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SUMMARY

Increasing energy expenditure through activation of
endogenous brown adipose tissue (BAT) is a poten-
tial approach to treat obesity and diabetes. The class
of b3-adrenergic receptor (AR) agonists stimulates
rodent BAT, but this activity has never been demon-
strated in humans. Here we determined the ability of
200 mg oral mirabegron (Myrbetriq, Astellas Pharma,
Inc.), a b3-AR agonist currently approved to treat
overactive bladder, to stimulate BAT as compared
to placebo. Mirabegron led to higher BAT metabolic
activity as measured via 18F-fluorodeoxyglucose
(18F-FDG) using positron emission tomography
(PET) combined with computed tomography (CT) in
all twelve healthy male subjects (p = 0.001), and it
increased resting metabolic rate (RMR) by 203 ±
40 kcal/day (+13%; p = 0.001). BATmetabolic activity
was also a significant predictor of the changes in
RMR (p = 0.006). Therefore, a b3-AR agonist can
stimulate human BAT thermogenesis and may be a
promising treatment for metabolic disease.

INTRODUCTION

Obesity and metabolic disease result when energy intake

consistently exceeds energy expenditure. One appealing new

target for treatment is the activation of brown adipose tissue

(BAT), an organ recently found to be functional in adult humans

(van Marken Lichtenbelt et al., 2009; Cypess et al., 2009; Virta-

nen et al., 2009; Zingaretti et al., 2009; Saito et al., 2009). Cold

exposure causes the sympathetic nervous system to release

norepinephrine and induce human BAT thermogenesis through

consumption of fatty acids and glucose. In addition to improving

energy balance, rodent models have shown that chronic stimu-

lation of BAT leads to improved glucose tolerance and the

release of adipokines that beneficially regulate metabolism (Bar-

telt et al., 2011; Hondares et al., 2011). Unfortunately, nonspe-

cific sympathomimetic drugs cannot stimulate human BAT
C

without marked effects on the cardiovascular system (Cypess

et al., 2012; Vosselman et al., 2012; Carey et al., 2013).

One area of focus for over two decades has been the stimula-

tion of BAT energy expenditure and nutrient consumption

through activation of the b3-adrenergic receptor (AR), which is

expressed in humans on the surfaces of brown and white adipo-

cytes, urinary bladder, and potentially other tissues (Virtanen

et al., 2009; Cypess et al., 2013; Ursino et al., 2009). Previous

phase 2 clinical trials with members of this class demonstrated

improved glucose disposal, decreased plasma triglycerides,

and increased RMR (Cawthorne et al., 1992; Weyer et al.,

1998; Larsen et al., 2002; Redman et al., 2007). Nevertheless,

none of these drugs ultimately achieved regulatory approval for

the treatment of obesity or metabolic disease. Reasons for this

lack of success have been attributed to multiple factors,

including poor oral bioavailability and substantial cross-reac-

tivity with the b1-AR that caused undesirable cardiovascular

effects (Arch, 2011). More fundamentally, it was unknown if the

b3-AR agonists could stimulate human BAT. This issue is still

unresolved, because these drugswere evaluated prior to the dis-

coveries of functional human BAT and how to measure its meta-

bolic activity via prospective 18F-fluorodeoxyglucose (18F-FDG)

PET/CT imaging (van Marken Lichtenbelt et al., 2009; Virtanen

et al., 2009; Muzik et al., 2013; Yoneshiro et al., 2013; van der

Lans et al., 2013). Recently, the new b3-AR agonist mirabegron

was approved for treatment of overactive bladder. In addition to

having satisfactory bioavailability (Malik et al., 2012), mirabegron

has a higher in vitro binding affinity for the human b3-AR

compared to other members of its class (Takasu et al., 2007),

as well as the mixed sympathomimetic ephedrine (Vansal and

Feller, 1999), making it a promising candidate.
RESULTS AND DISCUSSION

Effects of Acute Cold Exposure on BAT, RMR, and Vital
Signs
To test the ability of mirabegron to acutely stimulate human BAT,

we wanted to evaluate its efficacy in subjects who were already

known to have detectable BAT, thereby reducing the likelihood

of a false-negative finding (Cypess et al., 2012; Carey et al.,

2013). Fifteen eligible subjects were screened first with cold
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Table 1. Clinical Characteristics of Subjects

