations were conducted to analyze the
three-dimensional shedding cavity structure of cavitation. The un-
steady cavitation behavior and the evolution of the horse-shoe vor-
tex cavity are analyzed based on the calculations and experimental
results.

2. PANS methodology and cavitation model

The PANS model is a bridging method from the RANS to DNS,
which was first proposed by Girimaji (2006). This model can
remarkably improve the accuracy of numerical results and has
been proved by several publications in non-cavitating case (Jeong
and Girimaji, 2010; Lakshmipathy and Girimaji, 2007, 2010; Ma
et al.,, 2011; Song and Park, 2009). In present paper, PANS model
is used together with a mixture model to simulate unsteady cavi-
tating flow around a Delft twisted hydrofoil.

In present simulations, the commercial CFD code ANSYS-CFX is
used to implement PANS model. The choice of ANSYS-CFX as the
computational platform is due to the reason that it is one of the
most widely used commercial code for engineering applications.
It is important that the capabilities of PANS are demonstrated on
ANSYS-CFX rather than on an in-house code.

In ANSYS-CFX, the vapor/liquid two-phase mixture model as-
sumes that the fluid is homogeneous, so the multiphase fluid

components share the same velocity and pressure. The continuity
and momentum equations for the mixture flow are:
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where u; and f; are the velocity and body force in the i direction, p is
the mixture pressure, u is the laminar viscosity and g is the turbu-
lent viscosity which is closed by the PANS turbulence model. The
mixture density, p, is defined as:

p=0wp,+(1—=0)p, 3)

where « is the volume fraction of one component. The subscripts v
and [ refer to the vapor and liquid components.

2.1. PANS turbulence model

The modeling challenge in PANS is to determine the closure
model as a function of the ratio of the unresolved-to-total kinetic
energy, fi, and the ratio of the unresolved-to-total dissipation, f,
which are defined as the following:

(4)

where k is the total turbulent kinetic energy, ¢ is the dissipation
rate, and the subscript u refers to the unresolved quantities.

The turbulent governing equations in the PANS model from the
standard k-¢ model are:
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where Py, in Egs. (5) and (6) is the unresolved scale production
term. The unresolved kinetic energy, the dissipation Prandtl num-
bers and Cj, are given by:
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where C;; =1.44, C,, =192, 0, =1.0 and g.=1.3.

A smaller f;, gives a finer filter. Girimaji (2006) noted that the
PANS equations are identical to the RANS equations, but with dif-
ferent model coefficients, which enables the PANS model to be eas-
ily implemented into computational fluid dynamics (CFD) codes
without any significant changes. Only the model coefficients in
Eqgs. (7) and (8) need to be modified to implement the PANS turbu-
lence model.

2.2. Cavitation model

The cavitation model is based on the assumption that the water
and vapor mixture in the cavitating flow can be modeled as a
homogeneous fluid. The cavitation process is governed by the
transport equation for the conservation of the vapor (or liquid) vol-
ume fraction or the vapor (or liquid) mass fraction with the mass
transfer between the liquid and vapor. The source term for the
specific interphase mass transfer rate can be modeled by various
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volume fraction

(a) c=1.0 (Leﬁ: pl/pv,clip=]000- nght pl/pv,clip=43391-)

(b) 5 =0.91 (Left: py/py i,=1000. Right: py/p, c;,=43391.)

(¢) 0 =0.84 (Left: p/py.c1p=1000. Right: p/p,,c,;=43391.)

Fig. 1. Calcuated cavity shapes for three cavitation numbers using different maximum density ratios.

cavitation models (Kunz et al., 2000; Schnerr and Sauer, 2001;
Senocak and Shyy, 2004a; Singhal et al., 2002; Zwart et al., 2004).

The present paper analysis uses the Zwart model derived from a
simplified Rayleigh-Plesset equation which neglects the second-
order derivative of the bubble radius (Zwart et al., 2004). During
the cavitation simulation in ANSYS-CFX, the vapor density is
clipped in a user-controlled fashion by the maximum density ratio,
P1l P vciip, to enhance numerical stability. The maximum density ra-
tio is used to clip the vapor density for all terms except the cavita-
tion source term itself, which will use the true density specified as
the material property.

