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1. Introduction

The numerical analysis of stochastic partial differential equations is a young topic of research. In most of the articles in the
literature, the aim has been to analyse pathwise convergence or the strong error for parabolic SPDEs; see e.g. Gyongy [1,2],
Gyongy and Millet [3], Hausenblas [4,5], Kloeden and Shot [6], Millet and Morien [7] and Shardlow [8]. For the Kortweg-de
Vries equation and the stochastic Schrodinger equation, see e.g. De Bouard and Debussche [9,10] and Debussche and
Printems [11]. For the numerical approximation of the stochastic wave equation, see e.g. Quer-Sardanyons and Sanz-
Solé [12], Walsh [13] and Kovacs et al. [14].

The strong error depends on the regularity of the noise. Nevertheless, in the best possible case the order of the scheme is
% of the order of the scheme without noise. However, it can be shown, that considering the Monte Carlo error or the so-called
weak error, the order of the scheme can be improved; see e.g. Fichter and Manthey [15], Hausenblas [ 16] and Shardlow [17]
and the very recent works of De Bouard and Debussche [9] and Debussche and Printems [18,19].

Let u be the solution of a one-dimensional quasi-linear stochastic wave equation, il its approximation and ¢ be a real-
valued function defined on I?(R x [0, c0); R). Our point of interest is the accuracy with which the entity E[¢(u)] can be
computed. In the Monte Carlo simulation, a large number M of independent trajectories {fi' : 1 < i < M} are simulated on
a computer. Then, the entity E[¢(u)] is approximated by

1
MZ‘P(“)

The resulting error depends on the choice of the approximation & and the parameter M. The effect of M can be described by
the Central Limit Theorem, while the effect of the choice of the approximation can be measured by the quantity

|E[ew)] — Elp@@]I,

which is called the weak error. Milstein [20] and Talay [21] were the first who investigated the weak error in finite dimension.
Moreover, let us mention that a further work that investigated the weak error was Talay and Tubaro [22].

Therefore, it is known that for example, the Euler scheme is in general of strong order 1/2 and of weak order 1. Our
objective is to investigate the weak error of the leap-frog scheme applied to the stochastic wave equation. This scheme
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is widely used in the deterministic case and is, in the deterministic context, of order 2. For more details, we refer to
e.g. Iserles [23] or Quarteroni et al. [24]. Now, the question we are interested in, is, whether the order of convergence for the
weak error of the leap-frog scheme can be also of order two, and, if yes, under which conditions. We will show that, similar
to the Euler scheme, the order of convergence can also be in the best possible case equal to two.

The paper is organised as follows. In the next section, i.e. Section two, we present the main result. In Section 3 three we
give some preliminaries of the stochastic wave equation. In Section 4, the numerical approximation is described. The actual
proof of our main result is the content of Section 5. In Appendix A the stability of the leap-frog scheme is analysed and in
Appendix B we recall some basic facts about finite differences.

2. The main result

As mentioned before, we are concerned with the numerical approximation of a quasi-linear stochastic wave equation in
[0, 1] driven by a space-time white noise. First, let us recall the definition of a space-time white noise.

Definition 2.1. Let (£2, ¥, (¥;):>0. P) be a complete probability space and @ C R? a measurable subset. Then a space-time
(Gaussian) white noise on ¢ is a measurable mapping

W: (82, F) = (M([0, 0) X O©), M([0, 50) x ©O)")
such that

(i) for all A € B([0, 00) x ©), W(A) is a real-valued, Gaussian random variable with mean 0 and variance A4;1(A)?,
provided A441(A) < o0;
(ii) if the sets A1, A, € B([0, 00) x ©) are disjoint, then the random variables W(A;) and W (A,) are independent and
WAL UAy) = W(A) + W(Ay).
(iii) for any A € B(0O) the real-valued process [0, o0) 2 t — W([0, t) x A) € R is adapted.
For any (t,§) € [0,00) x O, the Radon-Nikodym derivative of the measure W exists P-a.s. and will be denoted by
W={W(t,&:0<t<o0, &€}
The stochastic wave equation driven by space-time white noise was initially introduced in [25] (for an introduction of
the stochastic wave equation and its applications we refer to e.g. [26-28]) and reads as follow:

02 2 .
ﬁuﬁ: S) = aigzu(t: s) +f(u(t7 g)) + W(t7 S)’ te [05 T]7 E € [07 1]9
u(o’ E) = u0(§)5 E € [07 1]7 (1)

%H(O,E) =vo(§), & €[0,1],

where T > 0. We consider Dirichlet boundary conditions, that is u(t, 0) = u(t, 1) = 0, for all t € [0, T]. The random
perturbation W here is the Radon Nikodym derivative of a space-time (Gaussian) white noise on [0, T] x [0, 1] over a
given complete filtered probability space (£2, , (¥;)t>0, P). The initial conditions ug, vp : R — R are bounded functions
satisfying some regularity conditions and the drift term f : R — R is Lipschitz continuous.

As a solution to Eq. (1), we take the so-called mild solution.

Definition 2.2. We call a process u = {u(t, &) : (t, §) € [0, T] x [0, 1]} a mild solution of Eq. (1), if u is an adapted process
over (2, ¥, (¥t)r>0, P) such that P-a.s. the following integral equation is satisfied:

1 8 1
u<r,s)=f0 c<r,s,;>vo<;>d;+5(f0 G(t,smuo(;)dc)

t 1 t 1
+/ / c<t—s,5,c)f<u<s,;))dz+f f G(t — 5, £, ¢) W(ds, dO),
0 0 0 0

forallt € (0, T]and & € (0, 1). Here G denotes the Green function associated to the wave equation on [0, 1] with Dirichlet
boundary conditions.

In this paragraph, we give a description of the leap-frog scheme applied to Eq. (1). Let 7, be the time step size
corresponding to the grid size h and k, := % We assume, without loss of generality, that kj is a positive integer. Then,
the approximation of u(jzy), for an integer j > 0, is given by

. kn — Ny . Nb o — .
BE) =k Y Ty 1(6) [(Eh) iy, + %@ ﬁ{-,h} L Eelo1], )
i=0

1 For a measurable space (S, 4) we denote by M(S) the set of all measures on S.
2 Ford € N, A4 denotes the d-dimensional Lebesgue measure.
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where {fdh i=1, ...k, j=1,2,3, ...} satisfies the following recursion

0Py = uo(N_p) + hug (NI + N /2), =1,k — 1,

0l =00, + TN ) + hrpvg (NF, +NY/2), i=1, ...k — 1,

(o) (3" = 208, + i) = h2 (8 — 20+ ) + B2 AL W ),
i=1,....ky—1,j>1.

Here,

) (+Dp 0
AW = h*Zf wW(ds,J), i=1,..., kn
Jth

and J!' = [(N[", +N/"/2, (N} 4+ NI |)/2]. Notice that, since the leap-frog scheme arises by the explicit mid-point rule, the
initial conditions have to be chosen following this pattern as well.

Before stating the main result of the paper, let us introduce the following Sobolev-type spaces. Let A = —% and
H = [2([0, 1]). Then, for any @ > 0 we denote by H%([0, 1]) the domain of the operator (1 + A)% in L2([0, 1]) with
Dirichlet boundary conditions. The space H* ([0, 1]) is equipped with the norm

lwllhe = 11+ A) 2wy, w € Hy ([0, 1]).

For ¢ < 0, we define H*([0, 1]) as the completion of H with respect to the norm || . ||y«. Since we will investigate the
quality of approximation of functionals defined on L?([0, co) x [0, 1]; R), we introduce also a scale of Sobolev spaces on
12([0, 00) x [0, 1]; R). Let A = &5 + (;‘Eiz and for @ > 0let H%([0, 00) x [0, 1]) be the completion of [2([0, 00) x [0, 1]; R)
with respect to the norm ||(I — A)™ - ||. Now, we can formulate our main result.

Theorem 2.1. Let u = {u(t, §) : (t, &) € [0, To] x [0, 1]} be the mild solution of the stochastic wave equation, i.e. the solution
of Eq. (1), and 1y, := {ft{-_h :j=1,...,K, i = 1,...} be its approximation given by the leap-frog scheme, i.e. given by the
recursion (3) with t, = h. Assume that f € Cb] (R) and ug, vg € le (R) have bounded support.

Fix a > % and Ty > 1. Suppose that for a function @ : H™%([0, To] x [0,1]) — R there exists a function ¢ :

R x [0, To] x [0, 1] — R such that ¢ is four times differentiable in the first variable with bounded derivatives and

T 1
D (u) = / 0/ ¢ (I = A)"u(t, £),t, &) dedt, ueH“([0,1] x [0, T]).
0 0

Then, there exists a constant C > 0 such that

|E® (i) —E® (u)| < Ch*, 0<k=<K.

Remark 2.1. The function @ has to be Fréchet differentiable on H=([0, Ty] x [0, 1]) where o > % That means, we can
only describe properties, which can be characterised in H=* ([0, To] x [0, 1]).

Corollary 2.1. Under the conditions of Theorem 2.1, for all Ty > 1 the following holds. Let ¢ : [0, To] x [0, 1] — R be a function
such that ¢ € ([0, To] x [0, 1]), o > % and ¢ = 0 on the boundary of [0, To] x [0, 1]. Then, there exists a constant C such
that for any h € (0, 1]

np kh

T a1
E;Z@:hfhﬁfh‘ﬁ(kfh,jh)—ﬂﬂ/; /0 u(t, &)p(t, &) dedt
=0 j=

where npt, = T.

<Ch®, 0<k<K.

