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Abstract

We discuss supersymmetry breaking induced by simultaneous presence of a Wilson-line type superpotential and
localized Fayet–Iliopoulos terms in a four-dimensional theory based on deconstruction of five-dimensional Abelia
theories on orbifolds. Large hierarchy between the scale of supersymmetry breaking and the fundamental scale can be
dynamically. The model has several potentially interesting phenomenological applications. We also discuss the cond
are necessary for interpreting ourU(1)N model as an ultraviolet completion of some 5d theory. In particular, the correspo
5d theory contains Chern–Simons couplings.
 2003 Published by Elsevier B.V.

1. Introduction

Deconstructed higher-dimensional gauge theories [1] can be viewed as an ultraviolet (UV) completion o
theories [2] in more than 4 dimensions or as a new tool for building models in four dimensions [3]. In the
case one does not have to insist on exact higher-dimensional correspondence but one just explores the po
offered by the basic structure of such theories which is a product gauge symmetry containing bi-fund
matter. Both views on deconstructed gauge theories may provide new theoretical insight: completing 5d th
the UV by their deconstructed versions may give us more rigorous calculational tools for non-renormalizabl
theories and may help to understand better their structure, whereas studying 4d gauge theories with prod
group in their own sake may give us the benefits usually attributed to extra-dimensional theories but in si
setting.

Deconstruction as a UV completion of 5d super-Yang–Mills theories is interesting from the point of v
recoveringN = 2 supersymmetry in four dimensions [4]. Deconstruction as a model building tool, not nece
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with exact correspondence to a 5d theory, is interesting as (among other reasons) it provides a mecha
naturally generating hierarchical (dimensionless and dimensionful) physical parameters [5].

In this Letter we consider deconstructed supersymmetricU(1) gauge theories. Several aspects of such theo
with unbroken supersymmetry are discussed in Ref. [6]. Here we propose a novel mechanism of supers
breaking based on the simultaneous presence of a Wilson-line type superpotential and boundary-localize
Iliopoulos (FI) terms. In the present Letter we explore both above-described aspects of deconstruction. W
with a simple productU(1) supersymmetric model that is a self-consistent theory in 4d. A very important ro
the construction of the model is played by the condition of mixed gauge anomaly cancellation. The cons
of the model is presented in Section 2. From the purely four-dimensional point of view, the model pres
interesting new mechanism of supersymmetry breaking, where its dominant source is an expectation val
D-terms, similarly as in the scenario of supersymmetry breaking with a single anomalousU(1) [7,8].

However, as we discuss in Section 3, the simple model of Section 2 has no 5d correspondence: its co
limit violates 5d Lorentz invariance. It turns out that very interesting conclusions follow from insisting o
correct 5d correspondence, i.e., on 5d Lorentz invariance andN = 2 supersymmetry. The cancellation of mix
gauge anomalies plays again a crucial role in that discussion. We show that the necessary extension of t
model of Section 2 is highly constrained. In particular, the 5d continuum theory includes the Chern–Simon

In Section 4 we return to the simple model of Section 2 which, as we said, is sufficient as a mo
supersymmetry breaking and calculationally simpler than the one of Section 3. Thus, in Section 4 we minim
scalar potential and show that supersymmetry is indeed spontaneously broken, with the scale of supers
breaking suppressed with respect to the fundamental scale by the factorεN , whereN is the number ofU(1) gauge
groups andε ∼ 0.1. In the present case the scale of supersymmetry breaking is dynamically determined
model. Furthermore, if we embed the model into a locally supersymmetric version, supersymmetry break
a hybrid type, with both D-term and F-term breaking but with D-term dominating. Finally, in Section 5 we b
discuss potential phenomenological consequences of such a scenario for fermion mass generation and for
to the supersymmetric flavour problem.

