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Random dot motion (RDM) displays have emerged as one of the standard stimulus types employed in
psychophysical and physiological studies of motion processing. RDMs are convenient because it is
straightforward to manipulate the relative motion energy for a given motion direction in addition to
stimulus parameters such as the speed, contrast, duration, density, aperture, etc. However, as widely
as RDMs are employed so do they vary in their details of implementation. As a result, it is often difficult
to make direct comparisons across studies employing different RDM algorithms and parameters. Here,
we systematically measure the ability of human subjects to estimate motion direction for four commonly
used RDM algorithms under a range of parameters in order to understand how these different algorithms
compare in their perceptibility. We find that parametric and algorithmic differences can produce dramat-
ically different performances. These effects, while surprising, can be understood in relationship to perti-
nent neurophysiological data regarding spatiotemporal displacement tuning properties of cells in area
MT and how the tuning function changes with stimulus contrast and retinal eccentricity. These data help
give a baseline by which different RDM algorithms can be compared, demonstrate a need for clearly
reporting RDM details in the methods of papers, and also pose new constraints and challenges to models
of motion direction processing.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The ability to perceive the direction of a moving object in the
environment is an important visual function. Random dot motion
(RDM) stimuli are used as standard inputs to probe motion percep-
tion, because of the ease with which arbitrary amounts of relative
motion energy in given directions and speeds can be manipulated
and because they target the Dorsal visual pathway (Where stream),
owing to the lack of coherent form cues. A typical RDM stimulus
consists of a sequence of several frames in which the dots move
through space and time following a particular algorithm to evoke
direction and speed percepts at some level of coherence (i.e., mo-
tion strength). For example, for a 5% coherent motion display, 5%
of the dots (i.e., signal dots) move in the signal direction from
one frame to the next in the sequence while the other 95% of the
dots (i.e., noise dots) move randomly. As one would expect, the
higher the coherence, the easier it is to perceive the global motion
direction.

Psychophysical and neurophysiological experiments based on
RDM stimuli have helped us to understand mechanisms and prin-
ll rights reserved.
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ciples underlying motion perception (Britten, Shadlen, Newsome,
& Movshon, 1992), motion decision-making (Gold & Shadlen,
2007; Roitman & Shadlen, 2002), perceptual learning (Ball & Sekul-
er, 1982; Seitz & Watanabe, 2003; Watanabe et al., 2002; Zohary,
Celebrini, Britten, & Newsome, 1994), fine (Purushothaman & Brad-
ley, 2005) and coarse (Britten, Newsome, Shadlen, Celebrini, &
Movshon, 1996) direction discrimination, motion transparency
(Bradley, Qian, & Andersen, 1995), motion working memory (Zak-
sas & Pasternak, 2006), and depth perception from motion (Nadler,
Angelaki, & DeAngelis, 2008), among other issues. Even a cursory
look at this extensive literature reveals that a large variety of
RDM stimuli have been employed. As a result, it is often difficult
to make direct comparisons across these studies. RDMs vary not
only in their parameters (such as duration, speed, luminance con-
trast and aperture size), but also in the underlying algorithms that
generate them.

While there have been a number of studies that have paramet-
rically investigated aspects of a given RDM algorithm, little atten-
tion has been given regarding how choices of algorithm impact the
perception of the moving dot fields under various parameters. Such
comparative studies are important; as Watamaniuk and Sekuler
(1992) suggest, ‘‘differences in the algorithms used to generate
the displays may account for differences in temporal integration
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limits” found between two previous studies. Also recently, Benton
and Curran (2009) considered how different stimulus parameters
that were employed, the refresh rate in particular, can explain
the increasing and decreasing effects of coherence on perceived
speed reported in the literature. There have been a few studies
(Scase, Braddick, & Raymond, 1996; Snowden & Braddick, 1989;
Williams & Sekuler, 1984) that specifically compared how some
RDM algorithms affect direction discrimination performance; see
Section 6. For the algorithms which were tested, the main conclu-
sion was a lack of significant differences in performance. Scase
et al. (1996) also found little difference in overall performance un-
der nominal variations in dot density and speed.

However, a number of questions remain. Are there some other
RDM algorithms, which are currently being used, that can produce
different performances? Do parameters differentially impact per-
ception for different algorithms? Would a different perceptual task,
namely direction estimation (Nichols & Newsome, 2002), which is
more sensitive than discrimination, reveal divergence in perfor-
mances across RDM algorithms? Can comparing the performances
of human subjects in response to various algorithms reveal some
understanding of the mechanisms underlying motion direction
processing? Can these results be linked to known neurophysiologi-
cal data regarding the spatiotemporal displacement tuning of mo-
tion-selective cortical neurons?

The goal of this paper is to provide answers to these questions.
Here we directly address how parametric and algorithmic differ-
ences affect perception of motion directionality for RDM stimuli
by comparing direction estimation performances of human sub-
jects. The estimation task is more natural than discrimination for
humans and animals alike as it does ‘‘not impose perceptual cate-
gories on the [subjects’] directional estimates”, thus allowing a di-
rect correspondence between motion representation in the brain
and the perceptual report (Nichols & Newsome, 2002). The follow-
ing four commonly used RDM algorithms are considered (see Fig. 1
for illustrations), of which algorithms MN and LL have not previ-
ously been comparatively investigated:

A. White Noise (WN): A new set of signal dots are randomly
chosen to move in the signal direction from each frame to
the next, and the remaining (noise) dots are randomly relo-
cated; i.e., each noise dot is given random direction and
speed (Britten et al., 1992, 1996).

B. Movshon/Newsome (MN): This is similar to WN, but three
uncorrelated random dot sequences are generated and
frames from each are interleaved to form the presented
motion stimulus; i.e., signal dots move from frames 1 to 4
and then from 4 to 7 and so on, from frames 2 to 5 and then
from 5 to 8 and so on, and from frames 3 to 6 and then from
6 to 9 and so on (Roitman & Shadlen, 2002; Shadlen & New-
some, 2001).

C. Limited Lifetime (LL): This is similar to MN, but with the con-
straint that from one frame to the next in each of the three
interleaved sequences the dots with the longest lifetime as
signal are the first to be chosen to become noise dots, which
are then randomly relocated (Law & Gold, 2008). This
restricts the signal dot lifetime from a probabilistic function
of coherence level (employed by the other three algorithms)
to a hard cutoff, where no dot moves as signal for more than
one displacement for coherences below 50%.

D. Brownian Motion (BM): This is similar to WN, but all dots
move with the same speed; i.e., noise dots are only given
random directions (Seitz, Nanez, Holloway, Koyama, &
Watanabe, 2005; Seitz & Watanabe, 2003).