Proof. The proof is a combination of Theorem 2.1 and duality arguments. 0O

3. Preliminaries

There exists different approaches to deal with Eq. (1), e.g. the variational approach (see e.g. Walsh [28]) and the semigroup
approach (see e.g. Da Prato and Zabczyk in [27]). Here, in the first part of this section we describe the semigroup approach.
In the second part of this section, we consider the wave equation with non homogeneous boundary conditions.
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3.1. Lifting of the wave equation

In the semigroup approach we formulate the second order system given in (1) as a first order system (see also
[29, Chapter 7.4]). This first order system generates a Cy semigroup, such that a solution to (1) can be defined by using
the variation of constant formula. Usually, this kind of solution is also called a mild solution.

Let A .= — 32—22 be the Laplace operator on H := L?([0, 1]) with domain
D(A) ={ueH: AueH, ul0) =u(l) =0}.
Let V*, H, V be a Gelfand triple
Ve H=H"~ V¥

where V = D((1 + A)%). Here, V* denotes the dual of V, and H has been identified with its dual H*. Notice that all the
embeddings in the above diagram are dense and continuous.
Let us define the Hilbert space

s=HeV =HeD((+a)7?) 4)

equipped with the inner product

Uy up _1 _1
<< )( >> =(U1,U2)H+<(1+A) zv, (1+4) 2vz> ,
U1 (%) ¥ H

for all uy, u, € H and vy, v, € V*. We define a linear operator 4 : # — J by
D(A) =D(A) DV

A(,)= (—OA 5) (3) <5) € D(A). (5)

Let us also define an operator F : ## — # by

u 0
()= ()
v Nf(u)
where Ny : H — H is the Nemytskij operator associated to f given by
Ne(w)(§) =f(u()), & €R,ueH.
Putting v(t, &) == %(t, &), fort > 0and & € [0, 1], Eq. (1) can be rewritten in the following form

ut)\ _ u(t) u(t) 0
o(00) =[4 () () e+ (eweo)
u0)\ _ (uo
v(0)] — \vy /)’
where {W(t) : t € [0, T]} is a cylindrical Wiener process on H. Let us note that a space-time Gaussian white noise on

[0, 1] can be written as a cylindrical Wiener process in L?([0, 1])(= H). Due to the fact that the embedding H — V* is
Hilbert-Schmidt, W takes values in V*. Now, Eq. (6) is equivalent to

dX(t) = [AX(t) + F(X(t))]dt + QdW (t),
X(0) = <U0> ’ (7)

and

(6)

Vo

where X(t) = (u(t), v(t))", t > 0, and the operator Q is defined by D(Q) = V* and

()

The operator A generates a unitary Cy-semigroup of contractions S = {S(t) : t > 0} on the Hilbert space #. The explicit
form of S is given by

1
S(t) = cos(«/Zt) ﬁ sm(«/Zt) Ctso.

VA sin(ﬂt) cos(«/zt)

For more details we refer to [29, Theorem 4.5, Chapter 7] or [27, Example 5.8].
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The mild solution of (7) is given by an adapted and #¢-valued process X such that X solves P-a.s. the following integral
equation

t ¢
X(t) = X(0) +f S(t —s)F(X(s))ds + / S(t —s)QdW(s), t=>0. (8)
0 0

The stochastic convolution term on the right-hand side of (8) is well defined, that is, S(t — s)Q defines a Hilbert-Schmidt
operator from V* with values in #. Existence and uniqueness of a #-valued solution {X(t) : t € [0,T]} to Eq. (8) is a
consequence of [27, Theorem 7.4].

Since we will need it later on, let us introduce the following scales of Hilbert spaces. For any o € R, let

Hy = Hy ® Hy1. 9)
We equip #, with the inner product defined by

uq up
<( >, < )> = (ur, uz)y, + (v, v2)y, >
U1 V2 /| 5,

foruq,u; € Hy and v, vy € Hy_1.

3.2. The stochastic wave equation with non-homogeneous boundary conditions

To handle the space discretisation of Eq. (1) we will perform in Section 4.1 a change of coordinates by means of reflecting
at the t-£-axis. This change of coordinates will lead to a stochastic wave equation with non-homogeneous boundary
conditions. Note, that there will be also appear initial and terminal conditions. However, since the semigroup generated
by the lifted wave equation is unitary, the initial conditions determine the values of the solution at time T and, vice versa,
the terminal conditions determine the values of the solution at time 0. Therefore, we will fix in the equation the initial
conditions and will not impose any terminal conditions.

Let ug and vg be fixed and let L > 0. For simplicity we assume that the support of

a
‘§>: = /G(TOa {aé)HO(g)dg and &é = /G(T07{’$)UO(§) d{
R R

are included in [0, 1]. We consider the following problem:

02 92 .
ﬁw(tv E) = aié-zw(t’ %‘) - W(t7 E) _f(w(t5 %‘))5 te [05 L]vé: € R+7
w(0,8) =wo(®),  w(0.6) = wi®)., £ Ry, (10)

w(t,0) =up(t), tel0,L],

]
—w(t, 0) =vo(t), tel0,lL],
o8 (t,0) = vo(t) [0, L]
where wo(§) = u(€, 0) and w1(§) = v(&,0) for§ € Ry, v(t, &) = %u(t, £),E e R, t € [0, T]and uis a solution to Eq. (1).
In the theory of deterministic PDEs, there exist several approaches to deal with non-homogeneous boundary conditions.
Since we are working in the framework of semigroup theory, we have chosen the approach introduced in [30, Chapter 4.11],
which has been recently considered in [31] (see also [32]) to study heat and wave equations with a non-homogeneous ran-
dom input on the boundary. To define a solution to (10), first, we define a boundary operator associated to the corresponding
boundary problem, and, then, we define the mild solution of (10) as the solution of the homogeneous problem disturbed by
a perturbation due to the boundary operator.
We start by considering the Laplace operator A on a bounded interval (for simplicity we take [0, 1]) with boundary
conditions. Namely, A := —% with domain
D(A) = {u € [*([0, 1]) : Au € [*([0, 1]), u(0) =0, u'(0) = 0}.

The Dirichlet and Neumann boundary conditions are described by the mappings vp and vy, respectively, which are
defined by

vpp :=¢(0) €eR and wvy¢ :=¢'(0) € R, (11)

for any ¢ € L?([0, 1]) for which the expression above makes sense.
Given yp, ¥y € R, the inhomogeneous problem is defined by the pair (A, D(A)), where A is the Laplacian and

D(A) = {u € [*([0, 1]) : Au € [*([0, 1]), vpu = yp, UNU= YN} .
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Let A € R. First, we consider the following auxiliary (deterministic) elliptic problem: for any given yp, ¥y € R, find u in
$'([0, 1])3satisfying

Au = \u, vpu =yp and vyU = yy. (12)

Problem (12) defines a boundary operator on R? (see [31, Definition 1.2]). We write (u, ¢) to denote the action of u €
8'([0, 1) on ¢ € 4([0, 1]).

Definition 3.1. Let yp, yy € Rand A € R. We call u € §/([0, 1]) a weak solution to (12), if

(u, Ap) — (ypun, ®) — (wwup, @) = (U, ¢),
for all ¢ € 4([0, 1]) such that ¢(0) = ¢’(0) = 0.

We denote by B*(yp, yn) the weak solution to (12) with boundary conditions yp, yy. Then, B* : R? — §'([0, 1]) is called
the boundary operator associated to the (weak) problem of Definition 3.1. In our problem, i.e. Problem (10), the boundary
operator can be calculated explicitly.

Example 3.1 (Compare with Example 1.1 in [31, Section 6.1]). The boundary operator associated to the problem (12) with
A = 1is given by

1 1
B'(yp, ) (%) = S+ e + S = wle ™, xel0,1].

Let us remind the scales of Hilbert spaces H, and #,, « € R, defined at the end of Section 3.1. We denote by A, the
restriction (or self-adjoint extension if « < 0) of the Laplacian A to H,, and by A, the operator

Ay = (—810[ é) Dom (Ay) = H,. (13)

Recall that A, generates a unitary group {S, (t), t > 0} on #,.Let {Y(t), € [0, L]} be an #,-valued stochastic process given
by

t t
Y(t) = S, (t)Y(0) + / S (t —S)F(Y(s))ds +/ Se(t —5)QdW (s)
0 0

t
[ A0S~ 98 w09, wises, €20 (14)
0
where 8%, A € R, denotes the lifted boundary operator given by

B (yp,
B*(yp, yn) = (BAEZZ ;Z;) , Yo, YN ER.

Putting (w(t), y(t)) == Y(t)T,t > 0, and i—f =y, w solves the deterministic boundary value problem

92 92
ﬁw(tr ‘i:) = aiézw(tv S)’ t e [O’ L]?é € R+7
wO,6) = wo®), W (0,8 = wi(®), &€y, as)

w(t,0) =ue(t), tel[O0,L],

3
gw(t, 0) = vo(t), telo,L].

For more details we refer to [31, Section 6.1]. Finally,

1 1
(A= DB (yp, vn) = S+ W) +8e ™+ 5o = WIS +8)eM — (o + )8 — (o — )8 + (v — 1).
(16)

Thus, setting A = 1 and substituting the calculation before in Example 3.1, the last term disappears and we get

t
w _ Yo _ 0
(v)(t) =50 <Zo) + [ -9 ((A— 1)Bl(yn(s>,yN(s>>> ds. =20

3 4([0, 1]) denotes Schwarz space of rapidly decreasing C* functions on [0, 1] and 4’([0, 1]) its dual, i.e. the space of tempered distributions on [0, 1].
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Setting

tH 0<t<1 t, 0
mr):{gf’” PS1S and m(t)zi(‘;"() ;

Eq. (6) is equivalent to the following equation
dX(t) = [AX(t) + FX(0)]dt + QAW (t) + (A — DB (yp(t), w (1)),

u
X(0) = vg

’

where X(t) = (u(t), v(t))", t > 0, and the operator Q and its domain are given by D(Q) = H ® V* and
0
o= ()

4. The numerical scheme

The numerical approximation is done by the leap-frog scheme. This scheme is widely used in the deterministic case; see
e.g. [23,24]. In our approach we first introduce the space discretisation by finite differences (or finite elements), then we
introduce a time discretisation, and, finally, we end up with the leap-frog scheme.

