Ebinformatics: Ebola fuzzy informatics systems on the diagnosis, prediction and recommendation of appropriate treatments for Ebola virus disease (EVD)

Olugbenga Oluwagbemi, Folakemi Oluwagbemi, Oluyemi Abimbola

Department of Computer Science, Faculty of Science, PMB 1154, Federal University Lokoja, Nigeria

Software Engineering Unit, Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ogun State, Ota, Nigeria

ABSTRACT

Ebola Virus Disease (EVD) also known as the Ebola hemorrhagic fever is a very deadly infectious disease to humankind. Therefore, a safer and complementary method of diagnosis is to employ the use of an expert system in order to initiate a platform for pre-clinical treatments, thus acting as a precursor to comprehensive medical diagnosis and treatments. This work presents a design and implementation of informatics software and a knowledge-based expert system for the diagnosis, and provision of recommendations on the appropriate type of recommended treatment to the Ebola Virus Disease (EVD).

In this research an Ebola fuzzy informatics system was developed for the purpose of diagnosing and providing useful recommendations to the management of the EVD in West Africa and other affected regions of the world. It also acts as a supplementary resource in providing medical advice to individuals in Ebola-ravaged countries. This aim was achieved through the following objectives: (i) gathering of facts through the conduct of a comprehensive continental survey to determine the knowledge and perception level of the public about factors responsible for the transmission of the Ebola Virus Disease (ii) develop an informatics software based on information collated from health institutions on basic diagnosis of the Ebola Virus Disease-related symptoms (iii) adopting and marrying the knowledge of fuzzy logic and expert systems in developing the informatics software. Necessary requirements were collated from the review of existing expert systems, consultation of journals and articles, and internet sources. Online survey was conducted to determine the level at which individuals are aware of the factors responsible for the transmission of the Ebola Virus Disease (EVD). The expert system developed, was designed to use fuzzy logic as its inference mechanism along with a set of rules. A knowledge base was created to help provide diagnosis on the Ebola Virus Disease (EVD). The Root Sum Square (RSS) was adopted as a fuzzy inference method. The degree of participation of each input parameter was shown using the triangular membership function and the defuzzification technique used is the Center of Gravity (CoG).

The resulting software produced a user-friendly desktop-based, Windows-based, application and the tools used were explained in the results section in three (3) separate phases. First, a comprehensive online survey was conducted over a period of about 3–9 months. 100 Participants participated in the survey on the perception and knowledge analysis of different individuals about Ebola Virus Disease (EVD) transmission factors. 31% of the participants didn’t know that there is presently no cure for Ebola. 28% believed that there is presently a cure for Ebola. 28% believed that there is presently a cure for Ebola. 43% agreed that Ebola is both air-borne and water-borne, while 33% disagreed, 24% do not know. 23% believed that insects and mosquitoes can help in transmitting the Ebola Virus Disease (EVD), while 30% were completely ignorant. We noticed that ignorance was a major limiting factor among some participants.

Second, a test was conducted among 45 people. Results from a comprehensive testing of the Ebinformatics software by allowing users to operate and use the software, revealed that 60% of them were satisfied, while 16% were not satisfied with the software, while 24% were indifferent. 69% of the users were in agreement that Ebinformatics was supportive, 20% disagreed, while 11% were indifferent. 67% found the software easy to use, 13% disagreed, while 20% were indifferent. Third, the output of the
1. Introduction

The deadly, scary spate and debilitating effects of the Ebola Virus Disease (EVD) in the West African sub-region, especially in 2014, left terrifying, untold hardships and discrimination mostly among the affected West African countries [1–3]. Many are yet to fully recover from the Ebola scare and the psychological trauma it generated. It is a known fact that the Ebola Virus Disease (henceforth, EVD), is a very contagious and deadly disease. Presently, there is no globally recognized or known cure for the disease. Other problems associated with the disease are lack of proper knowledge in diagnosing and managing the disease especially among countries in Sub-Sahara Africa. In some cases, lack of proper training for medical experts to effectively and efficiently manage the disease constitutes a problem. With these in view, there is need for a practical implementation of a complementary system that can diagnose and provide excellent recommendations to individuals in order to curb the spread of the disease. Such system will also act as a supporting tool for medical experts and resident doctors in training. The aim of this research is to develop an Ebola Fuzzy Informatics system for the purpose of diagnosing and providing useful recommendations for the management of the EVD in West Africa and other affected regions of the world. It will also help in providing medical and health advice to individuals in Ebola – ravaged countries. In order to achieve the specified aim, the following objectives will be achieved. They are (i) Gather facts by conducting a comprehensive preliminary survey to determine the perception of the public about factors responsible for the spread of the Ebola virus (ii) develop a system based on modeled facts for the basic diagnosis and provision of recommendations on the Ebola Virus Disease (iii) adopt the knowledge of fuzzy logic and expert systems concept developing the proposed system. As a result of the recent pandemic and great epidemic of EVD in West Africa [1–3] in 2014, it is evident that there is an urgent need of an informatics system that can be made available to people irrespective of their geographical location or region. This will provide individuals with the necessary support in diagnosing and providing appropriate recommendations to users of the informatics software.