Note that in algorithms MN and LL, the parameter of speed is de-
fined with respect to signal dots belonging to the same constituent
motion set. Thus a signal dot jumps from one presentation to the
next by a displacement that is three times bigger than that in algo-
rithms WN and BM for the same speed. In this article, spatial dis-
placement corresponds to the spatial separation between one and
the next flash of a signal dot, and temporal displacement to the tem-
poral interval between their onsets. So the speed is equivalent to
spatial displacement divided by temporal displacement. Also, note
that for algorithms WN, MN and BM, it is probable for a dot to be
chosen as signal for more than one displacement. However for algo-
rithm LL this never happens for the coherences used in this paper.

In Experiment 1, we examined the effect of viewing duration on
the ordinal relationship among the motion algorithms with respect
to direction estimation performance of human subjects. In Experi-
ment 2, we examined the effects of contrast and speed. In Experi-
ment 3, we examined the effects of contrast, speed and aperture
size. In Experiment 4, we examined if speed, or the particular com-
bination of spatial and temporal displacements, determines the
relative perceptibility for RDM algorithms under variations of con-
trast and aperture size. Our emphasis was to understand both the
differences among algorithms with changes in parametric condi-
tions, and also the effects of these parameters on performance
for each algorithm. Our results show dramatic interactions in per-
formance both between and within algorithms under different
parameters, some of which are counterintuitive. The obtained re-
sults are explained as behavioral correlates of various neurophysi-
ological data obtained from motion-selective cortical neurons.
2. Experiment 1

How does the brain estimate the direction of a moving object in
clutter? In primates, directional transient responses are thought to
be produced in V1 by local motion detectors, which can be imple-
mented in several ways (Derrington, Allen, & Delicato, 2004);
namely correlation-type motion detector (Reichardt, 1961), null
direction inhibition model (Barlow & Levick, 1965), and motion-
energy filter model (Adelson & Bergen, 1985). In the next stage,
directional short-range filters (Braddick, 1974) give rise to direc-
tional V1 simple cells by accumulating directional transients over
relatively short spatial and temporal ranges. Following this, direc-
tional long-range filters accumulate local directional signals from
V1 over relatively large spatial and temporal ranges to create glo-
bal motion direction cells. Some models (Chey, Grossberg, & Min-
golla, 1997; Grossberg, Mingolla, & Viswanathan, 2001) also
propose a motion capture mechanism in which global motion cells
compete or cooperate across space depending on how opponent
their tuned directions are, leading to a gradual refinement of the
brain’s motion representation and thereby a robust percept. A
directional estimate may then be obtained by computing the direc-
tional vector average of global motion cells coding various direc-
tions (Nichols & Newsome, 2002) across tuning to other motion
parameters such as speed, spatiotemporal frequency, spatiotempo-
ral displacement, etc., in either parietal or frontal cortex.

An RDM stimulus consists of a sequence of frames, each of
which contains a fixed number of dots on a plain background. A
single dot that moves in a particular direction does not create
any local directional ambiguity. However when a stimulus consists
of multiple moving dots, local motion direction mechanisms can be
fooled such that cells tuned to incoherent (non-signal or noise)
directions also become active (see Fig. 2). This problem of informa-
tional uncertainty in the directional short-range filters can be
aggravated by certain stimulus factors such as low coherence,
thereby resulting in only partial resolution of the neural code for
global motion direction (Grossberg & Pilly, 2008). In other words,
parameters such as low coherence increase the number of incor-
rect local motion signals amidst fewer coherent signals, and as a
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Fig. 2. Two illustrations to clarify the local motion directional ambiguity that is elicited by an RDM stimulus. In both panels, the coherence level is 33%, the signal direction
(solid arrow) is rightward, and the refresh rate is 60 Hz (16.67 ms�1). Note that incoherent local motion signals (dashed arrows) are also activated. In the direction estimation
task, the analog signal direction needs to be extracted in the presence of directional clutter. The oval-shaped receptive fields represent directional short-range filters, which
have relatively short spatial and temporal limits within which directional evidence can be accumulated. In (b), note that the same dot was chosen to move in the signal
direction for two frames, which is expected to produce a stronger local motion signal (thicker arrow) in the activated short-range filter population coding the signal direction.

Fig. 1. Illustration of the four RDM algorithms under consideration. Each panel shows sample trajectories of the dots, which are six in number, moving in the rightward
direction at 50% coherence for four frames. Each frame displays only the six dots; the number on each dot represents the frame in which it flashes. Gray dots constitute the
first frame, and black and white dots represent noise and signal dots, respectively. Note that signal dots are recruited afresh from each frame to the next. Layered apertures in
(b) and (c) depict the interleaving of three uncorrelated motion sets; i.e., an arbitrary frame has some correlation only with a frame that is either three frames backwards or
forwards. The dashed arrows in (b) and (c) represent dot motion across non-consecutive frames.
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result produce only a weak directional percept. And short viewing
duration limits the accumulation of evidence in the global motion
cells that code the signal direction, and the extent of capture of
incoherent motion signals across space.

In Experiment 1, we conducted a first comparison of the four
motion algorithms under different levels of coherence and for dif-
ferent viewing durations. The main goal was to obtain an order
among the algorithms based on subjects’ performances, and exam-
ine if the order changed with variations in viewing duration (100,
200, 400 and 800 ms). Our choice of the viewing durations was set
to largely span the range of integration times used in perceptual
decision-making of motion direction under different levels of mo-
tion coherence (Palmer, Huk, & Shadlen, 2005).

Based on the theoretical framework, discussed above, we made
the following predictions. More viewing duration will tend to im-
prove performance irrespective of the motion algorithm. Estima-
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tion accuracy will be best in response to stimuli driven by algo-
rithm BM, as it sets up the lowest local directional ambiguity
among the four algorithms under consideration given that the
noise dots are only locally repositioned (see Fig. 1). For the remain-
ing algorithms, performance will be better in response to algorithm
WN than that to algorithms MN and LL as the interleaving of three
uncorrelated motion sets is expected to decrease the effective
stimulus coherence due to additional random local motion group-
ings of transient signals that are evoked by dots belonging to
frames from different motion sets. Expected performance is
predicted to be worst for algorithm LL as the limited lifetime con-
straint should reduce the strength of activation in the short-range
filters that code the signal direction owing to the lack of long-last-
ing signal dots (see Fig. 2) and as a result the effectiveness of the
global motion capture process.

2.1. Methods

2.1.1. Subjects
Twelve subjects (nine male, three female; age range: 18–33

years) were recruited for Experiment 1, and six subjects (three
male, three female; age range: 18–30 years) for a control experi-
ment. All participants had normal or corrected-to-normal vision
and were naïve regarding the purpose of the experiment.

All subjects in the study gave informed written consent and re-
ceived compensation for their participation and were recruited
from the Riverside, CA and Boston, MA areas. The University of Cal-
ifornia, Riverside and Boston University Institutional Review
Boards approved the methods used in the study, which was con-
ducted in accordance with the Declaration of Helsinki.