Let h be the parameter of the subdivision {75, 0 < h < 1}, defined in Appendix B, corresponding to the size of the grid
and let 'V}, be the family of all functions u € L?([0, 1]) which are linear between the grid points. Let ii, = {ii(t),0 < t < 00}
be the space discretisation of Eq. (1) by finite differences corresponding to the parameter 0 < h < 1 (see Appendix B). In
particular, i solves the following finite-dimensional equation

2

ds _ - .
32 () = Axlin(t) + Wa(de) + N @), t>0,

up(0) = Pyuo, (17)
—11(0) = Pyv
ar 1 (0) hVo
where Py, My, Wy, and Ay, are defined in Appendix B. Identifying 'V}, with R* and putting @, := Pjii;, obviously, Eq. (17) is
equivalent to

2

d
3 B(0) = Auin(t) + Wy (de) + N, (t), t>0,

u,(0) = Py, (18)
d .
—up(0) = Ppup.
ar n(0) = Prug
Again, here Py, N, W, and Ay, are defined in Appendix B.
Similar to Section 3.1 we lift Eq. (18) to a first order equation and end up with a (finite dimensional) stochastic differential
equation of the same type as in Eq. (7). In particular, we end up with the following #¢-valued SDE

dun(t) = vn(t)dt,
dvn(t) = Apiifde + dWy(dt) + Nyiifde, (19)
Up(0) = Putlo,  Up(0) = Prvo,

or equivalently

dX,(t) = (A11)~<h(f) + Fh(;(h(t))) dt + QWi (dt),
- P 20
X0(0) = ("’l“") : 20

J)h Vo
where we used the following notations:

N £111()) _ (0 1 .
Xp(t) = (f)h(t)) s Ap = <_Ah 0) s D(Ap) = ’Vh.4

The drift term is defined by
eevis (W) B ((4))=( Vi ®Vh, 0<h<1
h LI U Ry o B = ,N,{(v) € Vh h» <h=1L

4 Fora definition, see Appendix B.




40 E. Hausenblas / Journal of Computational and Applied Mathematics 235 (2010) 33-58

Under suitable hypothesis on the drift f and the stability condition
Th = h, (21)

Eq. (20) has a unique solution {)N(h(t), t € [0, T]} with values in # such that there exists a constant C with

- 2
]E‘Xh(t)’ <C, 0<h<1.
H

4.1. Reflecting of the approximation

To handle the space approximation we will reflect Eq. (18) at the t-£-axis. Then one can write the space approximation
of Eq. (1) as an semi implicit Euler scheme in time. Without loss of generality we assume T = L = 1.If T > L, then we
extend the initial condition to the interval [0, T] by setting u(§) = v(§) = Ofor L < & < T.In Appendix B we have seen,
that we can associate the finite element space V;, by R¥. Substitution of the exact form of the stiffness matrix A, gives for
(20) the following system of equations written in the It6 form:

dal(t) = v (t)dt,
dvi(t) = —h™2 (@, (6) — 2a3(0) + @_; (0)) dt + f(ui(0)dt +h~'W(dt, J}),

~ ~ 22
i(0) = i, (22)
V() =V, 1=<k<k.
System (22) defines a function " : [0, 1] x {1, ..., kn} > (¢, k) — a"(t, NI') :== @l'(t) € R, where [0, 1] represents the time
and {1, ..., ky} the space. That means, for a fixed t € [0, 1], ii;(t) given by ((ﬁh(t))1, ce, (ﬁh(t))kh) belongs to R*:, Now, the
(finite dimensional) space {1, .. ., k;} is mapped onto the k,-iterates of the set of functions {ﬁﬁ 0,11 >R, k=1,...,ky}.
This is equivalent to apply a change of coordinates in the above Eq. (22). For k = 1, ..., k, and any (s, z) € [0, 1]? put
ﬁﬁ(s, z) = u"(z, —s). Then, from the recursion (22) we obtain that ﬁfj (z2) = uy (N,’j, z) satisfies the following stochastic
equation:
d? _ s _ _ 1 _
@ = —h7 (@) = 20@) + @) + W@ O + [,
- 23
(0) = (Putio) (N]). (23)
51(0) = (Phuo)(ND), k=1,... k.
The notation W(z, J}!) is the formal notation for W (z, J#). Put
V(@) =h" (i) - B2) .
Then
d? _ s _ _ 1 _
@uZ(z) = —h72 (U, (2) — 282 + 0_,(2)) + "Wz, JI + f (@ 2))
= —h"[h (i, @) — ut@) — h (@) — bf_, @) | k"W (z, ) + f (i} 2))
= —h" [3{@) = B @] + W, J) + f(@2).
Rearranging gives
W ip @ —u@] =v@dt, k=1,..., 1.
1 d? _ 1 _
B 50 @ = @] = = Sl @ + BT WE ) +f@ @), k=1, h, (24)
Ugz) =0, 0<z<1,
Up(2) =0, 0=<z<1,
with boundary conditions
1,(2) = (Pouo)(ND;  k=1,..., 1,
(25)

d =h h
o 0@ = @) () k=1
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Similarly to before, first, Eq. (24) can be lifted on # and, secondly, the boundary conditions (25) can be handled in the
same way as in Section 3.2. So we arrive at

[ (@) _ (Ba@Y] 2 (0 1) (@) (0 0) (#@
U (2) @)\ o)\ @ A 0)\5i(@2)

+(1 = A)B ((Putto) (ND), (Prvo)(N])) (26)

+< " )+ k=1,....k
laowe) T\F@E @) ) KT

where AW (z) = W(z, kh + g) — W(z, kh — ’5') and 8 : R? — H is defined in (3.1), resp. (16). Comparing Eqgs. (26) and
(33), one can see that both are of the same type apart from the following differences. First, in (26) an additional term due to
the boundary conditions appears, and, secondly, the operator Aj in (33) is finite dimensional, therefore bounded, and the
operator A in (26) is unbounded.

We approximate the solution between the grid points t,’j = kty and t,’;’ +1 = (k+ D7y in the same way as we have

approximated the solution of (33). If (i5(t), vx(t))T denote the approximation at time t, where @, (t) = (lip(t), . .., Um(t)),
then the solution will be defined for t = ktp,, k € N, by

(ﬁh(t)> — (ﬂl};> (27)
un(t)) " \of

and for t € (tf, tf,,), by

t

mm=m+ﬁmmm

[k (28)
Dh(6) = B + (€ — e AT + (£ — tf)* AT + AW () + (£ — o) N itk

+(t = t)(1 = A)B" ((Patio) (N} (Phito) (N})) -

Equivalently,

diip(t) = vp(t)dt,

dig(t) = Aukdt + 2(t — t]) Avfdt + dw(dt) + Nyiifde (29)
+ (t = t)(1 = A)B" ((Patto) (NY), (Prio) (ND)) -

5. Time discretisation

Next we discretise Eq. (18) with respect to the time variable. Let t, be the time step size corresponding to the subdivision
{Th, 0 < h < 1}. The approximation of u(kzy, ih) at the grid points will be denoted by ﬁfh. We make use of the classical
centred difference method to discretise the second derivative with respect to time appearing in (18), such that we end up
with the so-called leap-frog scheme.

The initial values @Y, and i1}, are defined by

ﬁgh = (Ppug)i, i=1,...,kp,
i, — % = wProo)i, i=1,....k, 0
where P, : H — R* is defined by (51). Note, by (-); we denote the projection onto the ith column, i.e.

R 5 u=(u,...,u) > (W); =1 €R.

The vectors ﬁf‘ w k > 2, are given by the following recursion

N . e o . . 1 . .
(o) 2 (" =208, + 0 ) = 2 (D, — 208, 4+ 08, ) +h 2ASW 4 F(@f), i=1,... k, (31)
where

;0D
Af W ::h*?/ W(ds, ), i=1,.... k,
k

T
withW = {W(t,£)|0 <t <T,0 <& < M} is the space-time white noise.
T
Set AfW = (A}, W, ..., A{ ,W)T and &} = (ﬁ’l‘yh, el ﬁll;.h) e R* forallk =1, ..., n. We rewrite (31) as

K,

()2 (B — 26 + 651) = Aplif + AFW + N @@ab).
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Again, we lift the leap-frog scheme to a two-dimensional system of recursions only involving one finite differences. Let

ch
u, _ Phug (32)
-0 p
Vi hVo
~ A~ A A A A Ak ~k\T - . .

and put @} == (@} ,, ..., & )" and V% = @}, ..., 0p ,)'. Now, the vector (i}, ¥;)" is given by the recursion

1 (/6 T 0 o)/t 0 1, [’ 0 0
— N - = R + o + _1 + R s 33
HED-GE) = D)6 B () (o) = () 2

where 1, € R¥ x R*» denotes the identity. Since

1, 0\ _ (0 0\\ _(1 o0
0 1,)  ™\A, 0 =\mArn 1)

Eq. (33) can be also written in the following explicit form:

ak ~k—1 Ak—1
Un 1 0 u, 0 1 u, 0 0

= - , 34
()= (an DG+ @ o) () (o) o (e (4

or equivalently

i = @ 4 g,

V=0 4 AT AT AW N, ke,
The solution between the grid points t,’j = ktp and t,’}H = (k+ 1)1, will be interpolated as follows. Let (i, (t), V;(t))T denote
the approximation at time ¢, where @i (t) = ({lo(t), ..., Um(t)) and ¥, (t) = (Do(t), ..., Dm(D)).Ift = k1y, k € N, then we

put
U, (t i
lAlh( ) — A/h (35)
Vi (t) N

andift € (¢, ¢/, ,), then we put

t
ﬁr:m+/osm
k(1) h 4 1 (S) (36)
n(t) = V& + (£ — tH AR + (£ — )7 Andk + AKW(E) + (¢ — ¢) Njiik.
Equivalently,

du,(t) = v, (H)dt,

AV, (t) = Aplifde + 2(t — tf)ApVidt 4+ dW,(dt) + Np@kde, ¢ >0, (37)
or for i (t) = lhs Uy (t) and O (t) == LpVp(t), t € [0, T],
dup(t) = vy(t)dt, (38)

ddy(t) = Apfifdt + 2(t — t]) ApdFdt + dWy(dt) + Nplkde, > 0.

