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Abstract

We discuss supersymmetry breaking induced by simultaneous presence of a Wilson-line type superpotential and boundary-
localized Fayet-lliopoulos terms in a four-dimensional theory based on deconstruction of five-dimensional Abelian gauge
theories on orbifolds. Large hierarchy between the scale of supersymmetry breaking and the fundamental scale can be generatec
dynamically. The model has several potentially interesting phenomenological applications. We also discuss the conditions that
are necessary for interpreting diix1)V model as an ultraviolet completion of some 5d theory. In particular, the corresponding
5d theory contains Chern—Simons couplings.

0 2003 Published by Elsevier B.V. Open access under CC BY license.

1. Introduction

Deconstructed higher-dimensional gauge theories [1] can be viewed as an ultraviolet (UV) completion of gauge
theories [2] in more than 4 dimensions or as a new tool for building models in four dimensions [3]. In the latter
case one does not have to insist on exact higher-dimensional correspondence but one just explores the possibilitie:
offered by the basic structure of such theories which is a product gauge symmetry containing bi-fundamental
matter. Both views on deconstructed gauge theories may provide new theoretical insight: completing 5d theories in
the UV by their deconstructed versions may give us more rigorous calculational tools for non-renormalizable gauge
theories and may help to understand better their structure, whereas studying 4d gauge theories with product gauge
group in their own sake may give us the benefits usually attributed to extra-dimensional theories but in simple 4d
setting.

Deconstruction as a UV completion of 5d super-Yang—Mills theories is interesting from the point of view of
recoveringV’ = 2 supersymmetry in four dimensions [4]. Deconstruction as a model building tool, not necessarily
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with exact correspondence to a 5d theory, is interesting as (among other reasons) it provides a mechanism for
naturally generating hierarchical (dimensionless and dimensionful) physical parameters [5].

In this Letter we consider deconstructed supersymmet(ly gauge theories. Several aspects of such theories
with unbroken supersymmetry are discussed in Ref. [6]. Here we propose a novel mechanism of supersymmetry
breaking based on the simultaneous presence of a Wilson-line type superpotential and boundary-localized Fayet—
lliopoulos (FI) terms. In the present Letter we explore both above-described aspects of deconstruction. We begin
with a simple product/ (1) supersymmetric model that is a self-consistent theory in 4d. A very important role in
the construction of the model is played by the condition of mixed gauge anomaly cancellation. The construction
of the model is presented in Section 2. From the purely four-dimensional point of view, the model presents an
interesting new mechanism of supersymmetry breaking, where its dominant source is an expectation value of the
D-terms, similarly as in the scenario of supersymmetry breaking with a single anonialbug/,8].

However, as we discuss in Section 3, the simple model of Section 2 has no 5d correspondence: its continuum
limit violates 5d Lorentz invariance. It turns out that very interesting conclusions follow from insisting on the
correct 5d correspondence, i.e., on 5d Lorentz invarianceNare2 supersymmetry. The cancellation of mixed
gauge anomalies plays again a crucial role in that discussion. We show that the necessary extension of the simple
model of Section 2 is highly constrained. In particular, the 5d continuum theory includes the Chern—Simons term.

In Section 4 we return to the simple model of Section 2 which, as we said, is sufficient as a model of
supersymmetry breaking and calculationally simpler than the one of Section 3. Thus, in Section 4 we minimize the
scalar potential and show that supersymmetry is indeed spontaneously broken, with the scale of supersymmetry
breaking suppressed with respect to the fundamental scale by thed3¢twhereN is the number ot/ (1) gauge
groups and: ~ 0.1. In the present case the scale of supersymmetry breaking is dynamically determined by the
model. Furthermore, if we embed the model into a locally supersymmetric version, supersymmetry breaking is of
a hybrid type, with both D-term and F-term breaking but with D-term dominating. Finally, in Section 5 we briefly
discuss potential phenomenological consequences of such a scenario for fermion mass generation and for a solutior
to the supersymmetric flavour problem.

2. A simple four-dimensional model with product U (1)

We consider supersymmetric theories with a product) gauge group. The setup involves the product gauge
groupU(D)1 x --- x U(D)y = UL and N — 1 chiral multiplets (links)®@,, charged under the neighboring
groups. The quiver diagram for our model is given in Fig. 1. The lhkhas charge) underU(1), and—Q
underU (1) ,41. The first and theVth group are not linked. Furthermore, at the boundaries of the group product
space we add chiral multipletX’; with charge—Q underU (1); and X with chargeQ underU (1)y. In the
following we normalizeQ = 1. We shall also assume that some matter chiral multiplets (including the MSSM
matter) live at the boundaries, that is they transform uiidi@n, or U (1) y. In general, we consider the situation
when TrQ1 #0, TrQy #0.

