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1. INTRODUCTION 

This paper concerns the use of the Laplace transform in some mixed 
initial-boundary value problems for equations of the form LU = U, or 
LU = U,,) where L is an elliptic differential operator. The procedure is 
familiar in the case of one space variable where one obtains ordinary dif- 
ferential equations for the transform and, in many cases, explicit solutions. 

The ease of solution in the one-dimensional case often obscures the fact 
that useful information can be obtained without having the explicit solution. 
In this paper we discuss some problems in more than one space variable. 
The central idea is that the behavior of U for large t can be obtained by 
studying boundary-value problems for the (elliptic) transform equation. 
For the situations we consider these transform problems would be quite 
amenable to numerical solution. 

The results we give are intended to be illustrative only. They have been or 
could be obtained by other methods. This is characteristic of Laplace trans- 
form techniques. They are useful mainly as heuristic devices. One may 
hope that the techniques given here would serve this purpose in more com- 
plicated situations including, for example, initial value problems in elasticity 
and electromagnetic theory. Related techniques have been used in acoustic 
theory [l] and in ship motion problems in [2] and [3]. 

Although the methods are heuristic, we do want to indicate the kinds of 
facts one needs to make them rigorous. We shall observe a sharp distinction 
between parabolic (LU = U,) and hyperbolic (LU = U,,) problems which 
is probably representative of the general situation. We carry through the 
procedure for the simple parabolic equation LU = AU - q(x) U = Ut , 
q > 0, and find that complete proofs can be given using only elementary 
facts concerning integral equations. 

There exists what amount to an abstract formulation of the procedure for 
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parabolic problems in the work of Lax and Milgram [4]. Our work is simpler 
and more detailed than that of [4], but this is achieved at a drastic reduction 
in the generality. We remark that general results of the type we give for 
parabolic problems are also obtained by the methods of Friedman [5]. 

The physically interesting hyperbolic problems appear more difficult 
mainly because they require solutions in unbounded regions. We take as a 
representative problem the solution of the wave equation dU = U,, in the 
region exterior to an obstacle. Some interesting results for this problem have 
been obtained by Lax, Morawetz, and Phillips [6]. We obtain similar results,l 
in a partially heuristic manner, by studying exterior problems for the equa- 
tion, 

Au - S2u = 0. (1.1) 

Difficulties arise in our procedure because there are unanswered questions 
concerning (1.1). In particular we need facts about the behavior of solutions 
of (1.1) for large S. An asymptotic theory for large S has been given 
by Keller [7] but its validity has not yet been established. This prevents us 
from completing our proofs. 

It is known that the behavior of solutions of (1.1) is different in two and 
three dimensions. In Section 4 we use this fact to show how the results of [6] 
should be modified in two-dimensional problems. 

The principal tool in both [4] and [6] was semi-group theory. The present 
work illustrates the close connection between that theory and the Laplace 
transform. Our conditions for the inversion of the Laplace transform (Sec- 
tion 2) correspond to the hypothesis of the Hille-Yoshida theorem. 

2. SINGULARITIES OF THE LAPLACE TRANSFORM 

In this section we collect some facts concerning the Laplace transform. 
The proofs are quite simple and are essentially contained in Doetsch [8]. We 
write 

It is known that under some conditions L, and h, are inverse operators. 
A simple example is given by the functions 

Fk(t, S,) = esot trk; fk(S, So) = r(1 - K) (S - So)“-1, 

k=O, - 1, -2,e.s. 

1 Our results are for a convex body while those of [6J are for star-shaped bodies. 
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If 

then 
so = a + ib and s=t+iv 

Ls(Fk) = fk in t > a, &(fk) =Fk for /3 > a. (2-I) 

A second example is provided by the functions 

Fk(t,S,J==O in O<t<l, eSOttMk in t>l, k = 1,2, **- . 

and their transforms fk(S, S,) = L,(F,). Relation (2.1) holds here also. The 
functions fk cannot be determined explicitly but one has the following result. 