In ANSYS-CFX, the vapor volume fraction is governed by the fol-
lowing equation:

a(pu,clipmv) a(pu‘clipaﬂuj)
ot 8Xj

=1 (9)
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where p;, py and pyqip are the liquid density (998 kg/m?), vapor
densities (0.023 kg/m?), and clipped vapor density which is calcu-
lated according to the maximum density ratio. C, and C. are empir-
ical coefficients for the vaporization and condensation processes,

dnue 1S the non-condensable gas fraction in the liquid, and R, is
the typical bubble size in the water. These empirical constants were
set to C,=50, C.=0.01, 0pue=5 x 107% and R, =1 x 10~® m based
on the work by Zwart et al. (2004), which were validated in various
studies (Ji et al., 20123, 2010, 2011, 2012b; Mejri et al., 2006).

In order to show the effect of maximum density ratio, pi/ 0 y,ciip.
the equation can be rewritten as:
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It is noted that the mass transfer source term, m*, is propor-
tional to the maximum density ratio, pi/pycip. According to previ-
ous study by present author (Ji, 2011) and other researcher’s work
(Senocak and Shyy, 2004a), the maximum density ratio between
the liquid and the vapor, pi/p y_ip, can influence the compressibility
characteristics in the cavitation area and the mass transfer be-
tween the liquid and vapor. Since this issue is very important, it
will be discussed later in the paper.

2.3. Effect of maximum density ratio

The PANS model with f, = 1.0 (equivalent to the standard k-¢
turbulence model) was used to study a stable cavity around a
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Fig. 2. Contour distribution of mass transfer source term for three cavitation numbers around NACA66(MOD) hydrofoil using different maximum density ratios.
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Fig. 3. Comparison of pressure distributions along the suction surface of the
hydrofoil.

NACA66(MOD) hydrofoil at a 4° angle of attack, which was
experimentally investigated by Shen and Dimotakis (1989). This
case has been widely used to validate cavitation models (Ahuja
et al., 2001; Morgut et al., 2011; Senocak and Shyy, 2004a). The
present simulations were performed for cavitation numbers from
1.0 to 0.84 to investigate the influence of the maximum density ra-
tio. According to the work by Morgut et al. (2011), the default set-
tings of Zwart model might underestimate the mass transfer
between liquid and vapor. In present paper, the authors found this
poor prediction can be significantly improved by increasing the
maximum density ratio from 1000 (ANSYS-CFX default setting)
to 43,391 (calculated by p;=998 kg/m> and p,=0.023 kg/m>).
The influence of the maximum density ratio for different cavitation
numbers is illustrated in Fig. 1. For a constant cavitation number,
the cavity length and thickness increase with the maximum

(a) 3D view

.

(b) Side view

Fig. 4. Three dimensional twisted hydrofoil.

density ratio. Thus, the maximum density ratio may strongly influ-
ence the cavity length and pressure distribution along the suction
surface of the hydrofoil. The mass transfer from the liquid to the
vapor at higher maximum density ratios will produce larger vapor
cavity volumes for the same operating conditions. The reason for
this is due to the enhanced mass transfer between liquid and va-
por, as shown in Fig. 2. Fig. 3 compares the pressure distributions
(=Cp = (Dyes —p)/(0.5p,V2)) on the suction surface of the hydro-
foil, which shows that the cavity length and pressure distribution
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Fig. 5. Computational domain and boundary conditions.

on the wall are well predicted by a maximum density ratio of p,/
Pucip =43391. Lower maximum density ratios (such as pj/p,-
aip = 1000) accelerate the convergence, but underestimate the cav-
ity development as shown in Fig. 1. Thus, the present mass transfer
cavitation model used a maximum density ratio of p/p,-
aip = 43391 for simulations of unsteady cavitating flows around a
twisted hydrofoil in the following text.

3. Simulation setup

The simulations were conducted by using the CFD code ANSYS-
CEX. The PANS turbulence model was input into the code through
CEL. The filter control parameters, i.e. the ratio of the unresolved-
to-total kinetic energy, fi, and the ratio of the unresolved-to-total
dissipation, f;, were specified for the simulations. According to Giri-
maji (2006), f; can be set to unity in high Reynolds number flows
such as the present study. The sensitivity study of fi in the PANS
model has been previously reported for unsteady cavitating flows
around two-dimensional hydrofoils (Huang and Wang, 2011; Ji,
2011; Ji et al.,, 2012c), which showed that the cavity shedding
structure predicted by the PANS model with fi, = 0.2 is consistent
with experimental observations due to its better resolution of the
kinetic energy and eddy viscosity. Thus, the PANS turbulence mod-
el coefficients were set to fi = 0.2 and f. =1 in this study.