6. Error analysis

This section is devoted to the actual proof of Theorem 2.1. To be precise, we will investigate the Monte Carlo error, i.e. the
quantity given by

E"(@) = |E™W0- h0 g (i) — E*O0 @ (u) | .
Above, @ : Hz_“0 ([0, L] x [0, Tp]) — Ris a fixed mapping and &, is given in (50). Similarly to the way the approximation
in Section 4 was introduced, the error can be split in two parts, i.e.

Eh(q)) < error'l'(qﬁ) + errorg(q)),

where the first entity is the error between the space and the space-time approximation and the second entity is the error
between the exact solution and the space approximation. In particular,

errorl;((p) — |E,¢huo,ﬂ’hvo(p(ﬂh) _ Eﬂ’huo,?hvo(p(ﬁh)

errorg(¢) _ |E“°’v°¢(u) _ Eﬂuo,f’hvoq;(ﬁh)| .

, and

5 See the definition of the interpolant given in Eq. (48).
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6.1. The first error

In this section we give an estimate of the first term, i.e. of error’}(dﬁ). Identifying H=“([0, To] x [0, 1]; R) with
H™([0, To]; H“([0, 1]; R)) there exists a function p : H~“([0, Tp]) x [0, To] — H~*([0, 1]; R) such that

To
2@ = [ plun). Tyar.
0
Therefore, the Fubini Theorem and the Minkowski inequality give

error’f (@) =

To To
E7 - Pivo / p(Un(T), T) dT — E"h"0-7hto / p(Un(T), T) dr‘
0 0

To
< [ (). T) - B iy(1), )| dT.
0

We will show in the following, that there exists a constant C > 0 such that
sup [E70700 p i1y (T), T) — E00- %0 p(@(T), T)| < C 77, h € (0,1].

0<T<Ty
Let us fix T € [0, Tg] and let us assume that T = nyt;,. Similarly to the method of Talay and Tubaro [22] we introduce a
function ¥ as follows:

v Hyx[0,T] — R

(X’y’ t) H lI/(X’ya t)’

where

W(x.y,t) =EY[p (T -0).T)], tel0.TI

Recall that the process {ii,(t) : t € [0, T]} corresponds to the space approximation of {uy(t) : t € [0, T]}, given by the

stochastic differential equation (19), and, written in a lifted form, solves the stochastic differential equation (20). Now, due
to the definition of ¥, it is straightforward that

error’}(q&, T) = |E3’huo,7’hvo ({p(T), T) — ]E?”“O”P""Op(flh(T), T)|
= [EMo Moy @, b, T) — E"0W (Pyug, Prvo, 0)] .
By the tower property of the conditional expectation we infer that

np—1 ) )

error’ (¢, T) = E”t0:7hvo Z 1 (ﬁzh Lo (g — i)Th) L4 (ﬁzh_(lﬂ), opn =Dy — (i + 1))Th)
=0
np—1

np—i— 1 ”h A1 A1 . 0 0 .
= E”nto-Thvo Z Elh U [III (i, O (M — DTH) — ¥ (Prtt®, Prvy, (i — i — D) ] .

Consequently, we have to 1nvest1gate the following differences
errory, (k, T) == [EXY [@ (&), O}, (mh — k)th) — ¥ (%, (y —k — D)]|, ke {0,...,ny — 1),

where x, y are random elements of V;. Note that in order to get convergence of order two, we have to show that there exists
a constant C > 0 such that

érrory, (k, T) <C 77, 0<h<1.
Putting iy := Pyulp and Dy := Pyvy, the process {ii,(t) : t > 0} defined in (37), satisfies for t € (0, tp,)
di, (t) = vo(t)dt,
{dvh(t) = Apilodt + 2tAhv0dt + A"W(t) + Njfiodt.
Remind that A°W,,(6) = = 37, [y W(ds,J!) gf', for t € (0, ), where gf' : [0,1] 5 & > T iy E)E — NLp) +
l[N,.",N,.’;])(S)(Nih — &). Hence by the Itd formula

(39)

Th
errory, (k, T) = E* [f (Dxw (in(5), Dn(s), s + (nw — k = D), Du(s)),, ds
0
Th
+ / <Dyl11 (fin(s), Dn(s), s + (p — k — 1)Th) , Apx + 25A4y + N,{x)v* ds
0 0

1 (™ ~ N
+ 5 /0 Tr (D% (in(s), Dn(s), s+ (mp — k — ])7h))vg ds

+ /Th D (ln(s), Dn(s), s + (np — k — 1)74) ds:|. (40)
0
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Recall that the pair (i1, U,) appearing in the definition of ¥ satisfies Eq. (19). Taking the derivative of ¥ with respect to time
corresponds applying the Kolmogorov equation (19) to ¥. Therefore
Dy¥ (itn(s), Dn(s), (t —s — (np — k — 1)1))
= —E(D¥ ({n(s), Dn(s), t —s — (m — k — 1)14) , 17!1(5))H0

—E(Dyw (fin(s), Dn(S), € — 5 — (M — k — 1)T) , Apfin(s) + w,{ah(s)>

Yo
1 A
— 5 ETr [Dy# (@(5), Dn(5), £ =5 = (0 — k = )z ] .

We plug this equality in (40) and obtain

érrorly (k, T) = EX |:(Dxl1/ (@n(s), 0n(s), s + (nw — k = D7), D(s) — Tn(5)),,, ds

Th
+ / <Dy11/ (Tn(s), Dn(s), s + (my — k — D1) , Apx + NI x — Aniip(s) — N,{ﬁh(s)>v* ds:|.
0

0

Notice that the terms containing the trace have been cancelled out. Put

T
diffy (x, y, k) = E* / (Dew (ﬁh(s),ah(s>,s+<nh—k—1)rh),(f)h(s)—ah(s)))HodS]
0

Th
diff, (x, y, k) = E*Y / Dy (iin(s). Dn(s). s + (mn — k — D1y) . Njx — A} ﬁh($)>vgd$:|,
0

T
diff3(x, y, k) == E*Y / Dy (it (s), Dn(s), s + (np — k — 113) , Apx — Ahah(5)>V3ds:|'
0

We first deal with the term diff; (x, y, k). Taking into account that the Kolmogorov equation at the time grid points coincide
for i, and i, we write

Th
diff; (x, y, k) = E* U [(wa (), Bn(), s + 0y — k= DTw) , Bu(),,
0
_ (Dxlp (ﬁh(o), {)h(o)y (nh —k— ])‘L’h) ’y>H0]d5:|
Th
—EYY U (Dx (i4(0), 04(0), (y — k = 1)) , Du(9))yy,
0

— (D (it (s), n(s), s + (ny — k — 1)) ,y)HO ds:|.

Next, we apply the Itd formula to the following functional:
O (s, Xn(s)) = E (D (@ln(5), Dn(s), s + (my — k — D7), 1711(5))H0 .
In particular,
%@(S, 1 (s), 0n(s)) = (Do (@In(S), Dn(S), s + (nh — k = D7H), Bn(S))y,.
(Do (9. B0(5). 5 (mn — k= D7), A4l (5) + A E(9),

Observe that under the standing situation, v;,(0) = y. Therefore, we end up with the following equality:
Th N
diffy (x, y, k) = E* / / (Do (), Du(r), 7+ (= k= D7w) , Tu(r) ® D)) g
o Jo

+ <nyl1/ (fn(r), Dn(r), T+ (p — k — D7), Op(r) ® (Ahx + N,{x + 2rAhy>>H

*
OH®Vy
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(D (@), B0(r), 7+ (= k= )T, Anin(1) + M (),
0
+ {Der® (), on(r). T+ (= k= D7), (),

1
+5 <DxTr (D (). 8(r). 7+ (04 =k = D). f)h(r)>

Ho

i=1

+ % > Dy (n(r). Da(r). T+ (i — k= D7h) . & ® ei>}drds:|

h N

—EY |:/ / [(Dxx‘l’ (in(r), Dp(r), T+ (Mg — k = D11) , O(1) ® f)h("))HO@HO
0

(D (8n(r), (), 1+ (= k= D7), B (r) ® (Ax+ Npx+2r Any))y oo

Ho

+
+ <D @ (1l (r), On(r), r 4+ (ny — k — 1)) , Apx + 2r Ay + N,{x>
+ (Dar ¥ (@), 0n(r), T+ (= k= Dw) 01,

1

- <D Tr [Dyy ¥ ({n(r), dn(r), T + (np — k — l)Th)]V* , vh(T)>

Hp

+ Z Dy ¥ (ln(r), Op(r), T+ (y —k — D7) , € ® €i>} drds] .

i=1

Rearranging the summands gives

diffy (x, y, k) = Ex,y|: /rh / <DxxlI/ (i (r). Dn(r). 1+ (my — k— D)1y) . (f)h(r) - ﬁh(r)) ® ah(r)> drdsi|
0 0 Ho®Hy
Th S
+EY [ / / (Do (@), 50), 7+ (00 = k= D), (500) = (1)
0 0
® (Ahx + N,{x + 2rAhy)>Ho®vg drds:|
L /Th/s<DTr[D W (@ (r), (), T+ (my — k — D73)] (f) ) —d (r))) drds
2 0 0 X yy h s Uh ’ h h V6ka h h Ho
LR U h/ (DU!II (@n(r), Dn(r), T+ (n — k — )73) (T)h(r) _ f)h(r)>> drds:|
o Jo Ho
+EYY [/ "/ (szp (@ (r), Dn(r), T+ (M — k — D7) , Aplin(r) + N i (r)
0 0

_ <Ahx + 2rApy + N,{x))H drds:|
0

=: diffy; (x, y, k) + diffi5(x, y, k) + diffi3(x, y, k) + diff14(x, y, k) + diffi5(x, y, k).