LEMMA 2.1. fk(s, S,) is analytic in t > a except at S, and, 

fk _ (- 1)” (S - &)k-l 
(k - l)! 1% (S - So) 

is analytic in a neighborhood of S, . 
We want to discuss the transforms of a certain class of functions F(t) 

with respect to their singularities and their behavior for large 1 S 1 . The class 
is chosen because it is easy to work with and yet contains those functions 
usually encountered in physical problems. The techniques would be valid 
for a wider class. A function F(t) will be called So-reguZar if F(t) E P[O, co] 
and 

F(t) = eSot Q(t), akt-k as t--+co, (2.2) k--n 

where it is assumed that the asymptotic series can be differentiated termwise 
arbitrarily often. 

LEMMA 2.2. Let F(t) be &-regular with S, = a + ib. Then if S = 5 + iv 
the function f (S) = L,(F) satG$es the following conditions: 

(C,) f(S) is analytic in 8 > a 

(&) f(s) = f akfk(Sy %> + #m(s)T m = 1, 2, *** , 
k=--n 

where 

$E +:)(I + 6) exists for all 77 if k<m--I. 

(C,) f(S) = F(0) S-l + F’(0) S-2 + x(S), X(~)(S) = O(S-s) 

as S -+ 00 in f > a, k = 0, 1,2, *** . 
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Note thatf(S) is an entire function ifF(t) has compact support. 
The next result proceeds in the other direction, from the transform to the 

function. We say a function f(S) ( is r, a a missible, for a non-negative ) d 
integer Y and a real number a, if it satisfies (C,) and the following analogs 
of (C,) and (C,): 

(C,‘) f(S) = f akfkw So) + $w 
k--n 

for some integers m and n and where, 

lj: $‘“‘(f + iv) exists for all 7 if k <Y. 

(C,‘) f(‘)(S) = O(Sw3), f(k)(S)-+O for k < r; 

as S--+ co in f 3 a. If r = 0 the statement about f UC) is omitted. Observe 
that if F(t) is &-regular then f(S) = L,(F) is (I, a) admissible for all Y 3 2. 

LEMMA 2.3. Letf(S) b e r, a a ( ) d missible fur some r and a. Then h,(f) 
exists and is independent of j3 in p > a. It defines a function F(t) which is con- 
tinuously d@erentiable in t > 0 and f (S) = L,(F) in .$ > a. Moreover, 

F(t) - f a,F,(t, 8,) = o(esot t-‘) as t-+cO. 
1:=-n 

3. PARABOLIC PROBLEMS 

Let D be a bounded domain in En with boundary B. We study the equation, 

L[U] = AU - q(x) U = U, in D x (0, ~1, (E), 

where q(x) is a continuous, non-negative function in D + B. U is to be 
subject to the conditions, 

U(x, 0) = g(x) in D (4 

U, + /3(x) U = F(x, t) on B, P) 

where Y is the exterior normal and /3(x) is non-negative.2 The special case q 
and p both zero is discussed at the end of this section and we assume here 
they are not both identically zero. 

The function g(x) is to be of class C (1) in D w B and F is to be continuous 
in x and t in B x [0, co). Moreover F is to be &-regular, S, = a + ib, for 

2 See the remark in Section 4. 



TRANSFORM AND BOUNDARY-VALUE PROBLEMS 5 

each X. F then has the form (2.2) with coefficients +(x) and it is assumed that 
the asymptotic series is uniform in X. Finally we assume the validity of the 
continuity condition, 

g. + & =F(x, 0) on B. (C) 

We denote by (P) the above problem. 
Suppose (P) has a solution and let U(X, S) = L,( U). Then we have, 

Lu - su = -g(x) in D (E’) 

u, + j?u =f(x, S) = L,(F) on B. w 

We shall show that this problem has a solution for all complex S in a certain 
half plane. Singularities in the solution will be produced by those present in 
f(~, S) but poles will also be produced by the solution process itself, inde- 
pendent off. The existence of u in a half plane yields the existence of a solu- 
tion U of (P) and the singularities serve to determine the asymptotic behavior 
of U through Lemma 2.3. 