The Delft Twist-11 hydrofoil shown in Fig. 4 was analyzed in
this research. The hydrofoil is a wing having a rectangular platform
of a NACA0009 section with varying attack angles from 0° at the
side section to 11° in the mid-section, with symmetry with respect
to its mid-span plane. The chord length of the foil is c = 0.15 m and
the span length is 0.3 m. The attack angle of the entire hydrofoil
was —2°.

The computational domain is shown in Fig. 5. The flow simula-
tions used only half of the hydrofoil due to its geometric symmetry.
The hydrofoil was located in a channel with height 2c, a length of
2c¢ upstream of the leading edge, a length of 5¢c downstream of the
leading edge and a width of c. The inflow velocity was set to
V.. =6.97 m/s. The static pressure at the outlet plane of the do-
main, i.e. pou, Was assigned according to the cavitation number,
0 = (Powe — Py)/(0.5p,V2) = 1.07. The midplane was a symmetry
plane. The hydrofoil surface was a non-slip wall while the tunnel
walls were used free slip walls. An O-H type grid was generated
for the domain with sufficient refinement (30 < y* < 100) towards
the foil surface. To better resolve the 3D cavity structure, the mesh
along the spanwise direction was carefully checked in non-cavita-
tion condition with three node number, 40, 100 and 150, as shown
in Fig. 6. The investigation was performed by monitoring the

minimum and maximum pressures around hydrofoil surface and
the values of the lift C; and drag Cp coefficients, defined as
following:

Lift Drag

C= 2 D= 2
0.5p x V2 x C x Span 0.5p x V x C x Span

(13)

From the results shown in Table 1, it is indicated that the differ-
ences can be neglected between the medium and fine resolution
meshes. Thus, the medium resolution mesh with about 3 million
nodes was selected as the final grid.

The time-dependent governing equations were discretized in
both space and time. The pressure-velocity direct coupling method
(Vanka, 1986) was used to solve the equations. During the unstea-
dy cavitation calculation, convergence evaluation in each physical
time step is an important issue during unsteady cavitation simula-
tion. According to the work by Li (2012) and our previous research
(Ji, 2011; Ji et al., 2012c), excessive iteration in each time step will
cost too much computational resource, while an insufficient itera-
tion can lead to insufficient accuracy. In order to keep balance be-
tween computational accuracy and efficiency in present paper, the
authors finally selected 20 iterations in each time step and found
not only the RMS residuals drop to 10~* but also cavity volume
integral becomes almost constant.

The high order resolution scheme (Barth and Jesperson, 1989)
was used for the convection terms with the central difference
scheme used for the diffusion terms in the governing equations.
It should be noted that the high order resolution scheme is a sec-
ond-order scheme, which can locally switch to first order scheme
to prevent numerical oscillations near critical high density gradient
areas. So this scheme is both accurate and robust since it only re-
duces to the first order near discontinuities. The unsteady sec-
ond-order implicit formulation was used for the transient term.
The unsteady cavitating flow simulations were started from a stea-
dy non-cavitating flow result. Then the cavitation model and un-
steady solver were turned on for the cavitating flow simulation.
In order to resolve the real transient evolution of cavitating flow,
the time step was set as At=1.076 x 10~*s, which is equivalent
to Tyef/200 (Tper=c/V,, where V_ is the undisturbed velocity at
the domain inlet), as suggested by Coutier-Delgosha et al. (2003).

4. Results and discussion

The twisted design and the larger attack angle in the middle
area cause the cavitation to mainly develop near the mid-span area
close to the leading edge with a curved closure line. As a result, the
re-entrant jet is no longer purely a reversed flow going upstream
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(c) Mesh case 3 (total 4443600 nodes)

Fig. 6. Three cases of mesh around the Delft twisted hydrofoil surface.