Again, taking into account that the Kolmogorov equation at the time grid points coincide for i, and ii,, we write for the first
difference

S
diff;; = E*Y |:/ / {(Dxxllf (fn(r), (), 1+ (np — k — D7), Op() ® ﬁh(r)>Ho®H0
0 0

— Du¥ (x,y, (N —k— D),y ®y>H0®H0}

- [(DXXW (ﬁh(r)7 f)h(r)v r + (nh - k - 1)Th) ’ f)h(r) ® ﬁh(r))Ho@Ho

— (D% (%, y, My —k — D71) , ¥ @ ¥)yy2m, ]drdS}
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Th So S1
=EY |:/ / / l(Dxxx‘I’ (fin(s2), Dr(s2). 52 + (M — k — D71 , Dp(52) ® Dn(s2) ® 1A)h(52)),_,0@,0@,_,0
0

(Do (@(52), (52). 52 + (my — k= 1)) 50(52) @ 1(52) @ (A + 2524y + Nfx))
Ho®Ho®V:

0®Ho

+

P
(Do (0(62), Bn(62). 52 + (= k= D7), (Anin(s2) + M in(s2)) @ Bn(52))
(

D (1 (s2), Dn(52), 2 + (np — k — D7) , Vn(S2) ® (AhX + 255 Ay + N;{X»H o
0 0

1 - A
+5 (Drgy® (ln(52), D(52), 52 4 (M — k — 1)7) , Dn(52) @ Dn(52) @ € @ €i>H0®HO®V3®V3

+

M i £

(D ¥ (fin(52), Dn(s2), 52 + (M — k — D1) , € ® Di(s2) D )

N | =

Ho®Ho®Hgp

Il
A

+
N | —

Il
R

(D ¥ (n(s2), Dn(s2), 52 + (M — k — D)13) , Dn(52) @ Dy (s52) ® ei>H0®Ho®Ho

+

N | =
Mg

(D (in(52), Dn(s2), 2+ (M —k — D11) . € ® e,-)H0®HO®HO} dszdsldso:|.
1

Similar representation can be found for the remaining differences, i.e.
Th S
diff;, = EXY / / <nyt11 (fn(s2), Du(s2), 1+ (np — k — D7), 0p(r) ® (Ahx + M x+ 2rAhy)>H o
0 (adi]

- (nyllf *xy, (p—k—1D1),y ® (Ahx + N,{x + 2rAhy)>

H0®Vg

- (nyw (6 (r), Dn(r), T + (1 — k= 1)T3) , Dr(r) @ (Ahx N x 2rAhy)>

¥
Ho®V¢:

_ (nylll &y, (mp—k—1D1n),y® <A,,x + N{x + 2rA,,y)>H ove drdsi|
(eadi]

T 51 so
= EYY [/ f / (Day® (i1 (52), Dr(s2), 52 + (M — k — 1)74) , Dp(52) ® Vn(s2)
0 0 0

® (Ahx + N,{x + 252Ahy>>
H0®H0®V6k
+ (Dyxyllf (fn(s2), Dn(s2), 2 + (ny — k — D), (Ahx + M x+ 252Any)

RUp(s2) ® (Ahx + ,N}{x + 252Ahy>>
Vg ®Ho®Vyy

(Drxyllf n(s2), On(52), 52 4+ (ny — k — D7) , Tp(s2) @ (Ahx + Nx+ 252Ahy>>

Ho®Vg
| oo
+5 Z (Dygy® (11 (52), Dr(52), 52 + (nh — k — D7) , D4 (52) ® T (s2) ®@ & ® ei)v(;‘@HO@vg@vg
1 IZOO
5 2 Dy (0(52), Bn(52), 52+ (i — k= 1)) , & @ Tn(52) © i)y gy
1 lO:OO
+5 2 Dy (n(s2). Dn(s2). 52 + (= k = 1)7h) . Dn(52) @ & ® Tu(52) s g s
1 l°:°0
+3 ZO Dy ({in(52). Bn(52). 52 + (M = k = D7) . € @ i)y
+ (nyw (iin(52), Du(52), 52 + (M — k — 1)71) , (Ahﬁh(sz) + Nhfﬂh(sz)) ® (Ahx + M x+ 2$2Ahy>>Ho®v*

0
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- <Dxxylp (itn(s2), Dn(s2), S2 + (mp — k = D)71) , D(52) ® Dp(52) @ (Ahx + M+ 252AhY)> i
Ho®Ho BV

— Dy ((52), (52). 52 + (my =k = D7), (Anx + Ny x+ 252407

R0n(s2) ® (Ahx N x+ 252Ahy)>
Vi ®Ho®Vyy

- <Drxyl1/ (iin(s2), Dn(s2), S2 + (M — k — 1)74) , Dp(s2) ® (Anx + M+ 252Ahy>>H

0®Vy
— (Dy¥ (ln(s2), Dr(52), 52 + (y — k — D1) , Du(52) ® 2Ahy)H0®V5 d52d51d50i|~
Setting

¥ (x,y,1) =Tr [Dy¥ (%, )],

we obtain for the third term

diff;; = E*Y U / (Dx® (p(r), Du(r), T+ (y — k — D7), D)) — (Dx¥ (X, y, (ny — k — 1)1,1),y)H0
0 0
_ {(Dxlf/ (ln (), D), T+ (y — k — D7), Du(r)) — (Dx¥ (x,y, (ny — k — D7y) ,y)HO}drds:|

Th S0 S1 -
= E*Y |:/ / / (D (i (s2), Dn(s2), 52 4+ (My — k — D7) , (Tn(52) — Di(52)) ® fih(sz))HO@,Ho
o Jo Jo

+ (ny@ (n(s2), Dr(s2), S2 + (M — k — D18) . (Dn(52) — Dn(s2)) ® (Ahx + M+ 252AhJ/)>

Ho®Vgy
+ (Dur® (in(s2), Dn(s2). 52 + (M — k = D1y) , (Tu(s2) — Dn(52)) )y,
+Try; (D ¥ (fin(s2), Dn(s2), 2 + (Mp — k — D11) , (Dn(s2) — lA)h(Sz))>HO

+ (Dxlff (fin(s2), Dn(s2), s2 + (mp — k — D7) , (Ahuh(sz) + Nalip(52) — Apx — Njx — 252AhY)>H d52d51d50j|~
0

Next, we get for the fourth term

Th N
~diffiy = E* { f f [P (@), 3000, 7+ (00 = ke = D) (B0) = 30() @ B )y g
0 0

+ (Do (@00, 8007 = k= Dm). s (@00) = 80) @ () + M) }drds].

Again, rearranging and taking into account that the Kolmogorov equation at the time grid points coincide for i, and ii,, we
write

Th So S1
—diffy, = E*Y |:f / / [(Dxxxlp (in(s2), Dn(s2), s2 + (M — k — DT4) , Du(s2)
o Jo Jo

® Un(s2) ® (Vn(s2) — 5h(52)))H0®H0®H0 + Dy (in(s2), Vn(s2), 52 4+ My — k — 1)) , Tn(s2)

® Uh(s2) ® (AhX + Np{X + 25, Ay — Aplin(sz) — Nhﬁh(sz))> i
H0®H0®VO

+ 2D (1 (52), Dr(s2), $2 + (M — k — 1)1) , (Anlin(s2) + Nalin(s2))

® 52y (Do (B0(52). Du(s2). 52+ (my =k = Dm) . hu(s2) © (Anin(s) + N{n(s)))
— (Do (in(s2), Bn(52), 52 + (M = k = D) , Dn(52) @ Dn(52) @ (Dn(52) = T (52)) )y oootty

+ (Do ¥ (1n(52), Dn(s2), 2 + (M — k — D7) , Du(s2)

® T(52) ® (Anx + N x+ 25 40y = Anli(52) — Milln(52)) )
}ioé@fioé@\ﬂ;
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+2<Dxx‘1/ (fin(s2), n(s2), S2 + (M — k — 1), (AhX + Aps2y + N;{X) ® 5h(52)>H

0®Ho

X (D (1n(52), D(52), 52 + (Mh — k — 1T) , Dn(s2) & (Ahﬂh(sz) + Nf{ﬂh(sz)))H()@Ho

X (Dyx¥ (n(52), Dn(s2), 2 + (M — k — 1)73) , Dn(52) @ Tn(52) ® (Vn(s2) — Un(52))) HowHowHo
+ (Dyy¥ ({n(52), Dn(s2), 52 + (p — k — D7) , Vn(S2)

® Up(s2) ® (AhX + N X+ 25 A0y — Ayiin(s2) — Nhﬁh(sz)))HO@)HO@vg

+ 2Dy ¥ (il (s2), Dn(52), S2 + (mp — k — 1)74) , (Aniln(52) + Nafln(52)) ® n(52))HoHo

x (ny‘lf (fn(s2), Dn(s2), s2 + (M — k — D), D(s2) ® (Ahflh(sz) + N;{flh(sz)»HO@Ho

— (D (ln(52), Dn(s2), 52 4+ (M — k — D7) , Dn(S2) ® Tp(52) ® (Vn(s2) — 17h(52)))H0®H0®H0
+ (Dyy¥ (@n(s2), Dn(52), 52 4+ (My — k — D)1) , Dp(s2)

® Un(s2) ® (Ahx + Nhfx + 25, Ay — Aplip(s2) — Nhﬁh(sz)»
H()®H(]®V6k

+2<ny‘1’ (Tn(s2), Dr(s2), s2 + (my — k — D7), (AhX + Apsyy + JV,{X) ® 1711(52))’_, o
0 0

x (Do (@n(s2). Br(s2), 52 + (= k= D) n(52) ® (Anln(2) + MEn(s) ) dsadsidso.
0

H®.