Fig. 1. The quiver diagram of the model.



E. Dudas et al. / Physics Letters B 568 (2003) 281-290 283

Note that, forN large enough, we cannot write any renormalizable potential for the links. Still, the symmetries
of the theory allow for a non-renormalizable superpotential of the Wilson-line type,

[0)) qj _
W= MPXL(%)XR, 1)

where we identified the fundamental scale with the Planck scale. This superpotential will be the source of
supersymmetry breaking.

The model as it stands is inconsistent as &th@) gauge symmetries are anomalous. There are two kinds of
anomalies. The first are mixed anomalies of the neighboring groups, that are produced by the presence of the
links. The second are the anomalies of the first and\Mttegroup produced by the matter multiplets living at the
boundaries. It is well known (see, e.g., Ref. [9]) that the structure of anomalies depends on the renormalization
conditions imposed on the divergences of the currents. Let us define the correlator of three gauge currents
Tl (x,y,2) = (O|Tj,’,‘(x)]q (»)j¥ (2)10), where jl; is the chiral current coupling to theth gauge field. The
only non-vanishing divergences relevant for the mixed anomalies are those invelfifig, , , and 7,7 |
One possible regularization is such that the anomaly is placed in the current appearing only oncein tﬁe correlator.
In such regularlzatlon the gauge variation of the model is given by

2
4ﬁ2 Z/d 0Ap (WS 1 Wa pr1— WSy W p-1) +h.c )

Here A, are the infinitesimal parameters of thig1)" gauge transformations written in the superfield formalism.
These anomalies can be canceled by the Green—Schwarz mechanism. To this end the theory should contain
superfieldsif; coupling to the gauge fields via the gauge kinetic functigps= &% + > spkMy. Under the gauge

)4

transformations, the field&; must transform non-linearly, — V, +i(A, — Ap), My — My +2i Y, expAp
To cancel the anomalies, the Green—Schwarz condition must be satisfied,

1
Cpg = > Zspkekq, (3)
k
where theV x N anomaly matrixC, defined as”,, = le Tr(Q, Qg), reads:

1
Cpg = m(ap,q_l —8p.g+1+Tr(Q135, 18,1 + Tr(ON)36, N84 ). (4)

In the setup at hand, there is a natural solution to these constraints. Note that the role of theMpozhrii
be played by the links. In the superspace language, the links transfanpaSeZ’A/’ qﬁpe—z“‘wl. Hence we can
define an object that transforms non-linearly,

l0g(®)p—1Pp) > 109(Pp—1P)) + 2i(Ap—1— Aps1). ©)

If the model were described by a periodic quiver diagram, only mixed anomalies would be present and these can
be canceled by using the links only. However, in the present case the group product space has boundaries where
anomalies can appear. Therefore, we introduce new superfigl@sd Sr, transforming as

Sp— SL+iMp(Tr(Q3) —1) A1, Sg — Sg+iMp(Tr(Q3) + 1) Aw. (6)

Then anomalies (2) are canceled provided the gauge kinetic function are chosen as

et Loog(®) 4t s
1_g2 272 9 v nszLp’l’
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b, 1P
— —— _log| ===—F , =2,...,.N-1
522100 7377 ) ,

1 1
g2 72
1 1 DPn_1 1
=———log| —— Srép.N, 7
fN g2 2]_[2 g( v ) + ]TZMP ROp,N ( )

wherev is an arbitrary scale which, for convenience, is chosen equal to the links vevs. Also, we have set all the
U (1) gauge couplings to be equal for simplicity. An interesting feature of this theory is that all the gauge couplings
vanish in the unbroken phage,) = 0. Therefore, the model in the UV is a free theory.