Table 1

Results of the mesh independence study for twisted hydrofoil.
Mesh Nodes Pmin Pmax G Cp
Case 1 (Coarse) 1,184,960 —52033.3 542464 0.4295 0.01454
Case 2 (Medium) 2,962,400 -51970.2 54264.1 04296 0.01453
Case 3 (Fine) 4,443,600 —51976.1 54264.7 04296 0.01453

but also has a transverse component in the spanwise direction. The
combined effect of these two components causes a very complex
shedding process.

The evolution of the cavitating flow can be illustrated through
the time history of the total vapor volume, V.., where V.., was de-
fined as:

1.250 4
1.1254

A~ 1.000 4

Veav (10° m®
o
]
7

0.750 4

0.625 1

0.500 —
0.00 0.03

T 1
0.09 012 015  0.I8
1(s)

Fig. 7. Variation of the cavity volume.

T
0.06

N
Vcav S ZOC,‘V;’ (]4)
i=1

where N is the total number of control volumes in the computa-
tional domain, o; is the vapor volume fraction in each control vol-
ume and V; is the volume of each cell.

The total vapor volume, V,,, is a convenient parameter for
understanding the transient behavior of cavitating flows. The total
vapor volume calculated at each time step is shown in Fig. 7 with
snapshots of five typical instants of cavitating flows with iso-sur-
face values of o, = 0.1 shown in Fig. 8. Fig. 7 indicates that the va-
por volume variation due to the cavity shedding from the twisted
hydrofoil is periodic. The predicted shedding frequency was about
30.7 Hz, which agrees fairly well with the measured frequency
(32.2 Hz (Foeth, 2008)). For comparison, the experimental top view
pictures taken by Foeth (2008) are shown at each instant in Fig. 8.
The positions of the leading and trailing edges of the hydrofoil as
well as the flow direction are marked in these pictures. The predic-
tions agree reasonably well with the experimental observations. A
bird’s-eye view of the numerical results is displayed on the right to
illustrate the evolution of the three-dimensional cavitation
patterns.

In Fig. 8a, the total vapor volume is a minimum at instant (I) in
Fig. 7 after the attached cavity in the center of the hydrofoil has
shed from the leading edge due to the collision between the re-en-
trant flow and the cavity interface. The shedding cavity then
quickly changes from a smooth pocket of vapor into a highly turbu-
lent vapor cloud. This process is the primary shedding event. Then
the shedding vapor cloud becomes more turbulent and is advected
downstream by the main flow, as shown in Fig. 8b and c. Mean-
while, the tail of the attached cavity begins to curl into a concave
shape and grows quickly from the leading edge, which explains
the increase in the total vapor volume from instant (I) to instant
(IT) in Fig. 7. After that the attached cavity grows slowly and the
shedding vapor cloud quickly shrinks (Fig. 8d) and finally collapses
(Fig. 8e and a), which caused the decrease of total vapor volume in
Fig. 7. It should be noted that there is a secondary shedding of both
downstream lobes of the remaining attached cavity in Fig. 8d after
the primary shedding occurs from the center part of the twisted
hydrofoil. It is noted that the primary shedding vapor cloud be-
comes the horse-shoe vortex structure with a U shape having
one head and two legs, with the secondary shedding vapor clouds
having the same structures, as shown by the bird’s-eye view in
Fig. 8d. Fig. 9 shows the flow field in terms of the velocity vectors
near the suction surface of the hydrofoil at instant (IV) with clearly
defined a radially-diverging re-entrant jet and a pair of side-en-
trant jets. Foeth (2008) assumed from the experimental observa-
tions that the secondary shedding was caused by the collision of
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L.E. LE

(b) instant II

(c) instant III

Primary U-shape
vapor cloud

Secondary U-shape
vapor cloud

(e) instant V

Fig. 8. Cavitation patterns during one cavity shedding cycle (Left: Numerical top view, Middle: Experimental top view, Right: Numerical bird’s-eye view.).

the side-entrant jets and the radially-diverging re-entrant jet. three-dimensional effect of the twisted hydrofoil. The re-entrant
These complicated cavitation processes must be attributed to the jet in Fig. 9 then moves further upstream while the attached cavity
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Radially diverging re-entrant jet
S

Fig. 9. Re-entrant jet and side-entrant jet development at the instant IV.

length is almost constant and the tail becomes convex and stable
as seen in Fig. 8e, even though a local small disturbance was ob-
served along the side of the attached cavity tail in the experiments.
Eventually the attached cavity was cut off near the leading edge of
the hydrofoil due to the interaction between the re-entrant jet and
the attached cavity surface. The total vapor volume decreased to

instant [ (/

Flow direction

instant II

4

instant 111

instant IV

instant V G

instant [

the minimum value in Fig. 7 until a new cycle started again as seen
in Fig. 8a.