The last term is a little more delicate. In particular we have

diff;s = EYY [ / n / {<Dx11/ (@i (r), u(r), T + (0 — k — 1)T4) , Apiin(r) + A, a,,(r)>
0 0

— (Dxlp (ﬁh(r), Op(r), T+ (ny — k — 1)rh) , Apx + 2r Ay + N{x)H drds:|
0

— B [/ / I(DX‘I’ (fin(r), Dn(r), T + (M — k= 1)T1) , Apiin(r) + ,/v,{ﬂ,,(r))
0 0

_ <wa %y, (my — k — 1)1), Apx + w,{x)H ] - {(wa (@ (r), Dn(r), T + (M — k = D7), Apx
0

+ N,{x)H — <Dxl1f &y, (np—k—1D1), Apx + N,{x)H ]
0

0
— (D (p(r), Du(r), T+ (ny — k — D1y) 2rAhy>H0 drdsi|.

Again, taking into account that the Kolmogorov equation at the time grid points coincide for I and ii,, we write

Ho xHp

diffis =E”[ L[ [ (pa Gnts. tsorese - — = ). (AninGs + M nts2)) © )
0 0 0

+ <ny¥/ (fin(s2), Dn(s2), 7+ (my — k — D7), (Anﬁh(Sz) + N;{ﬁh(sz)) ® (Ahx + 25, Any + Nth)>

*
HoxVy

+ (D (ln(s2), Dn(s2), 2 + (Mh — k — D7) , Apilp(s2) + N;{ﬂh(sz)>H
0

Ho

+ (DXW (fin(s2), Dn(s2), S2 + (y — k — D 14) , ApDn(s2) + D«M{ﬁh(Sz)>
d

oxHo

D ({n(52), 81(52). 52 + (my — k= D) (Anx+ Mx) @ Bu(s2)),
(

— (Do (@n(52), (520,52 + (my — k= D), (Ape+ M x) @ (Ape+ 25409 + W)

*
HoxVy
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X <DX52lI/ (ﬁh(SZ), f)h(Sz), Sy + (nh —k— 1)1.'[-,) , ApX + J\/}{X)H

0
X (DXW (flh(SZ), f)h(Sz), Sy + (Tlh —k— 1)‘L'h) s 252Ahy>H0 d52d51d50:| .

Analysing term by term of diff4, . . ., diff;5 one can verify that the terms consisting of so Ay and living in Hy are the worst
cases. In particular, these terms are the following

Th S0 $1
/ / f EY (D (1l (s2), Dn(52), 52 + (np — k — D7) , 240y ® ﬁh(52)>Ho®H0 ds»dsqdso,
o Jo Jo

Th S0 51 - n R
/ / / E*Y (Dl (iln(s2), B (S2), S2 + (nh — k — 1)) , s24ny), dszdsidso,
0 0 0

and finally, if the worst comes to the worst, the term
Th S0
E*Y / / (D (it (s1), Dr(s1), 51+ (M — k — D73) 251Ah)’)HO dsydso.
0 0

But, since o > % and 1, ~ h there exists a constant C such that

sup E|Apyl> <C, he(0,1],

0<s<T

sup E[5(M[*, sup E|[d(|* <C, he (0,1,

0<r<T 0<r<T

and, finally,

sup E ‘Ahuﬁ(r) 4, sup E |2rhA,,v,’1‘(r)|4 <C, he(,1]
0<k<Np 0<k<Np

Since ¢ is four times Fréchet differentiable, there exists a constant C < oo such that
diff1 (x, y, k), diffi2(x, y, k), diffi3(x, y, k) and diffia(x, y, k) < C 77, he (0, 1].

For the second difference we have

Th
diff, (x, y, k) = / (D (@9, 30, 5+ (k= D7) s (A1(0) = (A En())),, | ds
0
T
= f [(Dylp (in(s), Dr(s), s + (k — D1y) (f/\/}’(x)))v* — (DyW (114(0), D1(0), s + (k — 1)74) , M(@)V*]ds
0 0 0

Th
+ f [(Dyuf (@1(0), 94(0), 5 + (k = Da) , (A (0))ye = Dy (n(5), Bn(s), s + (k= D7), avf(ah<s))>vg]ds.
0

Note, that dil; 4 (s) = y; nds and da\f,f (U ()i = f' (Ui p () dil; y () = f (Wi n ()i p(s)ds = f' (U ()i p(5)i nds. Setting

D" W] (n(5)) = (' (@in.n(s))T1 n(5), - - -, f' (kg 0(5)ili 1 (5))

a second application of the It6 formula yields

Vg ®Hp

diff, (x, y, k)=f"/ [(Dqu/ (ﬁh(r),f)h(r),r—i—(k—l)rh),N,{(x)®y>
0 0

+ <Dyylp (ﬁh(T), Op(r), 4+ (k — ])fh) ) N,{(x) ® Apx + ’N’{(X) + 2rAhy}v*@v*
0 0

+Tr [(Dyyyq/ (@i (r), n(r), T + (k= 1)73) | w{(x)>v*] <Dyrl1/ (6(r), Dn(r), T + (k= 1)T3) | N,{(x))
Ve

*
0 VO

Vi ®Ho

_ |:/' " / <Dyxlp (ﬁh(r), Op(r), T+ (k— D7), (Nhf(ﬁh(r)) ®y>
o Jo

+ (Dyyw (@), Dnr), T+ (k= 1)T) , M (@801 ® (Anx + N0 + 2rAhy)> .
0 0
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+r [(Dyyyw (i), 30(), 7+ (k= D), A (flh(r))>‘7*] }
v

0

x <DyrlI/ (@n(r), n(r), T + (k= 1)T3) | N,{(ﬁh(r))>

*
o

n <Dy11/ (iin(r), Dn(r). T + (k— 1)73) , DAY (ﬂh(r))f)h(r)>‘7* }drds.
0
Again, as before, we split the inner part of diff, into four differences and write each summand as an integral. The first
difference we treat similarly to the term diff;;. Applying the It6 formula and using (38) and (19) we get for the first difference

(D (@, 30y + e = D7) MO ®Y) = (Dt (@), ), 7+ (k= D) , M (1) @)

VE®Hy Vi ®Ho

= / ((Dyxxll’ (Gn(ry), dn(r), 4+ (k— D) eNhf(X) VY ﬁo(r1)> .
0 v @Ho®Ho

+ <Dyxyl1/ (fn(r1), D(ry), 11 + (k — D14) N]{(X) QY ® (Apllg + 2r1 0o + «/Vhf(X))> . i
Vi ®Ho®V;

Dy (@), B4 o). 1+ k= D) M @y) ) dr
Vg@HO

- / ((Dyxxlp (in(r1), Du(ry), T+ (k — D1, N ({lin(r) ® y ® f)o(ﬁ)) .
0 VO®H0®HO

-~ (Dyxyw (@t (1), D (o). 11 + (k= 1DT) L N ([@(1) ® Y ® (Apilo + 2r1 Tido + N (x))) o
VE®@Ho®Vg

— (D (@00, 0011+ (k= D) A @) ©)
0 0

- <Dyxl1/ (lin(ry), On(r1), 11 + (k= 1D1) (DN,{(ﬂh(r)) ® 5h(t)> ®y>v*®H ) dry.
0 0
Similarly to the term diff;, we obtain for the next term

<Dyy11/ (fn(r), Dn(r), T+ (k — D7), Ny (0 ® (Ahx + N ) + 2rAhy)>v*®v*
0 0

_ <Dyyu/ (8 (), (), T+ (k= D7), M @) ® (Anx+ N () + 2rAhy)>v*®v*
0 0

,
= / [(Dyyxw(ahm), B, (1= k= D7) M 00 @ (Anx+ N 0+ 2rAy) @ Bu(ro))
0 Vo ®Vp ®Ho

+ (Dyy¥ (@ (r1), Du(r1), 11+ (0 — k — D7), N (%)

—_—

®

/N

Apx + =/\/hf(x) + 2rAhy> ® (Aptlg + 2r1 oo + J\fhf(x)))
V5‘®V5‘®V5‘

(D (@), Bur), 11+ (1= k= D7) M 0 @ (Anx+ ] 00 + 2r 41 )

—_—

Vyevy

_|_

—

Dy (@), (), 1+ (0= k= D7) . A (1) @ (Anx + M () +2r Any) @ (o))
VE @V ®Hy

Dy (in(r1), D(r1), 11+ (0 =k — 1)7) , M (@ (11))

—_—

® +
—~

Apx + =/\/hf(x) + 2rAhy> ® (Aptlg + 2r1 oo + J\fhf(x)))
V5‘®V5‘®V5‘

(D (@), (). 1+ (1= k= D7), A @) @ (Anx+ A 0+ 2r 4y )

—_—

Vievs

+ dT] .

—_—

Dy (in(r0), Bu(r0), 11 + (1= k= 1)), (D] () ® B0 0)), ®y>
0 Vi ®Ho
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Also,

Tr [(Dyyyw (fin(r), Dn(r). T + (k= 173 L A (x))v*i|
V*

0

—Tr |:<Dyyy11/ (fn(r), Dn(r), T+ (k — D1y) N,{(ﬂh(r))>

o]v*

“/*
0
is similar to diff3,. The difference

(D (@), 0007 + (k= 1), N () = (D (@), B0, 7+ (k= D) N (),
0 0

can be treated in the same way as the difference diff,4.
Finally, we deal with the term diff;(x, y, k), i.e.