2. Materials and methods

2.1. Review of relevant literature

Many works have been conducted in times past with respect to developing diagnosis and predictive-related informatics applications for disease management. Eslami and colleagues [4] developed an expert system with the ability to appropriately and correctly diagnose and provide recommendations for the management of infectious diseases. In the recent years, Auger-Ouvrard et al. [5] developed a system that could be used to identify patients with the Ebola virus and predict their infectiousness. Other similar systems include the one developed by Eslami et al. [6], which uses fuzzy logic and artificial neural networks to diagnose and provide recommendations for the management of infectious diseases.

Fig. 1a. EbInformatics Software depicting the symptoms of Patient 0002. The EbInformatics graphical user interface depicting the three different sections of the software. These are the basic information section, symptoms selection section and other follow-up question section. Here, some symptoms were selected for the diagnosis of patient 0002. Patient 0002 is a male patient, aged between 19 and 24; The symptoms selected for patient 0002 were: Bleeding Eyes – Mild; Cough (Bloody) – Moderate; Bleeding Gums – Severe; Bleeding Mouth – Mild; Bleeding Nose – Moderate; Breathing Difficulties – Severe; Chest Pain – Severe; Fever – Mild; Fatigue – Severe; Current region of residence was Europe. No country visited by the patient in the last 1 week or 1 month or in the last 3 months.
analyze the responses data collated from people with the use of questionnaires to diagnose headache. Yasnoff and Miller [5] developed a decision support system in the aspect of childhood immunization forecasting. In another study, Woolery and Gryzmal-Busse [6] explored the feasibility of applying machine learning to generate predictive expert system for preterm delivery. Klausner and colleagues [7] developed a guideline software that can assist to provide health care system with optimal clinical practice. A useful fuzzy expert system was developed by Azim and colleagues [8] for the detection of fatigue among drivers in order to prevent road accidents. Alder and colleagues [9] conducted a review on different expert systems that have been developed and applied Rheumatology. Duan and colleagues [10] applied the knowledge of prefix-tree to create a Nursing care recommender system. Ati and colleagues [11] developed a hybrid recommendation system for chronic diseases by adopting the multiple classification and unified collaborative filtering methods. Shortlife [12] conducted a review on expert systems in the field of medicine and possible systems that will be useful to physicians in the future. Amindito and colleagues [13] developed an expert and advisory system for the prevention of stroke. Another set of scientists developed a fuzzy expert system for the diagnosis and management of male impotence [14]. Mialafiya and Isiaka [15] developed an expert system to diagnose and proffer treatment for Hepatitis B. Brasil and colleagues developed a hybrid expert system to provide diagnosis and advisory services for Epilepsy crisis [16]. In another research, Saritas and colleagues [17] developed a fuzzy expert system for the diagnosis and analysis of prostate cancer. In another study, a rule-based expert system was developed for fever diagnosis by Tunmibi and colleagues [18]. A computer-based expert system for malaria environmental diagnosis was developed by Oluwagbemi and colleagues [19]. They also went further to develop a knowledge-based data mining and secured system for the purpose of diagnosing and managing malaria cases [20,21]. Another set of researchers developed expert systems for diagnosing breast diseases [22]. Fuzzy expert systems and set theories have also been applied to the diagnosis of diseases [23–24].

3. Data collation

3.1. Data gathering

First, data gathering was conducted by a preliminary survey among participants from various scientific disciplines among West African countries and South Africa. The ages of the participants ranged from 18 to 45. The participants involved both academicians with degrees and few with no formal education. The survey was conducted online by using the surveymonkey platform to ascertain the level of knowledge and perception of people about the EVD by administering questionnaires (see Supporting material 1). The responses collected from a sample of 100 people were analyzed as shown in Figs. 5.1.1–5.1.19; Tables 1 and 2.

Articles, research papers, journals and news updates were consulted in the data gathering process of this project and helped in constructing stimulating questions for the questionnaires. However, due to time constraints and logistics, we could not administer questionnaire to inhabitants of core local communities and villages. From the survey conducted, an appreciable number of people are aware and knowledgeable of the symptoms and factors responsible for the transmission of EVD. However, some sets of people lack that knowledge especially in other parts of the West African region. It is therefore pertinent that an Ebola informatics support system be developed to provide advisory and recommender services to people. (Fig. 5.1.20 and Fig. 4)