2.1.2. Apparatus
Subjects sat on a height adjustable chair at a distance of 60 cm

from a 36 cm horizontally wide, Dell M992 CRT monitor set to a
resolution of 1280 � 960 and a refresh rate of 85 Hz. The distance
between the subjects’ eyes and the monitor was fixed by having
them position their head in a chin-rest with a head-bar. Care was
taken such that the eyes and the monitor center were at the same
horizontal level. Stimuli were presented using Psychtoolbox Ver-
sion 2 (Brainard, 1997; Pelli, 1997) for MATLAB 5.2.1 (The Math-
Works, Inc.) on a Macintosh G4 machine natively running OS 9.

2.1.3. Stimuli
Motion stimuli consisted of RDM displays. White dots (113 cd/

m2) moved at a speed of 12 deg/s on a black background (�0 cd/
m2). Each dot was a 3 � 3 pixel square, and at the screen center
subtended a visual angle of 0.08� on the eyes. Dots were displayed
within an invisible 18� diameter circular aperture centered on the
screen. Dot density was fixed at 16.7 dots deg�2 s�1 (Britten, Shad-
len, Newsome, & Movshon, 1993; Shadlen & Newsome, 2001). The
number of dots in each frame of the stimuli was, thus,
16.7 � p � (9)2 � (1/85) = 50 dots, which corresponds to 0.2 dots
deg�2. Dot motion was first computed within a bounding square
from which the circular aperture was carved out. If any of the sig-
nal dots were to move out of the square aperture, they were
wrapped around to appear from the opposite side to conserve
dot density. It is important to note that while the stimuli driven
by different algorithms perceptually look different (in particular,
BM vs. others), they all were tested with the same ‘physical’
parameters.

2.1.4. Procedure
The experiment was conducted in a dark room. Subjects were

required to fixate a 0.2� green point in the center of the screen,
around which the stimulus appeared. In each trial, subjects viewed
the RDM binocularly for a fixed duration (100, 200, 400 or 800 ms),
and then reported the perceived motion direction after a 500 ms
delay period. This analog response was made by orienting a re-
sponse bar, via mouse movements, in the judged direction and
then clicking the mouse button. Subjects had 4 s to make their re-
sponse and trials were separated by a 400 ms intertrial period. This
procedure is depicted in Fig. S1. Unclicked responses, which were
few and far apart, were not considered in the data analysis. During
stimulus viewing, subjects were specifically instructed not to track
any individual dot motion, but to maintain central fixation while
estimating the motion direction.

All subjects participated in three experimental sessions. The
first session comprised about 5 min of practice which was given
to familiarize them with the procedure. In trials of this session,
random dot motion following one of the four algorithms was pre-
sented for 400 ms at a relatively easy coherence level (60%, 70%,
80%, 90% and 100%) and in one of eight directions (0�, 45�, 90�,
135�, 180�, 225�, 270� and 315�). If the response was within
22.5� of the presented direction, then visual and auditory feedback
that the response was correct was given.

Subjects then participated in two, 1-hr sessions which were
conducted on different days. The method of constant stimuli was
employed with a different set of eight equally spaced, non-cardinal
directions (22.5�, 67.5�, 112.5�, 157.5�, 202.5�, 247.5�, 292.5� and
337.5�), 10 coherence levels (2%, 4%, 6%, 8%, 10%, 15%, 20%, 25%,
30% and 50%) and four durations (100, 200, 400 and 800 ms) for
each motion algorithm. No response feedback was given in these
main sessions. Each session comprised 1280 trials that were di-
vided into four sections, with a possibility for a short rest between
sections. The parameters were arranged in blocks of 80 trials that
consisted of the eight directions at each of the 10 coherence levels,
randomly interleaved, for a given motion algorithm at a given
duration. This design was based on initial observations in which
we found that blocking trials of the same duration and algorithm
was helpful to overall performance (however, a control experiment
showed that the basic pattern of observed results is also found
when interleaving all parametric conditions, including duration
and algorithm; see Fig. S4). These blocks were randomly ordered
on per subject and per session basis.

2.1.5. Accuracy measure
To evaluate estimation performance, we first calculated the

absolute error of the subject’s analog choice of direction compared
to the presented direction. On average, chance level performance
yields an absolute error of 90� (see Appendix for Supplementary
Information). Based on this, the accuracy measure for each trial
is defined as a percentage ratio: 100� 90��jerrorj

90� , such that accuracy
spans from 0% to 100% as the performance improves from purely
random guessing to perfect estimation. In the data figures, we dis-
play the average accuracy across trials. The accuracy measure as a
function of coherence is defined as the coherence response
function.

2.2. Results

To quantify the data collected in Experiment 1, we performed a
four-way ANOVA with repeated measures to evaluate the effects of
Coherence � Algorithm � Duration � Session as factors. As one
would expect, we found a highly significant effect of coherence
(F(9, 99) = 184.5, p < 0.0001). We also found a highly significant ef-
fect of algorithm (F(3, 33) = 7.26, p < 0.001) and duration
(F(3, 33) = 47.5, p < 0.0001), but no effect of session (F(1, 11) = 0.8,
p = 0.39). There was no interaction between session and algorithm
(F(3, 33) = 0.57, p = 0.64), but there were highly significant interac-
tions between coherence and algorithm (F(27, 297) = 3.69,
p < 0.0001) and between coherence and duration (F(27, 297) =
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2.73, p < 0.0001), and significant interactions between coherence
and session (F(9, 99) = 2.0, p < 0.05) and between algorithm and
duration (F(27, 297) = 2.46, p < 0.01). We will generally not remark
on effects of, and interactions involving, coherence in the rest of
the paper. And given the lack of effect of session we will collapse
across sessions for the remaining analyses. Also, given the limited
number of presentations per combination of parameters, results
are averaged across the eight directions to obtain a better coher-
ence response function for each algorithm under the main param-
eters of interest. While it is potentially interesting to consider
interactions involving the eight motion directions, there is little
theoretical ground to justify such an investigation, especially con-
sidering that all the tested directions are non-cardinal.

Fig. 3 shows the coherence response functions of the motion
algorithms at each viewing duration separately. Overall we find
that human subjects are best at estimating the motion direction
of stimuli derived from the Brownian Motion (BM) algorithm, fol-
lowed by Movshon/Newsome (MN) or Limited Lifetime (LL) algo-
rithms, and worst with the White Noise (WN) algorithm. This
thus reveals the following ordinal relationship: WN <* LL < MN <*

BM, where the asterisk superscript indicates significance in the
sense that there is no overlap between the error bars (standard er-
ror) of the corresponding overall accuracy measures, which were
computed by further averaging across coherence levels. As ex-
pected we also found (see Fig. S2 for data for each algorithm as a
function of duration) that viewing duration tends to improve per-
formance for each RDM algorithm. The same pattern of results was
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found when computing other metrics of estimation performance,
such as vector dispersion and the percent of choices within the
quadrant of the target direction; see Fig. S3.