We say that a solution U(x, t) of (P) follows F if 

U(x, t) - 5 AL(x) F,(t, So) = o(esot t-“) as t-+cO (3.1) 
k=--n 

for any m > 0 and any x ED. We can now state the result. 

THEOREM. There exists a solution U(x, t) of (P) and a number IX < 0 such 
that 

(i) U follows F if a > 01, 

(ii) U=O(Ct)us t--+cO ifa<ar. 

We comment on the case a = OL later. The number LY will be S, where S, 
is the largest eigenvalue of the problem (E’), (B’) and the AL(x) in (3.1) will 
be solutions of elliptic boundary value problems. 

The problem (E’), (B’) can be handled as follows. Standard procedures 
show the existence of a function uO(x, S) satisfying 

LuO = 0 in D 24.0 + j?u” = f (x, S) on B, 

and also the existence of a symmetric Green’s function G(x, y) for the 
operator L in D with G, - /IG = 0 on B. The function u” can be written in 
the form 

u”(% S) = j-, J+, r)f (x, S> dy, (3.2) 
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where K is independent of S. Hence if F is &,-regular then u” is (r, u) admis- 
sible for any r 2 2.3 

We seek a solution of (E’), (B’) in the form u = u” + z, where 

La-Sv=-g(x)+SuO in D, v,+/3v=Q on B. 

Then v can be expressed in the form 

where u = Lv and u is a solution of the integral equation. 

u(x) - S ID u(y) G(x, y) dy = -g(x) + Sue(x) = H(x) in D (3.3) 

The integral equation (3.3) has a unique solution for all values of S at 
which u” is regular except for the eigenvalues of problem (E’), (B’). These 
form a denumerable set {Si} and are all negative, 0 > S, > S, *mu . The 
solution of (3.3) can be written in the resolvent form 

where R is a meromorphic function of S with poles only at the Si . Note that 

v(x) = (La - H(x)) S-l = (u(x) - H(x)) S-l = 1, H(y) R(x, y, S) u’y. 

(3.4) 

We deduce the following facts from (3.4). Suppose first that a > (Y = S,; 
then R is analytic in Re S > a so that v and hence also u satisfy (C,). The 
behavior off on Re S = So is determined by (C,) and (3.4) shows that v 
has the same behavior as does u” and hence u. It follows that u satisfies (C,) 
and (C,‘) with m = 0 and a replaced by 01. 

We want to indicate how to calculate the coefficients A,(x) in condition 
(C,‘) for u. For a given m we write (C,) in the form 

f(S) = B(S) + C(S) log (S - So) + An(S), 

where C is a polynomial in (S - So) and B(S) a polynomial in (S - So)-l. 
This gives a corresponding decomposition of IL in the form 

U=b+clog(S-so)+u,. 

* This fact also follows from the maximum principle without the use of the for- 
mula (3.2). 
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The above development shows that b has a pole of order (n + 1) at S, and 
c is regular near S, and aku,laSk, k < m exists in Re S 3 a. We can write 
then 

b = f bk(X) (S - soy, c = f c”(x) (S - So)“. 
76=-n-1 k-0 

The b, will be determined recursively by the formulas, 

Lb-n-1 _ S b-n-1 
0 

= 
g in D, bLnwl + /3bb-“-l = F(n + 1) a-,(x) on B 

Lb” - SObk = bk-1 in D, b,L + /3bk = r(l - k) ak(x) on B, 

k = - II, - 1z + 2, .a., - 1. The ck’s will be determined in the same manner. 
It remains to establish the condition (C,‘). We do this by using a technique 

suggested in [9]. Let pi(x) b e a complete orthonormal set of eigenfunctions 
for G(x, y). Then we can write (3.4) in the form 

Consider the function H(x). We write u” in the form 

uyx, S) = s-Iwo(x) + s-2w1(x) + w2(x, S) (34 

where Lwi = 0 in D and, in the notation of (C,), 

wvo + ,Bw” = F(x, 0), wv’ + Bw’ = F,(x, 01, w,,~ +j3w2 =,y on B. 