2. A simple four-dimensional model with product U(1)

We consider supersymmetric theories with a productU(1) gauge group. The setup involves the product ga
groupU(1)1 × · · · × U(1)N ≡ U(1)N andN − 1 chiral multiplets (links)Φp charged under the neighborin
groups. The quiver diagram for our model is given in Fig. 1. The linkΦp has chargeQ underU(1)p and−Q
underU(1)p+1. The first and theN th group are not linked. Furthermore, at the boundaries of the group pr
space we add chiral multiplets:XL with charge−Q underU(1)1 andXR with chargeQ underU(1)N . In the
following we normalizeQ = 1. We shall also assume that some matter chiral multiplets (including the M
matter) live at the boundaries, that is they transform underU(1)1 or U(1)N . In general, we consider the situatio
when TrQ1 �= 0, TrQN �= 0.

Fig. 1. The quiver diagram of the model.
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Note that, forN large enough, we cannot write any renormalizable potential for the links. Still, the symm
of the theory allow for a non-renormalizable superpotential of the Wilson-line type,

(1)W =MPXL

(
Φ1 · · ·ΦN−1

MN−1
P

)
XR,

where we identified the fundamental scale with the Planck scale. This superpotential will be the so
supersymmetry breaking.

The model as it stands is inconsistent as theU(1) gauge symmetries are anomalous. There are two kind
anomalies. The first are mixed anomalies of the neighboring groups, that are produced by the presen
links. The second are the anomalies of the first and theN th group produced by the matter multiplets living at t
boundaries. It is well known (see, e.g., Ref. [9]) that the structure of anomalies depends on the renorm
conditions imposed on the divergences of the currents. Let us define the correlator of three gauge
Γ
µνρ
pqr (x, y, z) = 〈0|T jµp (x)jνq (y)jρr (z)|0〉, wherejµp is the chiral current coupling to thepth gauge field. The

only non-vanishing divergences relevant for the mixed anomalies are those involvingΓ
µνρ
p,p+1,p+1 andΓ µνρ

p+1,p,p.
One possible regularization is such that the anomaly is placed in the current appearing only once in the c
In such regularization the gauge variation of the model is given by

(2)δLan = − i

4π2

∑
p

∫
d2θΛp

(
Wα
p+1Wα,p+1 −Wα

p−1Wα,p−1
) + h.c.

HereΛp are the infinitesimal parameters of theU(1)N gauge transformations written in the superfield formali
These anomalies can be canceled by the Green–Schwarz mechanism. To this end the theory shoul
superfieldsMk coupling to the gauge fields via the gauge kinetic functions,fp = 1

g2
p

+∑
k spkMk . Under the gauge

transformations, the fieldsMk must transform non-linearlyVp → Vp + i(Λ̄p −Λp), Mk →Mk + 2i
∑

k εkpΛp.
To cancel the anomalies, the Green–Schwarz condition must be satisfied,

(3)Cpq = 1

2

∑
k

spkεkq,

where theN ×N anomaly matrixC, defined asCpq ≡ 1
4π2 Tr(QpQ

2
q ), reads:

(4)Cpq = 1

4π2

(
δp,q−1 − δp,q+1 + Tr(Q1)

3δp,1δq,1 + Tr(QN)
3δp,Nδq,N

)
.

In the setup at hand, there is a natural solution to these constraints. Note that the role of the moduliMk can
be played by the links. In the superspace language, the links transform asΦp → e2iΛpΦpe

−2iΛp+1. Hence we can
define an object that transforms non-linearly,

(5)log(Φp−1Φp)→ log(Φp−1Φp)+ 2i(Λp−1 −Λp+1).

If the model were described by a periodic quiver diagram, only mixed anomalies would be present and th
be canceled by using the links only. However, in the present case the group product space has boundar
anomalies can appear. Therefore, we introduce new superfields,SL andSR , transforming as

(6)SL → SL + iMP

(
Tr

(
Q3

1

) − 1
)
Λ1, SR → SR + iMP

(
Tr

(
Q3
N

) + 1
)
ΛN.