Thus, the present simulation reasonably reproduces the cavita-
tion patterns and their evolution around the twisted hydrofoil with
primary and secondary shedding vapor clouds. The distinct side-
lobes shape of the attached cavity and the formation of radially-
diverging re-entrant and side-entrant jets seen in the experimental
observations (Foeth, 2008) are well captured by the PANS method.

According to the experimental work by Foeth (2008), a very dis-
tinct feature of the shedding vapor cloud around the twisted
hydrofoil is the formation of a cavitating horse-shoe vortex struc-
ture on the center part of the hydrofoil. Though the three-dimen-
sional attached cavity with the main lobe and the side-lobes
shape and the shedding characteristics of the cavitating horse-shoe
vortex are well predicted as shown in Fig. 8, the collapse of the
shedding vapor cloud is somewhat underestimated in Fig. 8e and
a. This tendency is consistent with the simulations using the im-
proved SST k- turbulence model (Li et al., 2010) and LES simula-
tions (Bensow, 2011). Kubota et al. (1989) observed that the vapor
clouds had a concentrated vorticity region at their center and con-
tained clusters of many small cavitation bubbles, which would be
beyond the ability of present CFD cavitating simulations based
on the homogeneous flow treatment.

In order to illustrate the evolution of shedding horse-shoe
vortex structure effectively, the side view of the cavity shedding
is shown by plotting of the vapor fraction iso-surfaces with
o,=0.1 as shown on the left in Fig. 10. In the right picture of

Flow direction

Fig. 10. Side views of the horse-shoe vortex during a cavity shedding cycle (Left: iso-surface o, = 0.1, Right: dimensionless Q iso-surface = 200.).
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Fig. 11. Side view of the horse-shoe vortex by PIV images analysis (Foeth, 2008).

— —/%Cir@u]gt_itin}_ﬂb\{
sy . e

Shedding vapor cloud

Attached cavity

Fig. 12. Velocity field at instant (III).

Fig. 10, the flow structures are visualized based on the Q-criterion
to identify the vortices. Positive non-dimensional values of the Q-
criterion, defined as the second invariant of the velocity gradient
tensor (Hunt et al., 1988), are given by,

1/ ¢ \*|/ou\* ou oy
(= ooy P 15
Q 2 <Vm> Kaxt) Ox; OX; (15)
For the present case, the iso-surface of the Q-criterion was set
200 to visualize the turbulent cavitating flow. The experimental
visualizations of the cavity interface using PIV image analysis from
the side view (Foeth, 2008; Foeth et al., 2006) are shown in Fig. 11.

From Figs. 10 and 11 (side view) as well as Fig. 8 (top view and
bird’s-eye view), we can clearly observe the cavity shedding

process and the formation and convection of a cavitating horse-
shoe vortex. The transport of the shedding horse-shoe structure to-
wards the trailing edge is governed by the main flow around the
hydrofoil. The center of the shedding structure is raised above
the hydrofoil by the flow circulation due to the largest attack angle
in the midplane, e.g. at instant (III) as shown in Fig. 12, with this
process being closely related to the vortex movement. These re-
sults suggest that the interaction between the circulating flow
and the shedding vapor cloud is closely related to the formation
of the horse-shoe vortex.

The height of the horse-shoe vortex indicated by the arrow in
Fig. 10 increases as seen from the side view as it moves
downstream, which is also consistent with the experimental
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Fig. 13. Time-dependent lift coefficient over several cycles.