We assume the Kahler potential of the form:

N-1
K= Z |¢p|26—2VI,+2Vp+1 + |XL|2€2V1 + |XR|2€_2VN
p=1
1 — 2 1 — 2
+ E[SL + 8L+ Mp(Tr(Q® - 1)Va]" + E[SR + Sk +Mp(Tr(On)3+ 1) V]~ (8)

The links have a minimal kinetic term. The presence of vector multiplets in the kinetic tersp fond Sz makes
the Kahler potential gauge invariant. It also generates FI terms at the boundaries of the group product space, that
are proportional to the vacuum expectation valueS;0and S,

E1=Mp(Tr(QD3—1)(SL +S1), & =Mp(Tr(Qn)3+1)(Sg + Sk). )

We will not construct an explicit superpotential that gives vev§t@andSg. Instead we simply assume that their
vevs are such th@y ~ &y ~ e Mp, with € ~ 0.1 and in the following we will ignore their dynamics.

In Section 4 we show that the model we have constructed provides an interesting new mechanism of
supersymmetry breaking. However, first, in Section 3 we discuss the model from the point of view of the
correspondence with 5d gauge theories.

3. Anomalies and consistent five-dimensional limit

An interesting point we want to discuss is the construction of a model with a consistent 5d limit and the role of
anomaly cancellation in the 4d deconstructed version. In order to cancel the mixed anomalies we used the Green—
Schwarz mechanism, and a vital role was played by the links coupled to the gauge fields via the gauge kinetic
function. Recall [4] that the links contain the degrees of freedom that are translated to the fifth component of the
5d gauge field. More precisely, the links can be representdd,as Lze(prGp)/” andG, is what matchesis
(while X, matches the scalar singlet of the 5d vector multiplet). Thus a natural candidate for a 5d match to our
Green—Schwarz mechanism is the 5d Chern—Simons term,

1 1
Lcs= Weaﬁyge[AaaﬁAyagAe] = Weuupo[SAﬁuAuapAg —2A,0,A,054A5]. (20)

One can check that the terms we have proposed in Section 2 do not have a 5d invariant continuum limit and
therefore cannot correspond to the 5d Chern—Simons term. 5d Lorentz invariance in the continuum limit must be
imposed as an additional constraint. The remainder of this section is devoted to finding a 4d action that can cancel
the mixed anomalies and, at the same time, match the Chern—Simons term in the continuum limit.

Let us consider for simplicity the simpler case with a closed (periodic) quiver diagram. The model has only
mixed anomalies and, using the same anomaly renormalization scheme as in Section 2, Egs. (4) and (7) simplify
t0 Cpg = 727 (8p.q+1— 8p.q—1) @nd

1 1

Sp =?+§Xp, (12)
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wherey, = — In(qﬁp_lcb,,/vz). In the infrared we want to recover a Bd= 1 supersymmetric theory compactified

on a circle. From a four-dimensional viewpoint, this should be a theory with two supersymmni€tee?. It is

known that in 5d that the gauge couplings can be functions of scalars the vector multiplets, which is indeed
consistent with our identification of the gauge kinetic function. Moreover, the couplings of the vector multiplet are
completely specified by a real function, the prepoterfi@t’,), which is a polynomial function at most trilinear in

the scalar fields~,, (for a review of 5d Abelian supersymmetric theories, see, e.g., [10]). For example, the gauge
couplingst,q (X)F 1y FMN-4 are provided by ,q = 3,0, F (X) = Fpq. In four dimensions (for a review, see, e.g.,
[11]), the gauge kinetic function becomes a holomorphic function of the superfiéldsid we need to substitute

¥, — %(xp + Xxp)- The effective Lagrangian of vector multiplets is, by usikig= 1 language, given as

1
L= é/6129 D FpgWerwe +h.c.+/d49 K(x?, xq), (12)
rq

where the Kahler potential is given in terms of the prepotential by

K(x”.%p) =Y (Fpx? +FPxp). (13)
p
By matching with Eq. (11) we find that the 5d prepotential and the derived 4d Kahler potential of this theory are

f(2p>=@22p—@22 ’
p p

2 2
o Z - 2 v Z Z 3
K:(va Xp)— 16g2 _ (Xp+Xp+2fol_2Vp+1) + 3842 _ (Xp+Xp+2fol_2Vp+l) . (14)

However the action is not 5d invariant in the continuum limit, as Eq. (14) clearly does not yield the last term of the
5d Chern-Simons couplings (10), containizg\ , .