Then anomalies (2) are canceled provided the gauge kinetic function are chosen as

f1 = 1

g2
− 1

2π2
log

(
Φ1

v

)
+ 1

π2MP

SLδp,1,
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fp = 1

g2
− 1

2π2
log

(
Φp−1Φp

v2

)
, p = 2, . . . ,N − 1

(7)fN = 1

g2
− 1

2π2
log

(
ΦN−1

v

)
+ 1

π2MP

SRδp,N,

wherev is an arbitrary scale which, for convenience, is chosen equal to the links vevs. Also, we have se
U(1) gauge couplings to be equal for simplicity. An interesting feature of this theory is that all the gauge co
vanish in the unbroken phase〈Φp〉 = 0. Therefore, the model in the UV is a free theory.

We assume the Kahler potential of the form:

K =
N−1∑
p=1

|Φp |2e−2Vp+2Vp+1 + |XL|2e2V1 + |XR|2e−2VN

(8)+ 1

2

[
SL + �SL +MP

(
Tr(Q1)

3 − 1
)
V1

]2 + 1

2

[
SR + �SR +MP

(
Tr(QN)

3 + 1
)
VN

]2
.

The links have a minimal kinetic term. The presence of vector multiplets in the kinetic term forSL andSR makes
the Kahler potential gauge invariant. It also generates FI terms at the boundaries of the group product sp
are proportional to the vacuum expectation values ofSL andSR ,

(9)ξ1 =MP

(
Tr(Q1)

3 − 1
)〈SL + �SL〉, ξN =MP

(
Tr(QN)

3 + 1
)〈SR + �SR〉.

We will not construct an explicit superpotential that gives vevs toSL andSR . Instead we simply assume that th
vevs are such thatξ1 ∼ ξN ∼ εMP , with ε ∼ 0.1 and in the following we will ignore their dynamics.

In Section 4 we show that the model we have constructed provides an interesting new mecha
supersymmetry breaking. However, first, in Section 3 we discuss the model from the point of view
correspondence with 5d gauge theories.

3. Anomalies and consistent five-dimensional limit

An interesting point we want to discuss is the construction of a model with a consistent 5d limit and the
anomaly cancellation in the 4d deconstructed version. In order to cancel the mixed anomalies we used th
Schwarz mechanism, and a vital role was played by the links coupled to the gauge fields via the gaug
function. Recall [4] that the links contain the degrees of freedom that are translated to the fifth componen
5d gauge field. More precisely, the links can be represented asΦp = v√

2
e(Σp+iGp)/v andGp is what matchesA5

(while Σp matches the scalar singlet of the 5d vector multiplet). Thus a natural candidate for a 5d match
Green–Schwarz mechanism is the 5d Chern–Simons term,

(10)LCS = 1

24π2
εαβγ δε[Aα∂βAγ ∂δAε] = 1

24π2
εµνρσ [3A5∂µAν∂ρAσ − 2Aµ∂νAρ∂5Aσ ].

One can check that the terms we have proposed in Section 2 do not have a 5d invariant continuum l
therefore cannot correspond to the 5d Chern–Simons term. 5d Lorentz invariance in the continuum limit
imposed as an additional constraint. The remainder of this section is devoted to finding a 4d action that ca
the mixed anomalies and, at the same time, match the Chern–Simons term in the continuum limit.

Let us consider for simplicity the simpler case with a closed (periodic) quiver diagram. The model ha
mixed anomalies and, using the same anomaly renormalization scheme as in Section 2, Eqs. (4) and (7
to Cpq = 1

4π2 (δp,q+1 − δp,q−1) and

(11)fp = 1

g2 + 1

2π2χp,
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2). In the infrared we want to recover a 5dN = 1 supersymmetric theory compactifie

on a circle. From a four-dimensional viewpoint, this should be a theory with two supersymmetriesN = 2. It is
known that in 5d that the gauge couplings can be functions of scalarsΣp in the vector multiplets, which is indee
consistent with our identification of the gauge kinetic function. Moreover, the couplings of the vector multip
completely specified by a real function, the prepotentialF(Σp), which is a polynomial function at most trilinear
the scalar fieldsΣp (for a review of 5d Abelian supersymmetric theories, see, e.g., [10]). For example, the
couplingsτpq(X)F

p
MNF

MN,q are provided byτpq = ∂p∂qF(Σ)≡Fpq . In four dimensions (for a review, see, e.
[11]), the gauge kinetic function becomes a holomorphic function of the superfieldsχp and we need to substitu
Σp → v