Th
diff; (. y, k) = E*Y f (Dyw (iin(s). ﬁh<s),s+(n—k—1)rh),Ahx—Ahah<s)>vgds}
0

Again, by the same arguments as before we write

B Th S
diffs(x, y, k) == E*Y / / {(Dyx‘p (ln(r), Op(r), 1 4+ (n — k — V)13) , Apllp(r) @ (Dp(r) — 5h(r)))vg®ﬂo
o Jo

(D (i), Bu(), T (0= k= 1)), Al () @ (AR + T Ary + N X = A (1) — ] (1))

* o1/
Vo ®Vy

+ <Dylll (ﬁh(r), op(r), r+(n—k— 1)rh) , Aptip(r) — N}{ﬁh(r)>vg}drds:|

™ pSo pS1
— Y [/ f / {(Dyxxlll (@in(52), D(52), 52 + (1 — k — 1)T4) , Apfin(s2)
o Jo Jo
® (Un(s2) — Vn(s2)) ® (Vn(s2) — 17h(52))>vg®,.,0®,.,0 + (Dyy @ (it (s2), Dn(52), 52 + (1 — k — 1)) , Apiln(s2)

® (in(s2) = 50(52)) ® (Anx + 5240y + NX = Milin(s2) = MTn(s2)))
VE@Ho®V
+ (D (ln(s2), D(s2), 52 + (M — k — 1)) , ApUn(s2) ® (Dn(s2) — 5h(52)))V5®H0

(D (Bn(s2), n(s2). 52+ (0 = k= D), Anla(s2) © (A + 524wy + M x = An(s2) = Min(s2)
0

0
— Dy (iin(s2), Dn(s2), S2 + (n— k — 1)7) , Anfl(52) ® (Dn(52) — n(2)) @ (Dn(s2) — ﬁh(sZ))>V5‘®V5‘®Ho
+ (Dyyy¥ (Un(s2), Dn(52), 52 + (0 — k — 1D13) , Aplln(s2)

® (S2Any — Aniin(52) — Nj Tn(52)) ® (S2.AnY — Anil(52) — N;{flh(sz))> R
V0®V0®V0

+ <Dyyw (in(s2). Dn(52). 52 + (N — k — 1)74) . Anbn(s2) ® (524nY — Apiln(s2) — N} ah(sz)))

VEevs

(D (in(52). Bnls2), 52+ (0 =k = D) Aniln(52) ® (Any = Anin(sz) = DN Bn(s2))) }d$2d51d50:|-
0

0

Again, analysing term by term one can verify that the worst terms are bounded uniformly in h. In particular, there exists a
C such that

|diff3(X»y7 k)' = Ct,.?, he (Oa ]]
Summing up leads to

error']’(dﬁ, T)<C ‘L'hz.
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6.2. The second error

In Section 4.1 we have seen, that the solution of Eq. (20) coincides in distribution with the solution of the reflected wave
equation approximated by the implicit Euler scheme. In particular, if 4 is defined in (5) it holds

1 [ (i(t) Ui—1(t) u;(t) 0 u;(t)
o [(%(0) - (afim)] =A (ﬁ-(t)) + (mwm) i (ﬁ(t)> :
- [Uo(Nh) — up(N- D] ) .
+o(B <h [‘Uo( 1) ‘Uo(Nih_l)] 3 1= ],...,kh,

(59)-(2)

The second difference will be handled in the same way as the first difference, where we followed Talay and Tubaro [22].
Nevertheless, some changes have to be taken into account. For simplicity we assume that Ty = 1 (see Section 4.1). First,
note, that identifying H=“ ([0, 1] x [0, 1]; R) by H~*([0, 1]; H~*([0, 1]; R)) there exists a function p such that

1
@ (u) 2/ pu(§),§)ds.
0
Let {ﬁZ : 0 < k < ky} be the solution of System (22) and let {ﬂ’,j : 0 < k < kp} be the solution to System (29). Similarly,

letu = {u(t, &) : (t,&) € [0, 1] x [0, 1]} be the solution of system (1) and w = {w(t, &) : (t, &) € [0, 1] x [0, 1]} be a
solution of System (10). Then w(t, £) = u(&, t), (t, &) € [0, 1] x [0, 1], and @I (S) =i (t)fort = & = thi=1,... k.

The interpolation between the grid points {N,-h ci=1,...,ky}of it is given by formula (2). To be con51stent we deﬁne the
interpolation between the grid points {Nih :i=1,..., ky} of ii by the same formula, i.e. by
& (5 (Nf —6)
(¢, §) = Zw w1 6) ey + N1 =) — @ |, &€l01]. (41)
Reflecting and a short calculation give for u the interpolation between the time points {tjh j=1,... .k
kp—1
n(t, &) = ZO Lot 1 (O [0 (8) + € = ND 5 (®)] (42)
P

where v;, = % [ti+1 — u;]. Note, that there does not exist any condition how to interpolation v between the time grid.
Therefore, we can choose an interpolation method between the time grid points which is appropriate for our purpose. Since
we would like that the equation for & of System (29) coincides with the equation given in Definition (42), we chose the
interpolation method given by System (29). Now having defined u as a mapping from [0, To] x [0, 1] — R we obtain for
the functional following identities

1 1
@(u>=/ p(u(&),s)d5=/ p(w(o), 1) dt,
0 0

and

1 1
 (iiy) = / p(E(E), &) di = f p(@(0), 0) dt.
0 0

Again, the Fubini Theorem and the Minkowski inequality give

1
error2(¢) < / ’E?”uo’ﬂvop(w(t), t) — IEj)huO-j’hUOp(a(t), t)| dt
0

IA

sup [E70-T10 pw(t), ) — BP0 p(ae), 1)
0<t<1

We will show in the following, that there exists a constant C > 0 such that

sup [E70-700 p(w(T), T) — E0 0 p(@y(T), T)| < Czif, h e (0,1].
0<T=<1

Let us fix T € [0, 1]. Similarly to the method of Talay and Tubaro [22] we introduce a function ¥ as follows:

v FHyx[0,T] — R
x,y,t) — Y(x,y,t),
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where
U(x,y,t) =EY[pw(T—1t),T)], tel0,T].
Now, due to the definition of ¥, it is straightforward that
error} (¢, T) = |E™h"0-7h0 o (u(T), T) — EPh'0-7h0 o (w,(T), T)|

—kp =k
E710- 70 g (G 5 T) — BU00W (Pyug, Phvo, 0)‘ :

By the tower property of the conditional expectation we infer that

kp—1
oo k—i —kp—i . —kp—(i+1)  ~ky—(i+1 :
erl‘Orq((P, T) — EJhUO,JhUO Z N/ (u;h l’ vhh l7 (kh _ I)Th) —y (uhh (i+ ), v’:h (i+ )’ (kh _ (l + 1))Th)
i=0
o keml i i 1o ) 0 0 )
= E*hto-Fhvo E" Vh [l[/ (uh, Up,» (kh — l)‘L’h) -y (J’hu s fPhUh, (kh —1— ])‘Eh)] .
i=0

Similar to before, put
errory, (k) == [E* [@ (@), 9}, (ke — K)T) — ¥ (%, y, (kn — k — D7i)]

where x, y are some random elements of V, and k € {0, ..., k; — 1}. In order to get convergence of order two, we have
again to show that there exists a constant C such that

érfory, (k) < C 72, he (0,1].

In particular, comparing Egs. (29) and (37) we see that plugging in the Kolmogorov equation in (40) we get in Eq. (40)
the additional term

’

h
error, (k) = errory (k) +/ Ex’y|:(DleI (@n(s), Ba(s), s + (n — k — D1p)
0

(A = DB (uo(s), v0(5)) — (A — DB (Puio (), Prvo(s)) )vgd5:|-

Proceeding in the very same way as done many times before, we write

h
/ Ew[myuf (n(s), vn(s), s + (kn — k — D),
0
(A = DB (uo(), v0(s)) — (A — DB (Prio(s), Pavo(s)) >v;d5]

h
= f [0y @n(5), 5s), 5+ (kn = k = D7), (4 = DB (o(5), v0())ys
0

X EXY(DyW (i (), U (), s + (kn — k — D7) , (A = DB (uo(s), vo(5)) )y
+EY(DyW (iin(s), Dn(s), s + (kn — k — 1T , (A — DB (g (s), v0(5))) v

—E*Y(DyW (i (), Tn(5), s + (kn — k — D7) , (A — DB (Prtio(5), Prvo(s) )vg]ds-

Observe that the boundary operator is bilinear. In addition, the boundary conditions, i.e. the functions ug and vy, are purely
deterministic. As a consequence we write

h S1

= [ [ o, o Tutso. 51+ = k= D) (4 = DB (152 vy
0o Jo 0
FES (D @0(51), 1) 51+ (ki — k= Dm) . (A = DB (u(s1), 1552))y
Y (D (@G0, ), 51+ (i — k= D), (4~ DB (4 (h/2), 10(0)),

—E* Dy (tin(s1), Un(s1), s1 4 (kn — k — D), (A — DB (ug(0), vé(h/Z)))vg]dszdsl

h
+/ EY (DyW (tn(s), U(s), s + (kn — k — D) , (A — DB (sug(h/2), svg(h/2))),. ds
0 0



54 E. Hausenblas / Journal of Computational and Applied Mathematics 235 (2010) 33-58

h 51
= / f [E” (Dyw (@n(51), n(51), 51+ (kn — k = D7) , (A = DB (1g(52) — u(/2), vo(51)) )
0 0
+ (DyW (Un(s1), Du(s1), 51+ (kn — k — D18) , (A — DB (ug(h/2), vo(s1) — UO(O))>V3

+ (DyW (@in(s1), Dn(s1), 51+ (kn — k — D7) , (A = DB (uo(s1), vo(s2) — vo(h/Z)))Vg