Characteristica (Units) Valueb

Age (years) 22.2 ± 0.6

Height (cm) 177 ± 2

Weight (kg) 71.3 ± 2.4

Body-mass Index (kg/m2) 22.7 ± 0.5

Waist-hip Ratio 0.85 ± 0.01

Body Fatc (kg) 13.4 ± 0.8

Fat-free Massc (kg) 58.6 ± 2.7

Systolic Blood Pressure (mmHg) 112 ± 2

Diastolic Blood Pressure (mmHg) 68 ± 2

Heart Rate (bpm) 57 ± 2

Resting Metabolic Rate (kcal/day) 1,573 ± 56

See also Figure S1.
aBaseline values determined prior to the dosing of mirabegron.
bValues are mean ± SEM.
cMeasured on average 2 weeks prior to the dosing of mirabegron.
exposure, and twelve had detectable BAT (Supplemental Exper-

imental Procedures; Figure S1A available online). The amount of

BAT activity, based on the standard uptake value (SUV), was

comparable to that reported in other studies using lower doses

of radiotracer (Vosselman et al., 2012). In these twelve subjects

(Table 1), cold exposure increased RMR (128 ± 32 kcal/day,

or +8%) (p = 0.001), systolic blood pressure (BP), and diastolic

BP; decreased heart rate (Figures S1B–S1E); and led to metab-

olite concentrations consistent with what we have previously re-

ported (Cypess et al., 2012). Safety considerations limited the

subjects to three PET/CT scans each, so we could evaluate

only one dose of mirabegron in comparison to placebo. We

selected 200 mg since this dose has a higher efficacy than the

currently approved dose of 50 mg for reducing the symptoms

of overactive bladder and was therefore more likely to have a

detectable effect on BAT metabolic activity. In addition, the

200 mg dosage has been well-tolerated even after 12 weeks of

daily oral administration (Chapple et al., 2013).

Effects of Mirabegron on Tissue Glucose Uptake, RMR,
Vital Signs, and Plasma Metabolites
Compared to placebo, for all twelve subjects BAT glucose

uptake was significantly higher after treatment with mirabegron

(median 132, interquartile range 70–253 ml,SUVmean,g/ml,

p = 0.001) (Figures 1A, 1B, and S2). The principal sites of detect-

able BAT were the cervical-supraclavicular-axillary adipose

tissue depots, but in some subjects, glucose uptake was seen

even in the paraspinal, periaortic, perihepatic, perirenal, and

perisplenic regions. The correlation between drug- and cold-

inducedBAT glucose uptakewas not significant (Figure S3), indi-

cating that it is not consistently reliable to use only onemethod of

stimulation—either cold or mirabegron—to accurately measure

whole-body BAT mass or activity.

Compared to placebo, mirabegron significantly increased

RMR (203 ± 40 kcal/d, or +13%) (p = 0.001), HR (14 ± 3 bpm)

(p = 0.002), and systolic BP (11 ± 2 mmHg) (p = 0.002), but not

diastolic BP (2 ± 1 mmHg) (p = 0.07) (Figures 1C–1F). This

drug-induced stimulation of the cardiovascular system was

considerably lower than what has been reported for broadly
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acting sympathomimetics such as ephedrine or isoproterenol,

particularly for the extent of changes seen in RMR (Cypess

et al., 2012; Vosselman et al., 2012; Carey et al., 2013). There

were no unanticipated adverse effects.

Metabolites were drawn 3.5 hr after dosing of mirabegron and

placebo, which was the reported Tmax (Malik et al., 2012). Mira-

begron was detectable in the plasma with a mean concentration

of 310 ± 73 ng/mL (p = 0.001), values comparable to other

studies (Malik et al., 2012). Administration of mirabegron was

notable for inducing higher levels of glucose, nonesterified fatty

acids (NEFAs), b-hydroxybutyrate, insulin, C-peptide, and signif-

icant elevations in HOMA-IR (p = 0.002) (Table S1). Maximal

glucose uptake (SUVmax) was lower in the myocardium, though

it did not achieve significance after applying Bonferroni’s correc-

tion. No apparent differences were seen in the subcutaneous

white adipose tissue (WAT), skeletal muscle, or liver (Figures

2A–2D).