4(χp + χ̄p). The effective Lagrangian of vector multiplets is, by usingN = 1 language, given as

(12)L= 1

2

∫
d2θ

∑
pq

FpqW
α,pWq

α + h.c.+
∫
d4θ K

(
χp, χ̄q

)
,

where the Kahler potential is given in terms of the prepotential by

(13)K
(
χp, χ̄p

) =
∑
p

(�Fpχ
p +Fpχ̄p

)
.

By matching with Eq. (11) we find that the 5d prepotential and the derived 4d Kahler potential of this theor

F(Σp)= 1

2g2

∑
p

Σ2
p − 1

6π2

∑
p

Σ3
p,

(14)K
(
χp, χ̄p

) = v2

16g2

∑
p

(χp + χ̄p + 2Vp−1 − 2Vp+1)
2 + v2

384π2

∑
p

(χp + χ̄p + 2Vp−1 − 2Vp+1)
3.

However the action is not 5d invariant in the continuum limit, as Eq. (14) clearly does not yield the last term
5d Chern–Simons couplings (10), containing∂5Aµ.

Interestingly enough, there is another consistent regularization of gauge anomalies, which is compati
5d Lorentz invariance. In this regularization, the anomalous divergences are placed symmetrically in each
in Γ

µνρ
p,p,p+1 andΓ µνρ

p+1,p,p. The anomalous variation of the action is then equal to

(15)δLan = − i

12π2

∑
p

∫
d2θ Λp

(
Wα
p+1Wα,p+1 −Wα

p−1Wα,p−1 − 2Wα
pWα,p+1 + 2Wα

pWα,p−1
) + h.c.,

whereas the anomalous couplings present in the Lagrangian (14) can account only for the first two terms in
In this symmetric regularization, a Wess–Zumino term is needed and it is naturally selected to be

(16)LWZ = − 1

12π2

∫
d4θ

[
(Vp+1 − Vp−1)DαVp − Vp

(
DαVp+1 −DαVp−1

)]
Wα,p + h.c.,

whose variation under gauge transformations is

(17)δLWZ = − i

6π2

∑
p

∫
d2θ Λp

(
Wα
p−1Wα,p−1 −Wα

p+1Wα,p+1 −Wα
pWα,p+1 +Wα

p−1Wα,p

) + h.c.

and which, combined with the gauge variation coming from Eq. (11), exactly cancel the anomalous o
variation Eq. (15).

Using the dictionaryAµ,p → Aµ(yp), (Aµ,p+1 − Aµ,p)/;y → ∂5Aµ(yp), Gp → A5(yp) with the lattice
spacing;y = (v)−1, it is straightforward to check that the full Kahler potential (14) supplemented by (1
actually the deconstructed version of the Chern–Simons one discussed in [12] and therefore in the continu
we indeed recover in the IR a 5d supersymmetric theory. The manifestly supersymmetric massless and
vector multiplets are inN = 1 language(Vp,χp). On the circle, the Chern–Simons term does not play any
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in anomaly cancellation as its variation is a total derivative. However, interestingly enough, in our decons
model this term (in its supersymmetric from) is present in order to cancel mixed gauged anomalies.

4. Supersymmetry breaking

In this section we discuss supersymmetry breaking triggered by the Wilson-type superpotential (1). Th
with a consistent 5d limit considered in Section 3, on the orbifold, is hard to analyse. We return, therefore
simple model of Section 2 and study supersymmetry breaking. One may worry that supersymmetry breaki
affect the cancellation of gauge anomalies as the WZ term could undergo renormalization. But since, in o
supersymmetry breaking is of spontaneous nature, all loop induced terms can be parametrized by supers
operators with F- and D-term vacuum expectation values inserted. It is possible to show that neitherAAF̃ nor
log(φp)F F̃ terms (that are important for anomaly cancellation) are not induced at the loop level.