We examined the distribution of directional choices made by
the subjects with respect to the presented direction for each algo-
rithm and viewing duration condition in the various coherence tri-
als from the two sessions; see Table S1 for vector average and
circular variance. We found that for each algorithm, the relative er-
rors are distributed symmetrically around 0� (the target direction).

As mentioned in Section 2.1.4, some stimulus conditions,
namely algorithm and viewing duration, were blocked. In order
to be sure that this blocked design does not confound the data
trends, we performed a control experiment on new subjects
(n = 6) that essentially is similar to Experiment 1, but using a com-
pletely interleaved design and with fewer conditions (two algo-
rithms: WN, MN; one viewing duration: 400 ms; same set of
coherences and directions). The resulting coherence response func-
tions for algorithms WN and MN bore resemblance to the corre-
sponding results from Experiment 1 (compare Fig. S4 with
Fig. 3c), and there was a significant effect of algorithm (p < 0.01, re-
peated measures ANOVA).

2.3. Discussion

Notably, we found that our initial model failed to predict how
subjects would perform relatively on the different motion algo-
rithms. The only prediction that turned out to be correct was opti-
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mal performance in response to algorithm BM. We expected that
performance would be worst for algorithms MN and LL than for
WN, however the opposite relationship was found. Also we ex-
pected a significant difference in performance between algorithms
MN and LL. While there are some individual subject differences in
ordinal performance across the motion algorithms (see Fig. S5), we
see that there is a problem with our initial model of how these mo-
tion stimuli are processed and perceived. A notable issue, that is
not well dealt with in the model, is that while the algorithms were
tested at the same speed (12 deg/s), the spatial and temporal dis-
placements between two consecutive signal dot flashes for the
interleaved algorithms (MN and LL) are three times those for the
other algorithms (WN and BM); see Experiment 4 and Section 6
for more treatment of this issue. Thus to better understand the
mechanisms underlying these effects, and to verify the validity of
these results under different stimulus conditions, we performed
Experiments 2–4.
3. Experiment 2

In Experiment 2, we examined the effects of speed and con-
trast on the coherence response functions for the RDM algo-
rithms. We chose to employ two speeds: slow (4 deg/s) and fast
(12 deg/s), and also low and high contrast dots given the increas-
ing number of psychophysical and neurophysiological studies
showing that motion processing is non-trivially impacted by stim-
ulus contrast (Krekelberg, van Wezel, & Albright, 2006; Living-
stone & Conway, 2007; Pack, Hunter, & Born, 2005; Peterson, Li,
& Freeman, 2006; Seitz, Pilly, & Pack, 2008; Tadin, Lappin, Gilroy,
& Blake, 2003; Thompson, Brooks, & Hammett, 2006). Under low
visual contrast conditions, sensitivity to stimulus features is gen-
erally thought to be reduced, as in the model discussed in the pre-
vious experiment.

3.1. Methods

Eight new subjects (three male, five female; age range: 18–
25 years) were recruited for this experiment. The methods were
identical to those of Experiment 1 with the following exceptions.
The viewing duration was fixed at 400 ms, as viewing duration
was not found to change the relative order of the algorithms and
at 400 ms performance was good for most subjects without much
additional benefit from longer viewing durations; see Fig. S2. The
aperture diameter was reduced from 18� to 8�. Reduction in aper-
ture size allowed us to indirectly examine the effects of stimulus
size and retinal eccentricity, given results from Experiment 1.

Dots were shown either at low (11.25 cd/m2) or high (117 cd/
m2) luminance on a dark background (4.5 cd/m2) to produce the
low or high contrast condition, respectively. Similar to Experiment
1, trials were blocked for algorithm, contrast and speed, and differ-
ent coherence levels and directions were randomly interleaved
within each block. The first half of trials in each session consisted
of one contrast and the second half of the other contrast (order
of this was counterbalanced between sessions and across subjects).
Within each half session, blocks of algorithm and speed at the par-
ticular contrast were randomly arranged. The experiment was con-
ducted in dim illumination in order to minimize the impact of dark
adaptation and to avoid non-stationarities in performance result-
ing from contrast changes.

3.2. Results

To quantify the results from Experiment 2, we performed a five-
way ANOVA with repeated measures to evaluate the effects of
Coherence � Algorithm � Speed � Contrast � Session as factors.
Again we found a highly significant effect of algorithm
(F(3, 21) = 12.1, p < 0.0001), and no effect of session
(F(1, 7) = 0.01, p = 0.91). We also found a significant effect of con-
trast (F(1, 7) = 7.7, p < 0.05), and a marginal effect of speed
(F(1, 7) = 3.1, p = 0.1). While the individual effects of speed and
contrast were small, there were highly significant interactions be-
tween algorithm and contrast (F(3, 21) = 18.5, p < 0.0001), between
algorithm and speed (F(3, 21) = 93.3, p < 0.0001), and between
speed and contrast (F(1, 7) = 38.14, p < 0.0001).

The main results of Experiment 2 can be seen in Fig. 4. In this
figure, each subplot shows the relative performances for the mo-
tion algorithms under the four combinations of speed and contrast.
Whereas Fig. 4a and b (those for slow speed: 4 deg/s) shows a pat-
tern of results reminiscent of those found in Fig. 3
(WN < LL < MN <* BM, WN <* MN at low contrast; WN <* LL < MN <*

BM at high contrast), Fig. 4c and d (those for fast speed: 12 deg/s)
shows a very different trend (MN < LL <* WN <* BM at low contrast;
LL < MN <* WN < BM at high contrast). Indeed for the fast speed
(12 deg/s) condition, algorithms MN and LL are now showing the
worst performance, and at low contrast (Fig. 4c) subjects are actu-
ally performing at close to chance level for the interleaved algo-
rithms MN and LL even at 50% coherence.

Given the highly significant interactions between algorithm and
speed, and between algorithm and contrast, we replot in Fig. 5 the
data shown in Fig. 4, but with the results grouped now by algo-
rithm. Based on this figure, we can make the following observa-
tions (data here was quantified by performing a four-way ANOVA
with repeated measures for each RDM algorithm with Coher-
ence � Speed � Contrast � Session as factors):

Algorithm WN: At both low and high contrasts, performance im-
proved with increased speed. However at slow speed (4 deg/s),
performance reduced slightly with increased contrast, whereas it
increased with contrast at fast speed (12 deg/s). We found a highly
significant effect of speed (F(1, 7) = 35.5, p < 0.001), but not of con-
trast (F(1, 7) = 0.4, p = 0.55), and a highly significant interaction be-
tween speed and contrast (F(1, 7) = 15.4, p < 0.0001).