Predictors of Drug-Induced Changes in RMR
Since both BAT and WAT express the b3-AR (Virtanen et al.,

2009), as exploratory analyses, we compared the changes in

RMR with BAT activity and WAT mass. We found a close asso-

ciation between change in RMR and BAT activity stimulated by

mirabegron (p = 0.006) but not placebo (p = 0.17) (Figures 3A

and 3B). There was also a positive relationship between changes

in RMR and body fat mass in response to mirabegron (p = 0.02)

but not placebo (p = 0.64) (Figures 3C and 3D). In contrast, there

were no associations between the change in RMR and the

change in heart rate (R2 = 0.00, p = 0.97), systolic BP (R2 =

0.01, p = 0.14), or fat-free mass (R2 = 0.00, p = 0.96).

A challenge to studying human thermogenesis is determining

the contribution of each organ. Mirabegron increased BAT

glucose uptake, which correlates directly with tissue thermogen-

esis (Ouellet et al., 2012), and the degree of activation accounted

for 50% of the variability in drug-induced changes in RMR. The

amount of BAT thermogenesis in absolute terms must still be

determined, particularly as there may be an important contribu-

tion from nonselective activation of other b-AR’s on other tis-

sues. Nevertheless, our findings indicate that human BAT may

play a role in the thermogenesis associated with b3-AR agonist

treatment as well as exposure to mild cold (Chen et al., 2013).

An intriguing issue is the proportional contribution by the two

different brown adipocyte lineages: the constitutive ‘‘brown’’

adipocytes in the cervical and supraclavicular depots and the

recruitable ‘‘beige/brite’’ adipocytes in the supraclavicular,

abdominal, and other sites (Wu et al., 2012; Sharp et al., 2012;

Lidell et al., 2013; Cypess et al., 2013; Jespersen et al., 2013;

Sacks et al., 2013). Based on the wide distribution of detectable

glucose uptake, it is likely that mirabegron stimulates both kinds

of BAT, though more detailed in vitro studies are required to

quantify what functional differences may exist between these

adipocytes.

Potential Therapeutic Applications of Chronic
Treatment with b3-AR Agonists
An important question remains as to what clinical benefit there

could be from stimulation of human BAT with b3-AR agonists.

Attention has been given to weight loss through increased

energy expenditure as a treatment for obesity. Previous clinical



Figure 1. Metabolic Effects of the b3-AR

Agonist Mirabegron

(A) PET images of a 21-year-old man who was

given placebo (left) or 200mg of the b3-AR agonist

mirabegron (right). Twelve male subjects were

given placebo or 200 mg mirabegron.

(B) BAT metabolic activity as reflected by 18F-FDG

uptake.

(C) Resting metabolic rate.

(D) Heart rate.

(E) Systolic BP.

(F) Diastolic BP.

Each circle represents a single subject, and the

numbers correspond to subject identification num-

ber in Figure S2. The dashes represent the mean.

See also Figure S2.
trials of b3-AR agonists did not achieve weight loss within at

most 8 weeks of treatment. This may have been in part because

the doses used were insufficient to activate BAT thermogenesis

(Weyer et al., 1998; Larsen et al., 2002; Redman et al., 2007). At

the 200 mg dose used in the current study, the observed

maximal increase in energy expenditure would lead to an even-

tual weight loss of�5 kg in the first year and 10 kg by the end of 3

years (Hall et al., 2011). Though promising, the actual amount of

weight loss would likely be less, since 200 kcal/day was the peak

energy expenditure and not sustained throughout the day.