+ <Dyl1/ (ﬁh(sl), l_)h(Sl), s1+ (kh —k— 1)1’},) s (A — l)B] (u0(51) — Uo(O), Ué(h/z))>vg]d52d51
h
* / E* Dy (@n(5), Tn(s), s + (kn —k — )zw) , (4 — DB (stig(h/2), sv5(h/2))),. s
0 0
h psy h/2
= / / / [Ex’ywylp (Un(s1), On(s1), s1 + (kn —k — 1)14), (A — B! (ug(s3), vO(Sl))>vg
0 Jo Sy
+E*Y Dy W (i (s1), Dn(s1), 1+ (kn — k — D11) , (A — DB (un(s1), Ug(s3))>vg]ds3d$2d51

h 51 51
+ / f / [IE"’Y (DyW (@n(s1), On(s1), 14 (kn — k — D11) , (A — DB (ug(s3), v(’,(h/2))>vg
0 0 0

S+ EXY (Dle/ (@h(s1), U(s1), 51 + (kn — k — D7), (A — 1)B! (ug(h/2), vg(s3)))vg dssds,ds;

h
+ / B (D, @4(6), 50(9), s + (ki — k= D), (A = DB' (s up(h/2), sup(h/2)),. ] ds.
0

Since the initial conditions are belonging to C2(®), (A — 1)B! : H, — H, is bounded for any « < —1and H, — Vi,
the inner part of the RHS in the inequality above is bounded. Taking into account that we can make the same calculation
each time when the derivative up to the boundary operator appears, we can show that the second error is of second order.
Because the exact calculations are quite technical, we omit them.
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Appendix A. Stability leap-frog scheme

The leap-frog scheme is a linear multi-step method, in particular, an explicit two step method. In the finite-dimensional
case without any perturbation, the stability can be characterised by the characteristic polynomial and their roots. In the
infinite-dimensional case, one has to take into account the eigenvalues of the discrete Laplacian.

Analysing the stability of the scheme by analysing the eigenvalues and eigenvectors of the associated stiffness matrix,
we can show the following proposition

Proposition A.1. Let {(af, V)T : k € N} be a Markov chain given by the following recursion

a1 T ﬁﬁ‘1+1o 0N (0
Qﬁ - WA 14 Ay f,ﬁ_l wAp 1 A;;W h Nﬁﬁ;fl :

If for K < o0,

XK:E | Akw

k=1

2
v < o0
and f : R — R is Lipschitz continuous, then there exist some constants C; and C, such that

~k
~k
Vi

Proof. The proof is done by first by showing stability of the scheme without perturbation. To be precise, we will show that
there exists some Cy, C; < oo such that we have forallh > 0

k
1 Th
(Th Ap 1+ rhAh>

< Ciexp(G3Kty), 0<k <Kty h>D0.
7

< Crexp(Gkty), keN,
L(Jt, 7)
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This is done by analysing the eigenvalues of

0 Th
‘ChAh ‘L'hAh ’

The next step is expand (&%, V¥)T as the following sum

a\ (1 w6 +'§ 1 o \'[( o o O
"}ﬁ - A 14 1Ay ‘72 — WA 14 Ay Alhw h Nﬁﬁk .
Now, estimating term by term and applying the Gronwal Lemma leads to the assertion.
Due to Lemma 10.5 [23, p.198], (291), the eigenvalues of Ay are given by
2 wjh
h _ . _ -2 P
q; _ﬁ(cos(]nh)—l)_—Zsm (7> ji=1,2,... kg,

each with corresponding orthogonal eigenvector e; = (ey;, ..., ekhi)T, i=1,...,k, where

ej; = ~2hsin(h2rwjl), j,1=1,2,..., k.

Direct computations gives that the matrix

0 Th
43
(ThAh ThAh> (43)

has eigenvalues

h
q,
)\‘h — _rhij’

with eigenvectors

——— and —-;
e e
€ €
where
h
n_ 9
="
g —1
In order to verify the convergence, we have to analyse the limit of A, j = 1, ..., ky, i = 1, 2,as h — 0. Since there exists C;
and C; such that
G .
— T4 =GN, =1k,

the stability condition (21) implies, that there exists some constant Cy < co such that
)\.th 14+ Cotn, j=1,...,kp,
and therefore,

(1 +)»j)1“n < Coexp(Citpn) j=1,...,ky, n €N.
It follows, that

1 T “le € €
wAn 1+ Ay \rl'e rl'e; rle;

Let E; € R* x R¥ be the unitary matrix, which maps := (e, ..., €, ). By recursion, the solution can be written as

~k mp ~0 M mp—j
u 1 Th u, 1 Th 0 0

= E E E ] i)l 45
(%) (thh 1+T'1Ah> h<02>+1_1 <thh 1+W‘h> h[<A’nW A )

Since Ej, is unitary, (44) and (45) and the Gronwal Lemma gives stability of the scheme. O

< Co (14 Cip)¥ < Gy exp (Cipk) , O0<h<1. (44)
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Appendix B. Finite differences

In this section we recall some basic facts about finite differences and introduce the notation used in the Sections before.
For simplicity, we assume we take as underlying Hilbert space H = [%([0, 1]). In addition, we denote by V the space
H, ([0, 1]).

Fix the parameter h > O, put k, = 1/h and assume for simplicity that k; is an integer. Put 7, = {N:’ ces N,’jh } where
Nl-h := ih. We call 7}, the family of nodal variables. For a function v € V we define the interpolant by

kn

1
Ar0)®) = kn D Tyt 16 3 (VN DE = N + v NN, = 6)) € €10, 1
i=1

The Nemytskij operator N/ induced by f is approximated by N , Where Nhf (v) is defined by

kh

1
MO =k Y T €)= (FONEDE =N +FONDN — ), & €0, 1], (46)
i=1

The Laplace operator is approximated by its corresponding variational problem. In particular, for a given subdivision 73 let
V}, be the space of continuous functions, which are linear between the grid points. Now, the Ritz -Galerkin approximation of
the Laplace operator is the unique operator A, on 'V, which satisfies

(Au, v) = (Apu,v), Yu,v € V. (47)

Since 'V, is finite dimensional, we can identify 'V}, with R*. Doing so, we introduce for a function u € Vj, the vector
u € R* which is defined by

Vs ur>u= (ulNp,..., u(N,}(’h)) )
By (u); we denote the projection onto the ith column, i.e.
R 5 u= (up,...,u,) — (W) =u €R,

and by £, we denote the interpolant of a vector defined by

k - 1 h 1 h h 1 h
RS S w= (o ty) o it = kY T 16) 3 (N )= (6 = NP+ uND) = (Nfyy =€) ). (48)
i=1

Similarly to J{, for any u € V we define the interpolation operator by I by
Vo urs L= (uNy), ..., u(Ny,)) € R%. (49)

In the same way, by identifying 'V}, with R* one can associate to Ay a stiffness matrix A . Straightforward calculations show,

that Ay, is given by (af; f’]:] where

0 ifi#jj+1,j—-1,
al;=h"?x{-1 ifi=j+1,j—1,
2 ifi=].

The leap-frog scheme is constructed by a mid point rule. This is reflected in the way the initial conditions are
approximated. To be precise, we had to take an approximation constructed by the midpoint rule. As a consequence we
introduce the following interpolation operator £, by

kn
Vs ur 2 =Y Ty @ [u®NL) + ¢ = N (N, +ND/2)], € €0, 11. (50)

i=1
Again, identifying V;, with R* we introduce a projection operator P, by
V 3 u> Py = (u(No) + hu'((No + N1)/2), ..., u(Ng,—1) + hu'(Ng,—1 + Ni,) /2)) € R (51)
In our problem W denotes the space-time white noise. For any t > 0 we define the interpolant by

kn

1
Wit.§) = ki > owh i 1) (WO, t1JE )G — N + W (0. ] SNy, = 8)). (52)

i=1
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where ],-" = (ih — ’5' ih + %]. Again, identifying V), with R¥ we can associate for t > 0 to ‘W, (t) a vector

Wi (t) = (kh% W(t,]{'),u-akh% W(t’]’?h))'

Since for any A € B(R), the process [0, c0) > t +— W([O0, t) x A) is a Brownian motion with variance A(A), we can infer
1
that Wy, (t) equals in distribution to an R*-dimensional Brownian motion with covariance matrix kg I.In other words,

1

1 1
(k2 BL(E), ..., k2B (t)) € Rk,

where ,3,';, i=1,...,kp, are independent one-dimensional Brownian motions with mean zero and variance r,,)\(]ih). Thus,
the approximation of

AW = Wy (kty) — Wi ((k + 1)T4)
at time kty, is given by the random vector
h h h
Xk = (Xl,k’ sy Xk,,,k)’

where xi“k, i=1,...,kyk e N, are Gaussian with mean zero and variance k.

Proposition B.1. The Vy-valued process W(t) defined in (52) fulfills the following properties:
1. There exists some constant C such that we have

E|'Wh(®)l2« <Ct, he(0,1].

Proof. Thus, we have by the isometry

1
EIWaOI = ki D Topap 1) (W0, LI ) E = ND + W0, 1 JH (N, — 6)
i=1

2
E

kp
> oW, 61, Hh 7 [ = Ny + (N — £)]

i=1

V*
kn

)
i=1

kn

EY W0, 1] h |6 = NI + (N — £)
i=1

2
Vv

(o, e1, 0% [€ = Ny + (N - )]

IA

2
%

But, putting gf' () = Tjyp _yn)(§) (€ = NIL) + Ty 1 (6) (N, — £),8 € [0, 1], we get

2 1 1
ve = Z <gih»A Zek><gih’A 2€z> (ex, e1)

k,leN

4

where {e; : k € N} are the eigenfunction of A. Thus, we have

2 > h 1 2 > h 2
= Z(gi,A‘iek> =C Zk‘z (g, e

keN keN

4

=K = n

keN
Substituting the result in the equation before we obtain

kp
E|WOIy. <EY th<Ct. D

i=1
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