The D-term potential in the model of Section 2 takes the form:

VD = 1

2

[
(Ref1)

−1(|Φ1|2 − |XL|2 + ξ1
)2 + (Ref2)

−1(|Φ2|2 − |Φ1|2
)2 + · · ·

(18)+ (RefN−1)
−1(|ΦN−1|2 − |ΦN−2|2

)2 + (RefN)
−1(−|ΦN−1|2 + |XR|2 + ξN

)2]
.

Since the F-term potential is suppressed by powers ofMP , the D-term dominates the scalar potential and
the zeroth order approximation, the vacuum adjusts itself to minimize it. Depending on values and signs o
terms various patterns of gauge symmetry and supersymmetry breaking may occur. Here we are interes
situation when the product group is entirely broken, which happens for

(19)ξN > 0, ξ1 >−ξN ,
which we assume from now on.

In the zeroth order approximation, ignoring the contributions from the F-term potential and from the non
gauge kinetic term, the D-term potential possesses a vacuum solution with a flat direction parametrized b
of XR ,

(20)
〈|Φp |2〉 = ξN + 〈|XR|2〉, 〈|XL|2〉 = ξN + ξ1 + 〈|XR|2〉.

In this background the product gauge symmetry is entirely broken. There is one massless chiral multip
〈|XR |2〉 = 0 it is just XR). The remaining degrees of freedom form a tower of gauge multiplets with m
starting atm2 ∼ ξ/N . Supersymmetry is unbroken at this order.

Now we include the effects of the F-term potential. One can easily see that its addition lifts the flat di
and (for a globally supersymmetric scalar potential) sets the minimum at〈X2

R〉 = 0 (up to corrections suppress
by (1/MP )

N ). In such case, effectively, the scalar potential is augmented only by| ∂W
∂XR

|2. But since this
operator originates from a non-renormalizable superpotential it is only a small perturbation to the zerot
supersymmetric solution. The vacuum shift is suppressed by the small parameterκ defined as

(21)κ2 = 1

g2

(
ξN

M2
P

)N−2

≈ ε2N−4.

We shall solve the equations of motion to the lowest non-trivial order inκ2. We expand the links around th
zeroth-order vacuum solution,

(22)|〈Φp〉|2 = ξN + ap, |〈XL〉|2 = ξ1 + ξN + a0, |〈XR〉|2 = aN,
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whereap are of orderκ2. One can check that effects of the non-trivial gauge kinetic function appear on
orderκ4. To orderκ2 the equations of motion read:

a0 − a1 + κ2ξN = 0,

(23)−ap−1 + 2ap − ap+1 + κ2(ξN + ξ1)= 0, p = 1, . . . ,N − 1.

We encounter a difference equation of the form:−ap−1 + 2ap − ap+1 + X = 0, with X = κ2(ξ1 + ξN). The
general solution is given byap = A+ Bp + 1

2Xp
2, whereA andB are arbitrary constants. The first of Eq. (2

acts as a ‘boundary condition’ for the difference equation,a−1 = a0 + κ2ξ1. This allows to determine the consta
B =X/2 − κ2ξ1. The constantA is not determined and so the flat direction persists at the orderκ2. However, the
value ofA is not important in what follows, in particular, the supersymmetry breaking parameters do not d
onA. Hence, we find that the vacuum solution to first order inκ2 is given by

〈|Φp |2〉 = ξN +A+ 1

2
κ2(p(ξN − ξ1)+ p2(ξN + ξ1)

)
,〈|XL|2〉 = ξ1 + ξN +A,

(24)
〈|XR|2〉 =A+ 1

2
κ2(N(ξN − ξ1)+N2(ξN + ξ1)

)
.

In this shifted vacuum supersymmetry is broken and the expectation values of the D-terms are:

(25)Dp = κ2[p(ξ1 + ξN)− ξ1
]
.

There is also an F-term acquiring vev:

(26)FXR = ∂W

∂XR

= κ

√
ξN(ξ1 + ξN)

a
.