Interestingly enough, there is another consistent regularization of gauge anomalies, which is compatible with
5d Lorentz invariance. In this regularization, the anomalous divergences are placed symmetrically in each current

; nop uvp ‘ot S
Nl andeH’p,p. The anomalous variation of the action is then equal to

i 2
Soan=—Tay X,,: / 420 Ay (WO, 1 We ps1 — WO We p 1 — 2W Wy pi1+2WSW, 1) +hc, (15)

whereas the anomalous couplings presentin the Lagrangian (14) can account only for the first two terms in Eq. (15).
In this symmetric regularization, a Wess—Zumino term is needed and it is naturally selected to be

Lwz=— d*0[(Vps1— Vp—1)DaVp — Vp(D* Vi1 — D* V1) |We, » + hec., (16)

12572
whose variation under gauge transformations is

i
Sz =—c— Z/dze Ap(WE_ g W p1— W Wa pi1 — W5 We i1+ W W ) + e, (17)
p

and which, combined with the gauge variation coming from Eq. (11), exactly cancel the anomalous one-loop
variation Eq. (15).

Using the dictionaryA,, , = Au(yp), (Au p+1 — A, p)/Ay = 354, (yp), G, — As(y,) with the lattice
spacingAy = (v)~1, it is straightforward to check that the full Kahler potential (14) supplemented by (16) is
actually the deconstructed version of the Chern—Simons one discussed in [12] and therefore in the continuum limit,
we indeed recover in the IR a 5d supersymmetric theory. The manifestly supersymmetric massless and massive
vector multiplets are io\" = 1 languaggV,, x,,). On the circle, the Chern—-Simons term does not play any role
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in anomaly cancellation as its variation is a total derivative. However, interestingly enough, in our deconstruction
model this term (in its supersymmetric from) is present in order to cancel mixed gauged anomalies.

4. Supersymmetry breaking

In this section we discuss supersymmetry breaking triggered by the Wilson-type superpotential (1). The model
with a consistent 5d limit considered in Section 3, on the orbifold, is hard to analyse. We return, therefore, to the
simple model of Section 2 and study supersymmetry breaking. One may worry that supersymmetry breaking could
affect the cancellation of gauge anomalies as the WZ term could undergo renormalization. But since, in our setup,
supersymmetry breaking is of spontaneous nature, all loop induced terms can be parametrized by supersymmetric
operators with F- and D-term vacuum expectation values inserted. It is possible to show that Adifheror
Iog(¢p)Ff terms (that are important for anomaly cancellation) are not induced at the loop level.

The D-term potential in the model of Section 2 takes the form:

1
Vo =5 [Ref) (@1l = XL +£2)° + Ref) (102 — |#17) +- -

+ (Refy-1) H1on-112 — |®n_2%)° + (Ref) " L(—I®n_112 + | X&I2 + £)7]- (18)

Since the F-term potential is suppressed by power® pf the D-term dominates the scalar potential and, in
the zeroth order approximation, the vacuum adjusts itself to minimize it. Depending on values and signs of the FI
terms various patterns of gauge symmetry and supersymmetry breaking may occur. Here we are interested in the
situation when the product group is entirely broken, which happens for

év >0, §1> —én, (19)

which we assume from now on.

In the zeroth order approximation, ignoring the contributions from the F-term potential and from the non-trivial
gauge kinetic term, the D-term potential possesses a vacuum solution with a flat direction parametrized by the vev
of XRr,

(12p12)=6n +(IXr1?),  (IXLI®)=¢&n + &0+ (X% (20)

In this background the product gauge symmetry is entirely broken. There is one massless chiral multiplet (for
(IXr|% = 0 it is just Xg). The remaining degrees of freedom form a tower of gauge multiplets with masses
starting atn? ~ &£ /N. Supersymmetry is unbroken at this order.

Now we include the effects of the F-term potential. One can easily see that its addition lifts the flat direction
and (for a globally supersymmetric scalar potential) sets the minimum%})tz 0 (up to corrections suppressed
by (1/Mp)V). In such case, effectively, the scalar potential is augmented onlyg) |2. But since this
operator originates from a non-renormalizable superpotential it is only a small perturbation to the zeroth order
supersymmetric solution. The vacuum shift is suppressed by the small parandefared as

k2= —2<E—1\;> A e2N—4, (21)
8\ M3

We shall solve the equations of motion to the lowest non-trivial order?inWe expand the links around the
zeroth-order vacuum solution,

o) P=En+ap,  [XL)PP=8+&v+ao,  |(Xg)*>=an, (22)
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wherea, are of orderx?. One can check that effects of the non-trivial gauge kinetic function appear only at
orderx*. To orderx? the equations of motion read:

ap— a1+ «k%En =0,
_apfl+2ap_ap+l+K2($N+Sl)=07 p=1...,N-1 (23)