Algorithms MN, LL: At low contrast, performance greatly reduced
with increased speed. At high contrast, performance reduced
slightly with speed. At slow speed (4 deg/s), contrast helped for
algorithm LL and slightly for MN, whereas at fast speed (12 deg/
s), higher contrast greatly improved performance. We found signif-
icant effects of speed (MN: F(1, 7) = 13.0, p < 0.01; LL: F(1, 7) = 14.5,
p < 0.01) and of contrast (MN: F(1, 7) = 17.9, p < 0.01; LL:
F(1, 7) = 10.1, p < 0.01), and highly significant interactions between
speed and contrast (MN: F(1, 7) = 39.4, p < 0.0001; LL:
F(1, 7) = 10.6, p < 0.001).

Algorithm BM: Performance was marginally better for high con-
trast than for low contrast, but there was no notable effect of
speed. Accordingly, we found a significant effect of contrast
(F(1, 7) = 9.5, p < 0.05) but not of speed (F(1, 7) = 0.31, p = 0.59),
and no significant interaction between speed and contrast
(F(1, 7) = 2.51, p = 0.11).

3.3. Discussion

The results of this experiment are striking in the fact that
parameters of speed and contrast had very different effects across
the different algorithms. For instance, performance on algorithm
WN generally improved with speed (4 deg/s < 12 deg/s), whereas
performance on algorithms MN and LL was impaired, and algo-
rithm BM was largely unaffected by speed. Also, while we had ex-
pected that performance would be better at high contrast, we did
not expect the dramatic impact of contrast at fast speed (12 deg/
s) found for algorithms MN and LL, nor the slight reduction in per-
formance with increased contrast found for algorithm WN at slow
speed (4 deg/s). Statistically, these observations explain the highly
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significant interaction between speed and contrast found for each
of the algorithms WN, MN and LL. These results may be a reflection
of how lowering contrast is known to alter the spatiotemporal
receptive field structure of motion-selective cortical neurons (Kre-
kelberg et al., 2006; Livingstone & Conway, 2007; Pack et al., 2005;
Peterson et al., 2006; Seitz et al., 2008). This link is considered fur-
ther in Experiments 3 and 4, and analyzed in Section 6.

Other interesting results in Experiment 2 come from the ordinal
relations among algorithms. First, algorithms MN and LL yield
nearly equal performances, as was found in Experiment 1, also in
each of the new combinations of speed, contrast and aperture size.
This suggests that at least for the particular dot density being used,
the directional long-range filters, which summate local motion sig-
nals across a large spatial range, may be agnostic to how regular or
irregular the local groupings in the signal direction across space
and time are. Similar ideas discussed in Snowden and Braddick
(1989) and Scase et al. (1996) with respect to direction discrimina-
tion, thus, also hold for direction estimation. Second, subjects con-
tinue to estimate the direction best for algorithm BM, in
accordance with the theoretical framework articulated in the intro-
duction to Experiment 1.

An additional curiosity is that, while we find WN <* MN in the
slow speed (4 deg/s) condition as in Experiment 1, the relationship
reverses in the fast speed (12 deg/s) condition (i.e., MN <* WN).
This is particularly surprising given that the results shown in
Fig. 4d were obtained for the same parametric combination of con-
trast, speed and duration as is plotted in Fig. 3c. While it is possible
that this is due to individual subject differences (see Fig. S5) or con-
textual effects due to the different sets of conditions presented in
the two experiments, it is also possible that the relative perfor-
mance differences result from the difference in aperture size (18�
vs. 8�) between the two experiments. Experiment 3 was designed
to test this hypothesis.

4. Experiment 3

In Experiment 3, we conducted a more thorough examination of
the effects of speed, contrast and aperture size on the direction
estimability of RDM stimuli. In particular, we explored whether
the difference in the aperture sizes employed in Experiments 1
and 2 can explain the observed differences in ordinal relations
among the algorithms. Given that performance on algorithm BM
was found to be the best across conditions, and those for algo-
rithms MN and LL were largely similar in both experiments, we
only explored algorithms WN and MN in this experiment for the
purpose of efficiency. By reducing the number of algorithms, we
were able to examine the effects of aperture size, in addition to
speed and contrast, in a within-subjects design without any reduc-
tion in the number of trials per condition.

4.1. Methods

Seven new subjects (one male, six female; age range: 18–
25 years) were recruited for this experiment. The methods were
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Fig. 5. Experiment 2 results showing the coherence response functions of each algorithm for various speed (4 deg/s: dashed; 12 deg/s: solid) and contrast (low: blue; high:
red) conditions. Error bars represent standard error of mean. The legend for all panels is shown in (a). Fixed stimulus parameters are 400 ms duration, and 8� aperture
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identical to those of Experiment 2 with the following exceptions.
Only motion algorithms WN and MN were used, and two aperture
sizes (8� diameter and 18� diameter) were tested. Similar to Exper-
iment 2, trials were blocked for contrast, algorithm, speed, and
aperture size. And within each block, directions and coherences
were randomly interleaved.

4.2. Results

To statistically examine the results from Experiment 3, we per-
formed a six-way ANOVA with repeated measures to evaluate the
effects of Coherence � Algorithm � Speed � Contrast � Aper-
ture � Session as factors. Here we found a significant effect of aper-
ture size (F(1, 6) = 6.5, p < 0.05), where performance was higher for
the larger aperture size (see Figs. S6 and S7 for plots showing over-
laid data for the two apertures). However, there were no significant
interactions involving aperture size. There was no effect of algo-
rithm (F(1, 6) = 1.1, p = 0.34), but there were highly significant
interactions between algorithm and contrast (F(1, 6) = 119,
p < 0.0001), and algorithm and speed (F(1, 6) = 453, p < 0.0001).
We also observed a significant interaction between speed and con-
trast (F(1, 6) = 9.22, p < 0.005).

First, all results for algorithms WN and MN from Experiment 2
are replicated here with one exception: for algorithm WN, we find
that the crossed interaction between speed and contrast is no long-
er evident, and that performance is now surprisingly reduced with
increased contrast at both speeds; see Fig. S8a. Second, the effects
of speed and contrast for each algorithm are consistent between
the two aperture sizes; see Fig. S8. Third, while more aperture size
tends to improve performance, algorithm MN in the fast speed
(12 deg/s) and high contrast condition got a relatively larger bene-
fit from the bigger aperture (18� diameter) than found in the other
conditions (compare panel (d) with other panels in Fig. S7 and with
Fig. S6). Fourth, the relative order of the two algorithms for the
slow speed (4 deg/s) under both low and high contrasts is common
between the two apertures; namely WN <* MN (see Fig. S9). The
opposite order (MN <* WN) for the fast speed (12 deg/s) is seen
in all contrast and aperture size conditions, except for the high
contrast and bigger aperture (18� diameter) case in which subjects
performed nearly equally in response to the two algorithms
(MN < WN); see Figs. S10 and 6. Fifth, this latter result confirms
that the different aperture sizes at least partially account for the
different relational results found in Experiments 1 and 2.