Note that all the D-terms are positive. The consequence of this fact is that the matter we assumed to be p
the boundaries has to have non-negativeU(1)1 or U(1)N charges. Otherwise, the scalars of a negatively cha
multiplet would get a tachyonic mass and render the model unstable.

The most interesting point in this construction is that, in a natural way, the supersymmetry breakin
is suppressed with respect to the fundamental scaleMP . Recall thatκ = εN−2, ξ = ε2M2

P . Defining the
supersymmetry breaking scale as the scale of the D-term of the first group,M2

SUSY=D1, we get:

(27)MSUSY= εN−1MP .

Forε ∼ 0.1, even for a moderate number of replications, sayN ∼ 10, it is easy to generate a huge hierarchy betw
the fundamental and the supersymmetry breaking scale. Hence the ‘desert’ above the TeV scale can sim
consequence of the existence of a productU(1) group at some high energy scale. The origin of the hierarchy is
fact that supersymmetry breaking is triggered by a non-local, Wilson type object—the superpotential of
Thus we expect the hierarchy is not particularly sensitive to the technical assumptions we have made.

This picture is slightly modified when the model is embedded in supergravity [13]. The superpoten
assume here has the formWSUGRA = Ŵ (SL,SR) + W(Φp), whereW(Φp) is the same as in the global
supersymmetric case, see Eq. (1). We do not specify the precise form ofŴ but simply assume that it stabilize
SL,SR (in the following denoted collectively asS) at the value close to the fundamental scale,〈S+S†〉 ≈MP , and
that〈MP

∂Ŵ
∂S

〉 ≈ 〈Ŵ 〉. Then, to the leading order in the|ξN/M2
P | expansion the scalar potential takes the form

(28)V ≈ VGLOBAL + (N − 2)
〈Ŵ 〉
M2
P

(
W +W†) − 2

〈Ŵ 〉2

M2
P

.
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To avoid a large cosmological constant,〈Ŵ 〉 should cancel the positive vacuum energy generated by the glo
supersymmetric part of the potentialVGLOBAL. The latter is dominated by the F-termFXR , thus we needFS ≈ FXR .
The gravitino mass can be estimated to bem3/2 = 〈Ŵ 〉/M2

P ≈ FXR/MP .
It is interesting to investigate what is the higher-dimensional theory interpretation of the model of supers

try breaking we presented. Let us consider a 5d supersymmetricU(1) gauge theory compactified on the orbifo
S1/Z2 [4,6]. The chiral multipletsXL andXR reside at the two different fixed points—respectively, atx5 = 0 and
x5 = πR. Moreover, there are brane localized FI terms,S5 ∼ ξ1δ(x5)+ ξNδ(x5 − πR). When the fifth dimension
is integrated out one finds a broken 4dN = 1 U(1) theory with two chiral multipletsXL andXR . At the tree-
levelXL andXR do not couple to each other as they originate from two sequestered branes. However, inte
out heavy gauge bosons with masses of the order of the cutoffΛ will induce a tiny coupling and one expec
W ∼Λ e−πRΛXLXR . We could view this extra-dimensional model as a construction justifying the smallne
the holomorphic mass term for theXL,R fields. Rewriting the cutoff asΛ= N/R, whereN is the number of the
KK modes below the cutoff we getMSUSY ∼ Λ e−πN . This should be confronted withMSUSY ∼ MPκ where
κ ∼ εN . In both cases the supersymmetry breaking is controlled by a moderately small parameter raise
powerN—number of heavy modes in the theory.

5. Phenomenological consequences

In Section 4 we showed that the scenario with replicatedU(1)s and a Wilson-type superpotential leads
supersymmetry breaking, whose scale is naturally much lower than the fundamental scale. Both D-term
terms expectation values are non-vanishing. In this section we discuss the consequences of such hybrid
for low energy phenomenology.

Assuming that both FI terms are of the same orderξ all the scales of the low-energy Lagrangian are determ

in terms ofMP , κ andε =
√

|ξ |/M2
P . We define the supersymmetry breaking scaleM2

SUSY as the magnitude of th
D-term of the first group. Orders of magnitude of parameters relevant for low-energy phenomenology are

(29)MSUSY≈MPκε, Dp ≈ pM2
SUSY, FXR ,FS ≈MSUSYMP ε, 〈XL〉, 〈Φp〉 ≈MPε.