We encounter a difference equation of the formu,_1 + 2a, — ap,41 + X =0, with X = K2(€1 + £n). The
general solution is given by, = A 4+ Bp + %sz, whereA and B are arbitrary constants. The first of Eq. (23)
acts as a ‘boundary condition’ for the difference equation,= ag + «2£1. This allows to determine the constant

B = X/2 — «°€1. The constana is not determined and so the flat direction persists at the ardddowever, the

value of A is not important in what follows, in particular, the supersymmetry breaking parameters do not depend
on A. Hence, we find that the vacuum solution to first orderris given by

(Ip15)=&n + A+ %Kz(p@N — &)+ p(En +8),

(IXLI?) = E1+&n + A,

<|XR|2>=A+ %KZ(N(SN —£1) + N2(En +81)). (24)
In this shifted vacuum supersymmetry is broken and the expectation values of the D-terms are:

Dy =1?[pE1+ &) — &1]- (25)

There is also an F-term acquiring vev:

W @t E
Fx, = X x =K P . (26)

Note that all the D-terms are positive. The consequence of this fact is that the matter we assumed to be present at
the boundaries has to have non-negativ&); or U (1) charges. Otherwise, the scalars of a negatively charged
multiplet would get a tachyonic mass and render the model unstable.

The most interesting point in this construction is that, in a natural way, the supersymmetry breaking scale
is suppressed with respect to the fundamental sdéje Recall thatk = V=2, & = ¢2M2. Defining the
supersymmetry breaking scale as the scale of the D-term of the first gv@ggyz D1, we get:

Msusy= eV "tMp. (27)

Fore ~ 0.1, even for a moderate number of replications,Say 10, itis easy to generate a huge hierarchy between

the fundamental and the supersymmetry breaking scale. Hence the ‘desert’ above the TeV scale can simply be a
consequence of the existence of a prodii€t) group at some high energy scale. The origin of the hierarchy is the

fact that supersymmetry breaking is triggered by a non-local, Wilson type object—the superpotential of Eq. (1).
Thus we expect the hierarchy is not particularly sensitive to the technical assumptions we have made.

This picture is slightly modified when the model is embedded in supergravity [13]. The superpotential we
assume here has the forfilsygra = W(SL, Sr) + W(®,), where W(®),) is the same as in the globally
supersymmetric case, see Eq. (1). We do not specify the precise forrnkuift simply assume that it stabilizes
Sr, Sg (in tpe following denoted collectively a$) at the value close to the fundamental sc&fet sy~ Mp, and

that (M p %) R~ (W). Then, to the leading order in tmav/M,%| expansion the scalar potential takes the form

(W) (W)?
~ A 2L 28
V ~ Va.oeaL + (N )Mf, (W+w') W2 (28)
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To avoid a large cosmological constatit/) should cancel the positive vacuum energy generated by the globally
supersymmetric part of the potentiéd ogaL . The latter is dominated by the F-tetfy, , thus we need’s ~ Fy,,.
The gravitino mass can be estimated tohg, = (W)/Mf, ~ Fx./Mp.

Itis interesting to investigate what is the higher-dimensional theory interpretation of the model of supersymme-
try breaking we presented. Let us consider a 5d supersymniétticgauge theory compactified on the orbifold
S1/Z5 [4,6]. The chiral multiplets¥; and X g reside at the two different fixed points—respectively st 0 and
x5 = 7 R. Moreover, there are brane localized Fl terifis;- £16 (x5) + éEx8 (x5 — 7 R). When the fifth dimension
is integrated out one finds a broken Ad= 1 U (1) theory with two chiral multipletsy; and Xg. At the tree-
level X; and X do not couple to each other as they originate from two sequestered branes. However, integrating
out heavy gauge bosons with masses of the order of the cateffll induce a tiny coupling and one expects
W~ A e "RAX; X . We could view this extra-dimensional model as a construction justifying the smallness of
the holomorphic mass term for th¢;, r fields. Rewriting the cutoff agl = N/R, whereN is the number of the
KK modes below the cutoff we ge¥sysy ~ A ¢~ ™V. This should be confronted with/sysy ~ Mpx where
k ~ V. In both cases the supersymmetry breaking is controlled by a moderately small parameter raised to the
power N—number of heavy modes in the theory.