However, it is important to consider that in rodent models,

treatment with b3-AR agonists chronically can improve glucose

disposal and increase RMR before a reduction in body weight is

seen (de Souza et al., 1997). This distinction between the acute

and chronic effects of treatment with mirabegron applies to the

current study. In the acute setting, we saw a significant increase

in HOMA-IR, a measure of insulin resistance. As with the

changes in heart rate, it is not known if this effect is from off-

target binding to other b-AR’s, and future studies are needed

to determine which metabolic changes are attributable specif-

ically to b3-AR agonists. In the present study, in addition to the

effects onBAT, therewas evidence for b3-AR agonist stimulation

of WAT lipolysis (Kim et al., 2006), which was reflected by the

non-significantly higher levels of serum NEFAs and lower

myocardial glucose uptake that is associated with this change

in fuel availability (Vosselman et al., 2012). Thus, chronic treat-

ment with a b3-AR agonist in humans may improve multiple fac-
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ets of metabolism even in the absence of

weight loss through consumption of lipids

and glucose and also the release of bene-

ficial adipokines (Stanford et al., 2013;

Villarroya et al., 2013).

This study is limited by its small size

and duration. Also, the young, lean,

healthy male subjects with detectable

BAT were selected deliberately for the

purpose of a proof-of-concept study, so

the efficacy of mirabegron needs to be

evaluated in women and other popula-

tions, such as those with different ages

and BMIs. In addition, the changes in

RMR and metabolism were measured
after administration of a single dose of mirabegron, so we do

not know if chronic treatment would yield the metabolic benefits

seen with other b3-AR agonists. Finally, the decision to use the

more potent 200 mg dose of mirabegron was advantageous in

that all twelve subjects had detectable BAT activity that was

higher than placebo. For this small sample size, the wide range

of BAT activities we observedwas crucial for learningmeaningful

aspects about human BAT physiology. However, the 200 mg

dose was also higher than necessary to selectively activate

only the b3-AR (Takasu et al., 2007; FDA 2012a). As a result,

we observed binding to the b1-AR with resultant tachycardia, a

treatment-emergent adverse event noted in several clinical trials

of mirabegron (Malik et al., 2012; Sacco and Bientinesi, 2012).

Given the acute stimulation of the cardiovascular system, the

long-term safety of this approach must be established. It re-

mains to be determined if the approved daily dose of 50 mg for

overactive bladder, which was associated with smaller effects

on heart rate (FDA 2012b), will sufficiently stimulate BAT growth

and thermogenesis. Given that activation of the myocardial b3-

AR has limited chronotropic effects (Masutani et al., 2013),

concomitant administration of 200 mg mirabegron with a b1-

AR blocker could mitigate the undesirable cardiovascular stimu-

lation. Alternatively, it is possible that the off-target effects may

be satisfactorily reduced by newly designed members of the

class having greater selectivity for the b3-AR.

In summary, we demonstrate that the b3-AR agonist

mirabegron acutely stimulates human BAT thermogenesis and
38, January 6, 2015 ª2015 Elsevier Inc. 35



Figure 2. Tissue Glucose Uptake
18F-FDG uptake in the twelve volunteers when given placebo or 200 mg mir-

abegron is shown for different tissues. Each circle represents a single subject.

(A) Myocardium.

(B) Subcutaneous WAT.

(C) Skeletal muscle.

(D) Liver.

See also Table S1.
Figure 3. Predictors of Resting Metabolic Rate

(A) Placebo-induced BAT activity.

(B) Two-hundred milligram mirabegron-induced BAT activity.

(C) Body fat mass with placebo.

(D) Body fat mass with 200 mg mirabegron.

See also Figure S3.
increases RMR. Given that mirabegron is already approved for

treatment of overactive bladder, we anticipate that these find-

ings will accelerate the development of pharmacological strate-

gies designed to increase energy expenditure and treat obesity

and metabolic disease.

EXPERIMENTAL PROCEDURES

Additional information canbe found in Supplemental Experimental Procedures.

Study Approval

This clinical trial is registered with ClinicalTrials.gov (NCT01783470) and has

the FDA Investigational New Drug (IND) registration number 116246. It was

approved by the Human Studies Institutional Review Boards of Beth Israel

Deaconess Medical Center (BIDMC) and Joslin Diabetes Center (JDC).