Table 2
Time-averaged lift coefficients predicted by various model.
Cal. Exp. Error (%)
RANS SST k- with correction (Li et al.,, 2010)  0.43 05167 17
RANS SA with correction (Bensow, 2011) 0.43 17
Implicit LES (Bensow, 2011) 0.45 13
PANS by present 0.453 12

observations by Gopalan and Katz (2000). According to Gopalan
and Katz, the flow downstream of the closure region contains
hairpin-like structures containing bubbles. In Fig. 10, the predicted
horse-shoe vortex given by the non-dimensional Q-criterion
iso-surface is more complicated than what we can see from
iso-surface value of vapor fraction and agrees well with the exper-
iments shown in Fig. 11. It should be noted that the volume of the
horse-shoe vortex given by iso-surface of 10% vapor volume frac-
tion is slightly underestimated, perhaps due to the compressibility
and bubble cloud effects not included in the present calculation.
The experiments (Foeth, 2008) indicated that the shedding vapor
is bubble clusters, which will influence the fluid compressibility
and wave speed, and affect the collapsing behavior.

Once the cavity shedding occurs, the lift force on the hydrofoil
must vary dramatically as the pressure distribution changes.
Fig. 13 shows the time-dependent numerical prediction for the lift
coefficient, C;, which is calculated at each time step.

The evolution of the lift coefficient during the cavity shedding is
very complicated with the PANS model resolving more of the tur-
bulent kinetic energy and overcoming the RANS over-predictions
of the turbulent viscosity at the rear part of the cavity (Huang
and Wang, 2011). The time averaged lift coefficient is 0.453, which
is 12% lower than the experimentally measured value of 0.5167
(Foeth, 2008). This prediction of the time averaged lift coefficient
is much more accurate than the RANS result of Li et al.(2010)
and is equivalent to that of the LES results of Bensow (2011) as
shown in Table 2. This may be attributed to better resolution of
the turbulent cavitating flow around the hydrofoil surface by the
PANS method.

5. Conclusions

Unsteady cavitating turbulent flow around hydrofoils was sim-
ulated using the Partially-Averaged Navier-Stokes method and a
mass transfer cavitation model with consideration of the maxi-
mum density ratio effect. Based on the numerical results, several
conclusions can be drawn as follows:

(1) The cavity length and thickness as well as the pressure dis-
tribution along suction surface of the hydrofoil can be satis-
factorily predicted for stable cavities by using the proposed
numerical method.

(2) The unsteady cavitation patterns and their evolution around
the Delft twisted hydrofoil with dramatic cavity volume
fluctuations are captured by the present method. The pre-
dicted three-dimensional cavity structures vary along the
span due to the variation of attack angle in the spanwise
direction, with cavity growth, destabilization, and collapse.
The shedding cycle as well as its frequency agrees fairly well
with experimental observations. The simulations show that
the distinct side-lobes shape of the attached cavity and the
U-shaped shedding cavitating horse-shoe vortex during cav-
itation development. Furthermore, it is shown that the shed-
ding cavitating horse-shoe vortex includes a primary U-
shape vapor cloud and two secondary U-shape vapor clouds
originating from the primary shedding at the cavity center
and the secondary shedding at both cavity sides. The pri-
mary shedding is related to the collision of the radially-
diverging re-entrant jet and the attached cavity surface,
while the secondary shedding is due to the collision of the
side-entrant jets and the radially-diverging re-entrant jet.
The local flow fields demonstrate that the interaction
between the circulating flow and the shedding vapor cloud
is the main mechanism for the cavitating horse-shoe vortex
production.

(3) Two series of side views by 10% vapor volume fraction iso-
surfaces and the non-dimensional Q-criterion of 200 are
used to illustrate the evolution of the horse-shoe vortex,
i.e. the formation, roll-up and transport. It is shown that
the height of the shedding horse-shoe vortex increases as
it moves downstream, with the vortex shape given by the
non-dimensional Q-criterion being more complicated than
that of the vapor fraction iso-surface which is consistent
with the experimental observations.

(4) The results also show that the accuracy of the time-averaged
lift coefficient predicted by PANS calculation is better than
that predicted by other methods based on RANS solvers,
though the computed lift is about 12% lower than the mea-
sured value.

(5) Thus, the PANS method can be used to reproduce the com-
plicated cavitation phenomena and the mechanism for the
interaction between the cavitation and turbulence. There-
fore, this can be used to provide substantial fundamental
information for improving cavitating flow simulations.
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