The pattern of soft masses depends on how MSSM fields are embedded in the model. A matter muP
charged underUp(1) receives soft scalar mass terms from the appropriateD term,

(30)m2
Q = qpDp ≈ qppM

2
SUSY,

whereqp is the charge ofQ underU(1)p . For multiplets neutral underU(1) the supersymmetry breaking
transmitted via Kahler potential, e.g.,

(31)
∫
d4θ

X
†
RXR

M2
P

Q†Q→m2
Q ∼ F 2

XR

M2
P

Q†Q≈M2
SUSYε

2

and these soft masses pick up an additional factorε.
Soft Majorana gaugino masses are mediated by the F-term ofS and are of the same order of magnitude

neutral scalars,

(32)
∫
d2θ

S

MP

WαWα →mλ ≈ FS

MP

≈MSUSYε.

This is also the order of magnitude of the gravitino mass.
Thus we see that the MSSM spectroscopy could exhibit two different scale,MSUSY andεMSUSY, that differ by

an order of magnitude. The possibility of such a splitting among superpartner masses is very advantageous
phenomenological point of view. If the first two generation squark and leptons are much heavier than thos
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third generation, then one can reconcile the naturalness bounds with the constraints arising from flavour c
neutral current processes.

An interesting thing about supersymmetry breaking by anomalousU(1) is that all the necessary ingredien
to implement the Froggatt–Nielsen mechanism [14] are already at hand. The MSSM matter fields need
positiveU(1) charges (otherwise they would acquire negative mass squares). In Yukawa interactions the
charge has to be compensated by coupling to the appropriate power of the negatively charged fieldXL. If U(1)
acts differently on the three generations, various Yukawa interactions are suppressed by powers of the p

ε =
√
ξ/M2

P . Note thatε has generically the order of magnitude of the Cabbibo angle. In the following we
assumeε ≈ 0.2

Froggatt–Nielsen mechanism works also in the productU(1) case. Proceeding along the lines of [15,16] o
assumes that all quarks are charged under the first group,U(1)1. All quark masses come from supersymme
interactions (in general non-renormalizable ones) withXL:

(33)W = λUijHuQiUj

(
XL

MP

)hu+qi+uj
+ λDijHdQiDj

(
XL

MP

)hd+qi+dj
,

where we denote theU(1)1 charges of the higgses, left-handed quarks and right-handed quarks byhu,hd, qi, ui , di ,
respectively. Various charge assignments leading to acceptable mass and mixing patterns are summ
Ref. [16].

The mechanism of fermion mass generation can control also the squark mass pattern. In the flavour
off-diagonal entries in the squark mass matrix originate from the Kahler potential and are expected to be
(m2

F )ij ∼M2
SUSYε

2+|fi−fj |. However, in the fermion mass eigenstate basis the non-diagonal contributions
squark mass matrix can be generated also from a splitting of diagonal entries in the flavour basis. Thus, to
supersymmetric flavour problem one has to control also the diagonal entries [17]. The dominance of the
breaking considered in Ref. [8] and in the present Letter offers such a mechanism.

6. Conclusions

In this Letter we have studied supersymmetry breaking in theories with a productU(1) group and bi-
fundamental matter. Fayet–Iliopoulos terms at the boundary of the group product space together with the
line type superpotential trigger supersymmetry breaking. A very interesting thing about this setup is that t
of supersymmetry breaking hierarchically lower than the fundamental scale can be generated dynamically

Furthermore, we have shown that interesting conclusions follow from insisting on a 5d Lorentz inv
continuum limit of such theories. Cancellation of mixed anomalies requires introducing Wess–Zumino term
4d theory which, in the continuum limit, match the 5d Chern–Simons terms. Hence a consistent UV compl
our model is a 5d supersymmetricU(1) theory that contains the Chern–Simons couplings. Similar conclusion
expected to hold forU(n).
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