It follows from (C,) and (3.2) that w2 = O(P) as S -+ co in t > a. We obtain 
a corresponding decomposition of H as Ho + H1 + H2, where 

Ho = -g(x) + wO(x), H1 = - S-lwl, H = Sw2. 

We observe that (C) implies Hvo + /3Ho = 0 on B hence HO is source- 
wise representable in D, and the series 

converges absolutely and uniformly to Ho. Note also that the series 

f SZ1(H1, vk) Pk 
k=l 

converges absolutely by Bessel’s inequality since H1 and G are square inte- 
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grable and S;$,(X) is the Kth Fourier coefficient of G. Finally we have 
(Hz, vrJ = O(S2). Hence we deduce that 

o=O(S-l) as S-+co, in (>a. 

Differentiation of the formulas we have used will yield in the same way 

DS = O(P2), g = 0(&s--3), K > 2, as s--+co in 5 > a. 

The same estimates hold for u” and (C,‘) is established. 
The proof of the theorem now follows from Lemma 2.3 with two further 

remarks. The first is that differentiations with respect to x under the integral 
sign in h&u) can be justified by noting that all the estimates we have obtained 
can be differentiated with respect to X. The second is that the validity of 
condition (A) can be proved by integrating (3.5) termwise and setting t = 0. 

REMARKS. (1). Formula (3.5) could be used to obtain a “separation of 
variables” solution of the original problem (P). We want to emphasize 
though that this procedure is really not necessary, since it is only the first 
eigenfunction which ever figures in asymptotic behavior and possibly not 
even this one. 

(2) The modifications for the case a = OL are fairly clear. If So = 01 + i7 
7 # 0 then the solution will follow F except that an extra term of the form 
F-,(X, a) will be introduced by the pole at 01. If So = 01 the form (C,) of u 
changes. In addition to the singular terms in u which were present before 
there will be two new terms of the form fen-i and (S - So)-1 log (S - So). 
The first produces F-,-l(t) in U, while the second can be shown to yield a 
term in U of the form 

e”tt-llogt as t-+co. 

(3) The special case AU = U, in D, U,, = F(x, t) on B can be treated 
similarly. There is a slight difference in that the transform problem has zero 
as an eigenvalue. It is not hard to see that this produces the following result. 
Suppose F(x, t) = F(x). The steady state problem AU = 0 in D, U = F(x) 
on B has no solution unless the constant 

Y= s 
FdS 

B 

is zero. However the steady state problem for F, = F - r&l, A the area 
of B, will have a steady-state solution UO(x). One can show by methods like 
those of this section that the solution of the initial-value problem satisfies 
the estimate, 

U(x, t) - V-‘yt - U”(x) = O(e-tit), 



TRANSFORM AND BOUNDARY-VALUE PROBLEMS 9 

where V is the volume of B and - (Y the first nonzero eigenvalue of the trans- 
form problem (see [lo]). 

4. PROBLEMSFORTHE WAVFI EQUATION 

In this section we consider exterior problems for the wave equation. In 
particular we study the problem 

AU= U,, in D (4.1) 
u =F(x, t) on B, (4.2) 

U(x,O) = U,(x,O) = 0 in D, (4.3) 

where D is the region exterior to a convex curve or surface B. The problem 
will be studied in two and three dimensions and the corresponding solutions 
will be denoted by U2 and U3. 

REMARK. We note that the general initial value problem can always be 
reduced to (4.3) by subtracting known solutions of (4.1) in all of space. This 
would only change (4.2). In the parabolic problems treated in the preceding 
section we could in the same way have assumed, without loss of generality, 
that g(x) = 0. On the other hand it would also have been sufficient to have 
solved (P) with F = 0. This is fact is what we did in the S plane. In the wave 
equation problem however it is not clear that one can obtain the solution of 
the general initial value problem by solving (4.1) with U = 0 on B and the 
nonhomogeneous conditions 

U(x, 0) =f(x), U,(x,O) =g(x) in D. (4.4) 

It is the latter problem which was studied in [6] under the assumption that 
f and g have compact support. We choose to work with the (more general) 
conditions (4.2) and (4.3). 