Healthy volunteers were recruited through electronic advertisements and pro-

vided written informed consent.

Study Day

Fifteen subjects underwent cold-activated 18F-FDG PET/CT scanning, con-

sisting of wearing a vest with circulating water set to 14�C for 120 min, as

described in Cypess et al. (2012), and twelve had detectable BAT. These

twelve subjects then participated in two more imaging days in which they

were given 200 mg per os mirabegron or placebo control in randomized order

that was unblinded. To reduce the contribution of cold-activated BAT, for the

placebo and mirabegron study days, we maintained the room temperature

above 23�C throughout the entire study visit. There was a washout period of

at least 48 hr between each of the three interventions. Given the plasticity of

BAT activity in response to seasonal changes in outdoor temperature, we

restricted the average interval between the subjects’ first and last study to
36 Cell Metabolism 21, 33–38, January 6, 2015 ª2015 Elsevier Inc.
28.1 ± 7.4 days. Vital signs, body composition, and metabolites were

measured as described previously (Cypess et al., 2012).

Measurement of Plasma Mirabegron Concentration

All reagents were HPLC grade. For an internal standard, a 1,000 pg/mL stock

solution of [13C6]-Mirabegron (Alsachim) was dissolved in methanol (Fisher

Scientific). A total of 20 ml (20,000 pg) of this standard was added to 500 ml

of the subjects’ plasma. For an ion-pairing agent, we added 400 ml of 20 mM

ammonium acetate (Sigma). Liquid-liquid extraction of mirabegron and the

standard was performed using 3 ml diethyl-ether (Sigma), and the solution

was mixed at room temperature for 10 min. The phases were separated

through centrifugation for 5 min at 2,361 3 g at room temperature. The upper

organic phase was isolated and dried under a stream of nitrogen at room tem-

perature. The precipitate was resuspended in 1.75 ml methanol and then dried

under vacuum at room temperature.

LC-MS/MS Analyses of Mirabegron

An Agilent 6460 LC-MS/MS triple quadrupole mass spectrometer, coupled to

a 1290 uHPLC and atmospheric chemical ionization (APCI), was used for the

detection and quantitation of mirabegron in positive ion mode using a multiple

reaction monitoring approach. An isotopologue of mirabegron [13C6] was used

an internal standard. More comprehensive experimental details are provided in

the Supplemental Experimental Procedures.

Sample Size Calculation

The primary hypothesis was that BAT activity following a single dose of 200mg

mirabegron would be significantly different from that following placebo. BAT

http://ClinicalTrials.gov


activity was considered as a continuous variable, and each subject was his

own paired control. Since we were conducting a pilot study with no prior

data on the effects of mirabegron on human BAT, we used existing data

from our prior studies of cold-exposedmen to determine the detectable differ-

ence between placebo and mirabegron based on a predetermined sample

size. Additional details can be found in the Supplemental Experimental

Procedures.

Statistical Analysis

We analyzed the data using JMP Pro 9.0.0 software (SAS Institute, Inc.). Since

the sample size of twelve subjects limited the ability to demonstrate that mea-

surements were normally distributed, we used the nonparametric Wilcoxon

sign-ranks test to assess the primary and secondary endpoints. All p values

presented are two tailed. p values % 0.05 were considered to indicate statis-

tical significance for the primary outcome. For the secondary endpoints,

p values% 0.002were considered significant based on aBonferroni correction

for 21 variables (RMR, systolic BP, diastolic BP, and HR; glucose uptake in

myocardium, WAT, skeletal muscle, and liver; and blood concentrations of

glucose, NEFAs, lactic acid, b-hydroxybutyrate, insulin, C-peptide, HOMA-

IR, glucagon, norepinephrine, cortisol, TSH, free T4, and total T3). Drug- and

cold-induced changes in BAT glucose uptake were correlated using

Spearman’s r. The study had >80% power (a = 0.05) to detect a difference

in the primary outcome between mirabegron and placebo treatment equal to

20% of the effect of cold.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, one table, and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.cmet.2014.12.009.
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