4.3. Discussion

In Experiment 3, we find that even in the larger aperture at fast
speed (12 deg/s) and low contrast, performance is particularly poor
for algorithm MN. At 12 deg/s, the underlying spatial and temporal
displacements for algorithm MN (and also LL) are 0.42� and
35.29 ms, respectively, which are three times more than those
for algorithm WN (and also BM). As mentioned in Section 3.3,
the spatiotemporal receptive field structure of neurons involved
in motion processing changes in low contrast (Krekelberg et al.,
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2006; Livingstone & Conway, 2007; Pack et al., 2005; Peterson
et al., 2006; Seitz et al., 2008), and it is likely that under low con-
trast the higher spatiotemporal combination of (0.42�, 35.29 ms)
does not evoke strong enough responses in motion-selective corti-
cal neurons that code the signal direction. This potential explana-
tion assumes that the underlying spatiotemporal displacement,
and not speed, is the factor that determines perceptibility of an
RDM stimulus.

This experiment also reveals some counterintuitive results
regarding how lowering contrast helps subjects to estimate the
direction better for algorithm WN at the two speeds in both aper-
tures. And the lack of this effect for algorithm MN at the same
speeds further indicates an interaction between contrast and spa-
tiotemporal displacement, instead of between contrast and speed.

The positive influence of aperture size on estimation accuracy
found in all conditions may result from a selective increase in
the occurrence of correct local motion groupings (i.e., in the signal
direction) when compared to incorrect ones (i.e., in other direc-
tions) at the directional short-range filter stage, which thereby in-
creases the effectiveness of the global directional grouping stage in
capturing cells that code incoherent (noise) directions. Addition-
ally, a bigger aperture size invokes more eccentric motion-selective
neurons, which have bigger receptive fields and are known to be
able to register a directional signal for relatively bigger spatial dis-
placements (psychophysics: Baker & Braddick, 1982, 1985a;
Nakayama & Silverman, 1984; and neurophysiology: Mikami,
Newsome, & Wurtz, 1986; Pack, Conway, Born, & Livingstone,
2006 [Figs. 3 and 4]). This suggests that the population spatial dis-
placement tuning broadens with a peak shift towards larger spatial
displacements for bigger apertures. This effect is supported by the
substantial gain in performance with aperture size seen, in partic-
ular, for algorithm MN under high contrast at 12 deg/s speed,
which corresponds to a higher spatial displacement of 0.42�. Also,
the switch in the relative order of the two algorithms with respect
to speed, except in the high contrast and bigger aperture condition,
likely results from the population spatial displacement tuning of
direction-selective cells and the effects of aperture size and con-
trast on it (see Fig. 9 and Section 6).

Results regarding the main motive of Experiment 3, shown in
Fig. 6, seem to indicate some inconsistency between the compara-
tive results of Experiments 1 (WN <* MN) and 3 (MN < WN) for the
same parametric combination of high contrast, bigger aperture,
12 deg/s speed and 400 ms viewing duration; compare Fig. 3c with
Fig. 6b. The only procedural difference between Experiments 1 and
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Fig. 6. Experiment 3 results comparing the coherence response functions of the two algo
contrast in each aperture size condition. Error bars represent standard error of mean. T
interpretation of the references to color in this figure legend, the reader is referred to th
3 is that the former was conducted in the dark, whereas the latter
was conducted in a dimly illuminated room. Thus, the mean stim-
ulus luminance was different in Experiments 1 (0.14 cd/m2) and 3
(4.64 cd/m2); see Table S2. Accordingly, the disparate results may
be reconciled given previous psychophysical studies that showed
the upper spatial displacement limit (Dmax) for direction discrimi-
nation of two-exposure dot fields in a 2AFC task is inversely pro-
portional to mean luminance (Dawson & Di Lollo, 1990;
Lankheet, van Doorn, Bourman, & van de Grind, 2000), and if an
assumption is made that increasing mean luminance shifts the
spatial displacement tuning function towards smaller displace-
ments; see Section 6 for how this might contribute to the explana-
tion. This hypothesis needs to be examined rigorously in a future
work.

5. Experiment 4

In Experiment 4, we set out to confirm that the observed effects
of speed, in particular the interactions between speed and contrast,
are not related to speed per se, but are actually an effect of the
underlying combination of spatial and temporal displacements as
per the hypothesis put forward in the previous experiment. In or-
der to test this we used two different monitor refresh rates (60 Hz
and 120 Hz). In this way the same speed could be tested with two
different combinations of spatial and temporal displacements for
each RDM algorithm. We were also interested in how subjects re-
spond to algorithms WN and MN for matched spatial displace-
ments, instead of speeds as in the previous three experiments.

5.1. Methods

Eight new subjects (0 male, eight female; age range: 18–
25 years) were recruited for this experiment. The methods were
identical to those of Experiment 3 with the following exceptions.
A different CRT monitor (Dell P991 Trinitron) was employed so
that stimuli could be presented at 120 Hz, apart from 60 Hz, with
the monitor set to a reasonable resolution (1024 � 768). Note that
a refresh rate of 85 Hz was used in Experiments 1–3. Dot size, and
dot and background luminance values were approximately the
same as those used in Experiments 1–3. We used 12 deg/s and
36 deg/s speeds for algorithm WN, and 4 deg/s and 12 deg/s speeds
for algorithm MN. Given that the spatial and temporal displace-
ments for algorithm MN are three times more than those for algo-
rithm WN at a fixed speed, these parameter choices gave us for
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both algorithms matched spatial displacements of 0.2� and 0.6� at
60 Hz, and 0.1� and 0.3� at 120 Hz. But the underlying temporal
displacements for the algorithms WN and MN were not matched
and were, respectively, 16.67 ms and 50 ms at 60 Hz, and
8.33 ms and 25 ms at 120 Hz. We avoided spatial aliasing in the
stimulus by ensuring the smallest of the tested spatial displace-
ments (0.1�) was significantly greater than the size of a pixel
(0.034�). Similar to Experiment 3, trials were blocked for contrast,
algorithm, spatial displacement, and aperture size. And within
each block, directions and coherences were randomly interleaved.
Trials of different refresh rates were blocked by session and the or-
der of their presentation was counterbalanced across subjects.