We shall also assume here that F(x, t) has compact support in t although 
it will be clear that the results could be modified easily for the functions of 
Section 2. We assume that F satisfies the conditions 

F(x,O) =F,(x,O) = 0 on B (4.5) 

that (4.2), (4.3) and continuity would require. 
It has already been indicated that the results here cannot quite be proved. 

What we show is that the following are at least plausible. 

(1) There exist solutions U2 and Us. 
(2) U2(x,t) = o(1) as t-+ co 

(3) F(x, t) = o(emat) as t + co for some a > 0. 
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Consider the transformed problem, that is, 

Au2.3 - SQ3.3 = 0 in D (4.6) 

~2.3 = f =L,(F) on B. (4.7) 

We have seen that there are two aspects of the functions u to be considered; 
their analyticity as the functions of S and their behavior for large S. The 
analyticity question is answered by the following result that is proved in the 
Appendix. 

LEMMA 4.1. u3(x, S) is a meromorphic function of S in the entire S-plane 
with poles only in Re S < 0. ua(x, S) is an analytic function of S in Re S > 0 
and 

lim u2(x, [ + i7) exists for all 7. 
S&O (4.8) 

We study the second question, that of large S behavior, and then we shall 
draw some conclusions concerning properties (l), (2), and (3). In studying 
large S behavior it is convenient to use the following device. We determine 
a function V(x, S, t) as a solution of the problem, 

AV - S2V =0 in D, V = F(x, t) on B 

with t as a parameter. Then we can obtain a formal solution of (4.6) and (4.7) 
as 

e-st V(x, S, t) dt. (4.9) 

The point of the above procedure is that it makes the boundary data for V 
independent of S. Then the asymptotic theory of Keller [7] becomes parti- 
cularly simple. B is convex hence we can introduce a co-ordinate system in D 
by drawing normals to B at each point TV on B and using k and distance 7 
along the normals as coordinates. Then one can find a formal asymptotic 
expansion of the form 

V(T, p, S, t) N eeST (4.10) 

The functions v, are determined recursively by the formulas 

v,,(T, p, t) = F(P, t); 

with a function K which depends only on the surface B. 
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We recal thatF was assumed to have compact support in t. It follows that V 
and the vn’s will also. If we assume that the series (4.10) is uniform in t we can 

substitute this series into (4.9) and integrate. The result will be 

I.4 - KS7 -@SW (4.11) 

Observe that Lemma 2.2, Eq. 4.5 and the construction of the v,‘s show that, 

Ls(vk) = O(Sw3) as S-em in ReS>a (4.12) 

for any a. 
We assume the validity of the above formal process and then we can verify 

properties (l)-(3). L emma 4.1 and Eqs. (4.10) and (4.11) show that U = As(a) 
is a solution, in either two or three dimensions, provided only that p > 0. 
The result (2) follows immediately if we observe that we have shown that 
u2 is (0,O) admissible and hence we can use Lemma 2.3. 

In order to establish (3) we need to make an additional observation. 
Lemma 4.1 states that the poles of u3 must lie in Re S < 0. We claim that 
they must in fact lie in Re S ,< - a for some a > 0. For any 01 > 0 there 
cannot exist infinitely many poles in Re S > - 01 unless their imaginary 
parts tend to infinity. But a sequence of poles S, with Re S, > - 01 and 
Im S, -+ co would be a violation of the fact that u is bounded as S---f co 
in Re S > - (II, a fact which (4.10) and (4.11) show. Hence there is a pole S, 
of maximum real part a. Then u3 is (r, al) admissible for any Y and any 
a1 > a. 