5. Phenomenological consequences

In Section 4 we showed that the scenario with replicdigd)s and a Wilson-type superpotential leads to
supersymmetry breaking, whose scale is naturally much lower than the fundamental scale. Both D-terms and F-
terms expectation values are non-vanishing. In this section we discuss the consequences of such hybrid scenaric
for low energy phenomenology.

Assuming that both FI terms are of the same okdall the scales of the low-energy Lagrangian are determined
interms ofMp, k ande =,/ |§|/M§,. We define the supersymmetry breaking SM&SY as the magnitude of the
D-term of the first group. Orders of magnitude of parameters relevant for low-energy phenomenology are

Msusy~ Mpke, D, ~ pM& sy, Fxy, Fs ~ MsusyMpe, (X1), (@) ~ Mpe. (29)

The pattern of soft masses depends on how MSSM fields are embedded in the model. A matter rRultiplet
charged undet/,, (1) receives soft scalar mass terms from the appropiterm,

mZQ =4qpDp %qPPMéusw (30)
whereg, is the charge ofQ underU(1),. For multiplets neutral unde/ (1) the supersymmetry breaking is
transmitted via Kahler potential, e.g.,

T 2
X XR F
4 R t 2 XR At~ 12 2
P P
and these soft masses pick up an additional factor

Soft Majorana gaugino masses are mediated by the F-terfhaofd are of the same order of magnitude as
neutral scalars,

S Fg
/dZGM—PWaWa—)mA% M_P ~ Msuysye. (32)
This is also the order of magnitude of the gravitino mass.

Thus we see that the MSSM spectroscopy could exhibit two different sifalgsy ande Msysy, that differ by
an order of magnitude. The possibility of such a splitting among superpartner masses is very advantageous from the
phenomenological point of view. If the first two generation squark and leptons are much heavier than those of the
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third generation, then one can reconcile the naturalness bounds with the constraints arising from flavour changing
neutral current processes.

An interesting thing about supersymmetry breaking by anomaloys is that all the necessary ingredients
to implement the Froggatt—Nielsen mechanism [14] are already at hand. The MSSM matter fields need to have
positive U (1) charges (otherwise they would acquire negative mass squares). In Yukawa interactions the excess
charge has to be compensated by coupling to the appropriate power of the negatively chargégd. il (1)
acts differently on the three generations, various Yukawa interactions are suppressed by powers of the parametel

€= g/M%. Note thate has generically the order of magnitude of the Cabbibo angle. In the following we shall
assume =~ 0.2

Froggatt—Nielsen mechanism works also in the produd) case. Proceeding along the lines of [15,16] one
assumes that all quarks are charged under the first gid(z. All quark masses come from supersymmetric
interactions (in general non-renormalizable ones) \iith

hu+qi+u i
X J
L ) , (33)

W:)\il]]-HuQ,'Uj(—

X, ha+qi+d;
Mp

D
+2;;HaQiD; (M—P
where we denote thé (1)1 charges of the higgses, left-handed quarks and right-handed quarksiy q;, u;, d;,
respectively. Various charge assignments leading to acceptable mass and mixing patterns are summarized in
Ref. [16].

The mechanism of fermion mass generation can control also the squark mass pattern. In the flavour basis the
off-diagonal entries in the squark mass matrix originate from the Kahler potential and are expected to be of order
(m2);; ~ M3,ye?t/i=/il. However, in the fermion mass eigenstate basis the non-diagonal contributions in the
squark mass matrix can be generated also from a splitting of diagonal entries in the flavour basis. Thus, to solve the
supersymmetric flavour problem one has to control also the diagonal entries [17]. The dominance of the D-term
breaking considered in Ref. [8] and in the present Letter offers such a mechanism.

6. Conclusions

In this Letter we have studied supersymmetry breaking in theories with a prd@d{ogt group and bi-
fundamental matter. Fayet—lliopoulos terms at the boundary of the group product space together with the Wilson-
line type superpotential trigger supersymmetry breaking. A very interesting thing about this setup is that the scale
of supersymmetry breaking hierarchically lower than the fundamental scale can be generated dynamically.

Furthermore, we have shown that interesting conclusions follow from insisting on a 5d Lorentz invariant
continuum limit of such theories. Cancellation of mixed anomalies requires introducing Wess—Zumino terms in the
4d theory which, in the continuum limit, match the 5d Chern—Simons terms. Hence a consistent UV completion of
our modelis a 5d supersymmettiql) theory that contains the Chern—Simons couplings. Similar conclusions are
expected to hold fot/ (n).
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