5.2. Results

We quantified the data from Experiment 4 by performing a
four-way ANOVA with repeated measures to evaluate the effects
of Coherence � Contrast � Aperture � Displacement as factors for
the two algorithms. For algorithm MN, we found a highly signifi-
cant effect of spatial displacement (F(1, 7) = 74.9, p < 0.0001), a sig-
nificant effect of contrast (F(1, 7) = 6.6, p < 0.05), and significant
interactions between contrast and spatial displacement
(F(1, 7) = 7.5, p < 0.01), and contrast and aperture size
(F(1, 7) = 5.33, p < 0.05). In the ANOVA for algorithm MN, we found
significant effects of displacement (F(1, 7) = 8.6, p < 0.05), contrast
(F(1, 7) = 22.15, p < 0.005), and a highly significant effect of aper-
ture (F(1, 7) = 48.14, p < 0.001) without any notable interactions.
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Fig. 7. Experiment 4 results comparing the coherence response functions of the two alg
different underlying spatial and temporal displacements (blue/dashed: (0.1�, 8.33 ms); b
each contrast and aperture size condition. Error bars represent standard error of mean
interpretation of the references to color in this figure legend, the reader is referred to th
Fig. 7 compares the coherence response functions of the two
algorithms for the same speed (12 deg/s) but different underlying
spatial and temporal displacements ([0.1�, 8.33 ms] and [0.2�,
16.67 ms] for algorithm WN; [0.3�, 25 ms] and [0.6�, 50 ms] for
algorithm MN) in separate subplots for each aperture size and con-
trast condition. These results clearly show that direction estima-
tion performances for algorithms WN, MN are not related to
speed, but depend more directly on the underlying spatial and
temporal displacements.

Given that speed is not a direct factor that determines percep-
tibility of RDM stimuli, we looked at how the underlying spatial
and temporal displacements influence accuracy measures. In
Fig. 8, we plot performances averaged across all coherences and
the two aperture sizes for both algorithms at each of the four spa-
tial displacements (0.1�, 0.2�, 0.3� and 0.6�) under low (8a) and
high (8b) contrast conditions. In these panels, we can see a corre-
spondence in performance between algorithms at 0.3� under both
contrasts and at 0.1� under low contrast. And performances differ
to a greater extent at 0.2� and 0.6� under either contrast. But this
divergence can be understood given the relatively large temporal
displacement of 50 ms for algorithm MN at these spatial displace-
ments. With the exception of 0.1� under high contrast, these re-
sults provide evidence that for direction estimation, spatial
displacement is the more determining factor when temporal dis-
placement is smaller (�50 ms). Data from panels (a) and (b) in
Fig. 8 is replotted in panels (c) and (d) but for each algorithm sep-
arately. In the bottom row of Fig. 8, we can make the interesting
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observation that when both spatial and temporal displacements
are small, estimation performance is counterintuitively better for
low contrast than high contrast, indicating an interaction among
contrast, spatial and temporal displacements. We conclude that
both spatial and temporal displacements are individually impor-
tant in predicting how subjects perceive RDM stimuli. However,
a systematic study of the degree of interaction between spatial
and temporal displacements behaviorally is beyond the scope of
this article.

5.3. Discussion

The results shown in Fig. 7 match neurophysiological data
showing that directionally selective cells in V1 and MT, on aver-
age, respond best to spatial displacements of around 0.26� and
0.31� (Dopt), respectively, and the maximal spatial displacements
to which they respond are around 0.59� and 0.67� (Dmax), respec-
tively, measured using a reverse correlation mapping technique
employing two-dot motion stimuli at 60 Hz (Pack et al., 2006).
These Dmax values are also consistent with how directional selec-
tivity in V1 and MT for moving dot fields, on average, is lost at
spatial displacements of 0.66� and 0.675�, respectively, found in
another study (Churchland, Priebe, & Lisberger, 2005). Maximal
spatial displacements (Dmax) for direction discrimination of two-
exposure (Braddick, 1974) and multi-exposure (Nakayama &
Silverman, 1984) motion stimuli were first reported psychophys-
ically. While Dopt and Dmax values would invariably be different
for various parametric conditions, they would certainly covary
with the values found in Pack et al. (2006). Likewise given that
spatial displacement tuning falls off for displacements smaller
and larger than Dopt, the performance for algorithm WN in
Fig. 7 is better at 0.2� than 0.1�, and that for algorithm MN is bet-
ter at 0.3� than 0.6�.

Pack et al. (2006) also quantified the degree of separability,
called the separability index (SI), in the spatiotemporal receptive
field structures of V1 and MT neurons. A neuron with an SI of 0
is perfectly tuned to speed, and an SI of 1 implies that the neuronal
response depends separately on the underlying spatial and tempo-
ral displacements, and not their ratio. In other words, for an SI of 1
the spatiotemporal structure is realized by the product of individ-
ual spatial and temporal displacement tuning functions. Interest-
ingly, the mean SI values for V1 and MT neurons reported in the
above study are 0.71 and 0.7, respectively. The lack of ‘‘speed tun-
ing” in the direction estimation performances found in the exper-
iments reported here is very consistent with these SI values, and
also with discrimination studies involving two-exposure (Baker &
Braddick, 1985b: human) and multi-exposure (Kiorpes & Movshon,
2004: macaque) motion stimuli.

Also, the dependence of human estimation performances in
response to algorithms WN and MN mainly on spatial displace-
ment, when compared to temporal displacement, is in agreement
with a similar dependence of cortical responses shown in other
physiological studies (MT: Newsome, Mikami, & Wurtz, 1986;
MST: Churchland, Huang, & Lisberger, 2007), and how macaque
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discrimination sensitivities are tuned to spatial displacement
(Kiorpes & Movshon, 2004).

It should be noted that given the different stimuli (vis-à-vis
viewing duration, contrast, retinal eccentricity, etc.), tasks (direc-
tion estimation in this study vs. passive fixation), and species used
in these studies (humans vs. macaques), the above comparisons
between neurophysiology and behavior can only be qualitative;
but they nonetheless provide an intuitive understanding of our
data.

The interaction between contrast and spatial displacement,
which is evident in Fig. 8c, has recently been investigated in detail
by Seitz et al. (2008). They reported how the behavioral spatial dis-
placement tuning, obtained from human subjects performing the
direction estimation task, shifts towards lower spatial displace-
ments as stimulus contrast is reduced, and its striking qualitative
correlation with a similar influence of contrast on speed tuning
in macaque area MT (Pack et al., 2005). Contrast (Eagle & Rogers,
1997; Seitz et al., 2008) and mean luminance (Dawson & Di Lollo,
1990; Lankheet et al., 2000) have been found to have opposite ef-
fects on Dmax. It will be interesting to test if reducing mean lumi-
nance at a fixed contrast improves motion performance for
stimuli involving larger spatial displacements. In this regard it will
be better to measure a well sampled tuning function (Seitz et al.,
2008), rather than just either the upper or lower limit as was done
in most previous psychophysical studies (Dawson & Di Lollo, 1990;
Eagle & Rogers, 1997; Nakayama & Silverman, 1984; etc.); because,
for example, two tuning curves with similar upper and lower limits
can potentially differ in the intermediate parameter range.

6. General discussion

The main contributions of this work are to directly compare the
ability of human subjects to estimate the direction of random dot
motion stimuli driven by four commonly used RDM algorithms un-
der various parameters of viewing duration, speed, contrast, aper-
ture size, spatial displacement and temporal displacement, and
also to explain these results as behavioral correlates of pertinent
neurophysiological data particularly from area MT.