The proofs of (l), (2), and (3) are thus reduced to establishing the validity 
of the Keller theory and this remains an open question. We remark that the 
validity of (4.10) has been established for Re S > S,, , where S, is a certain 
positive constant, by Miranker [I 11. This fact would enable one to complete 
the proof of (1) but does not validate the estimates (2) and (3). 

APPENDIX 

Proof of Lemma 4.1 

The existence of a unique solution of the problem (4.6) and (4.7) for 
Re S > 0 has been established by Weyl [12]. The solutions are required to 
satisfy the radiation conditions 

u2 N A 1 * 1-1/2 e-Sx, 23 -A 1 x 1-l e-S5 as IxI+co. (A-1) 

The procedure is to formulate the problem as an integral equation. It has 
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the difficulty that the homogeneous integral equation has solutions when 
Re S = 0. The following modification of Weyl’s procedure, which avoids 
this difficulty, was communicated to the author by Professor Peter Werner. 

We seek the solution us in the form 

u"(x) = (h)-l jB u(y) ($ - ij {I x - y 1-l c~'-"} dy, (A.2) 

and we obtain the integral equation 

- i {I x -y 1-l e--Slr--yI) dy = - 2f(x, S) ) 

on B, (A-3) 

for (T. In these formulas, Y denotes the exterior normal. The adjoint homo- 
geneous equation for (A.3) is 

U(X) - (2~)-4 jBu(y) (g - i) {I x - y 1-l e-sls-~i) dy = 0 on B (A.4) 

We are going to show that there exists no nonzero solution of (A.4). Let o 
be a solution of (A.4) and set 

U(X) = (4+ j, u(y) {I x - y 1-l cs-‘l} dy. 

U(X) is then a solution of (4.6) both in D and the region D’ interior to B. 
Equation (A.4) states that 

+ iu- =0 on B, (A-5) 

where the - sign denotes limits from D’. By Green’s theorem, Eqs. (4.6) 
and (A.5), we have 

s 
D, [I grad u I2 + S2 1 u I”] dV = - i 1 / u I2 dS. (A.6) 

B 

If S = 5 + i7 with 5 2 0, 7 > 0 (A.6) shows that u 3 0 in D and conse- 
quently, 

au - 
( 1 
av =0 on B. (A-7) 

If S = iv then (A.6) yields I(- = 0 on B hence by (A.5) Eq. (A.7) still holds. 
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Now consider u for x in D. u is continuous across B so that uf = 0 on B and 
hence by the uniqueness theorem for D u = 0 in D. But then 

au + (-1 av =0 on B 

and it follows that 

o = (?K)’ - (g)- = 0. 

We can now appeal to Fredholm theory to deduce the existence of a 
unique solution of (A.3), and hence a solution of our problem, for S = 5 + iq 
in I, 7 3 0. We can obtain the solution in f 3 0, 71 < 0 by observing that 
the solution we have obtained is real for 7 = 0, hence we can obtain u in 
7~ < 0 by reflection. 

The formulation of the problem as an integral equation actually gives us 
more information. Observe that both the kernel and the known right hand 
side of (A.3) are entire functions of S. It was shown by Tamarkin [1314 that 
under these circumstances the solution will be a meromorphic function of 
S with poles only at values of S for which the adjoint homogeneous equation 
has nontrivial solutions. We have seen that these must lie in Re S < 0 
and this completes the proof of Lemma 4.1 for u3. 

The situation for ua is more complicated. Here the kernel in (A.2) and (A.3) 
must be replaced by the singular Bessel function HF’ (is 1 x - y I). This 
function has a branch point at S = 0. The preceding integral equation can be 
applied again so as to establish the analyticity of u2 in Re S > 0, S = 0. 
However it is shown in [lo] that u2 will in general have a branch point of a 
very complicated type at S = 0. It is shown in [IO] that Eq. (4.8) is valid 
hence u2 is (0.0) admissible, but this is all that can be said, hence the con- 
clusion (2). 
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