The first result is that we did not observe a consistent ordinal
relationship among the algorithms. We find that performance
can differ greatly across the different motion algorithms as various
parameters are changed. Generally, subjects estimated the direc-
tion best for algorithm BM (Brownian Motion), and the relative
performances for other algorithms were shown to depend on
parameters such as contrast, aperture size, spatial displacement
and temporal displacement, but not speed. Accordingly in some
conditions, subjects performed the worst for algorithm WN (White
Noise) and in other conditions for algorithms MN (Movshon/New-
some) or LL (Limited Lifetime). And accuracy differences between
algorithms WN and MN were dramatic for matched speeds, but
nominal for matched spatial displacements unless either temporal
displacement is large (�50 ms). Also, subjects performed roughly
the same in response to algorithms MN and LL under the condi-
tions that we tested.

This lack of significant performance differences between MN
and LL finds concordance with previous similar comparative stud-
ies. In particular, Williams and Sekuler (1984) and Snowden and
Braddick (1989) used multi-frame stimuli to compare discrimina-
tion performance in a 2AFC task under two conditions: same (the
signal dots are fixed for the entire sequence) and different (Wil-
liams & Sekuler, 1984: signal dots are chosen afresh in each frame,
which is the same as algorithm WN; Snowden & Braddick, 1989:
the signal dots in each frame get the least preference to be chosen
as signal in the next frame, which is the non-interleaved version of
algorithm LL). Similar to our study, they found no significant differ-
ence in performance between the two conditions. The conclusion
hence is that for both direction discrimination and estimation,
our motion processing system does not take much advantage of
the occurrence of long-lived signal dots at least for a relatively
dense motion stimulus like the ones utilized in the present study.
What matters most is the proportion of dots moving in the signal
direction from one frame to the next in the sequence, and not
which ones. This suggests that the directional percept in response
to RDM stimuli is indeed determined by global motion processing
mechanisms.

Another comparative study (Scase et al., 1996) primarily com-
pared three motion algorithms (random position: each noise dot
is given a random direction and displacement; random walk: each
noise dot is given a random direction, but the same displacement
as signal dots; random direction: similar to random walk but each
dot moves only in its designated direction, which is randomly as-
signed at the beginning, whenever it is chosen to be noise) in a
2AFC task, under same and different conditions like in Williams
and Sekuler (1984), with nominal variations in dot density and
speed. Note that algorithms random position and random walk un-
der the different condition correspond to algorithms WN and BM,
respectively. They also found no significant overall performance
differences between same and different conditions, and their prac-
tical conclusion was that the motion algorithms did not differ
much in overall discriminability. But like in our study they did re-
port WN <* BM; i.e., subjects discriminated the direction better for
random walk than random position in the different condition. Within
the framework of the model described in Experiment 1, this result,
which holds for estimation as well, is intuitive as algorithm BM
causes the least amount of directional ambiguity in the short-range
filter stage when compared to the other algorithms, thereby elicit-
ing the most effective motion capture of incoherent directional sig-
nals at the global motion stage. Another reason could be the lack of
speed clutter, which results in lesser mutual inhibition from global
motion cells tuned to non-stimulus speeds, leading to higher firing
rates in the winner population coding the signal direction and
speed. This improved selection in the neural code of, say, area
MT directly results in a more accurate directional estimate.

In contrast to these previous studies, the algorithms considered
in our study did not all share the same spatial and temporal dis-
placements between consecutive signal dot flashes. Thus by
including the now dominant RDM algorithm MN, and its variant
LL, we were able to examine the effects of spatial and temporal dis-
placements, especially their interactions with contrast, and how
they are affected by aperture size or retinal eccentricity. We also
provide a unified account of our results based on recent neuro-
physiological and previous psychophysical studies.

Comparison of performance under various parametric and algo-
rithmic conditions in our study primarily suggests that spatial dis-
placement, and not speed, explains much of the variance in
performance between the motion algorithms WN and MN (or LL).
Our data gives evidence of a spatial displacement tuning function
that broadens with a peak shift towards larger spatial displace-
ments as aperture size is increased (see Section 4.3) and that
undergoes a leftward peak shift as contrast is lowered (see Section
5.3). It has been suggested that behavioral estimates of motion
direction may be obtained by computing the directional vector
average of directionally tuned cells in area MT (Nichols & New-
some, 2002). Given the spatiotemporal displacement tuning prop-
erties of MT cells (Churchland et al., 2005; Mikami et al., 1986;
Newsome et al., 1986; Pack et al., 2006), an accurate model of mo-
tion direction estimation must also take into account not only the
spatial and temporal displacements between consecutive signal
dot presentations in the random dot motion stimuli but also how
they interact with contrast and aperture size.
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Fig. 9. Cartoon of how the spatial displacement tuning changes with contrast and aperture size. In (a), lowering contrast is shown to shift the tuning towards smaller spatial
displacements. In (b), increasing aperture size is shown to broaden the tuning with a peak shift towards larger spatial displacements.
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An illustration of how spatial displacement tuning function may
vary with contrast and aperture size is shown in Fig. 9. This cartoon
helps us explain why the relative order of performances in re-
sponse to the algorithms WN and MN (or LL) changes under differ-
ent parametric conditions and why the parameters have different
effects for each algorithm. For example, subjects estimate the
direction for algorithm MN better than that for WN at 12 deg/s
speed under high contrast for 18� aperture diameter (WN <* MN
in Experiment 1), but the relationship reverses (MN <* WN in
Experiment 2) for 8� aperture diameter. At 12 deg/s speed, the spa-
tial displacement of MN (0.42�) is closer to Dopt for 18� aperture
size than that of WN (0.14�), which reverses for 8� aperture size
as can be seen in Fig. 9b. And at 4 deg/s speed, subjects perform
better in response to MN than WN under both contrasts in either
aperture size as the corresponding spatial displacement of MN
(0.14�) is nearer, when compared to 0.047� of WN, to the Dopt val-
ues in the four conditions. Also, we can now deduce in Fig. 9a how
lowering contrast surprisingly improves estimation accuracy only
for algorithm WN in Experiment 3 at speeds of 4 deg/s and
12 deg/s, which yield smaller spatial displacements of 0.047� and
0.14�, respectively.

7. Conclusions

Our results point towards the importance of carefully choosing,
and accurately reporting, algorithmic details and parameters of
RDM stimuli used in vision research. We found some dramatic differ-
ences of performance between motion displays when changing algo-
rithm and parameters. We note that parameters of contrast, spatial
displacement and temporal displacement, which are often not re-
ported in papers, have fundamental impact on performance,
whereas the parameter of speed, which is usually reported, explains
little of the variance of performance. The results present some novel
insight into how directional grouping occurs in the brain for an esti-
mation task, and provide new constraints and challenges to existing
mechanistic models of motion direction perception.
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