3.2. Brief description of the demographics of the participants

100 participants, from two major African regions, (West Africa and South Africa), took part in this survey. Out of the 100 people, 98 were from West African countries, while only 2 were from South Africa. 69(69%) Males and 31(31%) females participated in the knowledge and perception survey about the transmission factors responsible for the spread of Ebola Virus Disease (EVD). The people that participated in the survey were from four major divisions namely the Physical Sciences (Maths, Physics, Computer Sciences, Statistics, Chemistry, Geology, Geophysics), the Biological Sciences (Health Sciences, Medicine, Pharmacy, Biology, Biochemistry, Microbiology, Botany, Physiotherapy, Anatomy), Others group (Law, Engineering, Arts, Social Sciences, Business) and

![Fig. 1b. Diagnosis result and recommendation of Ebinformatics Software for Patient 0002. This interface shows the results generated by Ebinformatics software about the diagnosis conducted on Patient 0002.](Image)

![Fig. 2. Response analysis from Ebinformatics user evaluation survey. Result of responses collected from a sample of 45 people, the y-axis represents the population and the x-axis represents the features and functionalities of the Ebinformatics software.](Image)
finally, the Unlearned group. 91% of the participants were from the Physical Sciences, while 4% are respectively from Biological Sciences, and the other group like Law, Engineering, Social Sciences, and Business. 1% represents the unlearned group. The highest academic qualification of the survey participants are as follows: 78 (78.79%) were BSc degree holders or undergraduates, 4(4.04%) were MSc degree holders or Masters students or Mphil/PhD students. 3(3.03%) were PhD degree holders. 12(12.12%) were high school students or adult education or literacy classes. 2(2.02%) had no formal education (see Tables 1 and 2).

3.3. Architecture of Ebinformatics

Second, information that was sourced from different scholarly literature were used to develop an expert system (Ebinformatics) by adopting fuzzy logic techniques for the diagnosis of and the provision of useful advice and recommendations on how to contain Ebola (see Fig. 2). The expert system (Ebinformatics) was developed to be able to diagnose, suggest or predict an individual’s probability of having the EVD. It also provides useful advice to the individuals. Prediction is based on user’s input of symptoms and other catalyst factors. The two main components of this system are the Knowledge base and the Inference engine. The knowledge base consists of fuzzy rules and facts on the Ebola Virus Disease. The inference engine revolves around the concept of fuzzy logic; it performs the major functions of fuzzification, fuzzy inference and defuzzification to arrive at the final predictions. The architecture and flowchart of Ebinformatics is depicted in Fig. 1a and 1b respectively.

The knowledge base of Ebinformatics was developed through effective knowledge engineering of data and facts gathered from different sources. It contains a well-defined representation of the knowledge on the Ebola virus. It also consists of a set of rules for the symptoms which are used by the inference engine to make

Fig. 3. Design methodology used in the development of the Ebinformatics software.

Fig. 4. Architectural design of the Ebinformatics system. The rectangles represent some of the system components and the rounded rectangles represents some processes involved in the system development.
predictions and facts which represent symptoms, risk factors and actual advices stored in a database.

The inference engine of Ebinformatics is where the prediction takes place using the concept of Fuzzy logic. The inference engine acts as interpreter which analyzes and processes the rules in the knowledge base [25]. It does this first by fuzzification, then the fuzzy inference and lastly defuzzification to produce final predictions. Fuzzification helps to convert crisp quantities to fuzzy values. The fuzzy inference helps to map inputs into corresponding outputs by applying the theory of fuzzy sets. Finally, the defuzzification process helps to transform the output into a crisp result [26]. The inference engine technique adopted by the Ebinformatics system is the Root Sum Square (RSS). The defuzzification technique used in the system is the Center of Gravity (CoG). The Ebinformatics inference engine used the rule in the knowledge-base to derive conclusions based on the rule and also made use of the forward chain inference mechanism, so as to gather facts before arriving at conclusions. The Ebinformatics software was implemented as a Windows desktop application by programming in C# .Net and the database used was the SQL server.

![Flowchart of Ebinformatics](image-url)

Fig. 5. The Flowchart of Ebinformatics. This diagram represents the general work flow and basic usage of the system.
3.4. Design methodology of Ebinformatics software

The design methodology employed in developing the Ebinformatics software was patterned according to the approach depicted by Kulani [27] in a graphical and schematic view of the tasks involved in the development of the system with time.

Fig. 3 below illustrates the design methodology used in the development of the Ebinformatics software. In this methodology, the programmer can go back to previous phases of design from any phase at any time.

The diagram shows a graphical view of the tasks involved in the development of the system with time (Source: Kulani, 2012) [27].

Third, a comprehensive user-testing of the software (Ebinformatics) was conducted after the software had been developed. Another questionnaire for evaluating Ebinformatics software’s performance was prepared (see Supporting material 2) and administered to 45 people. The questionnaire for evaluation was evaluated on about 20 different parameters. The results for this are presented in the results section (see Fig. 2).

4. Decision support mechanism in Ebinformatics

4.1. Knowledge base

The Knowledge base helps to allocate memory to store transformed information about decision variables in the diagnosis of Ebola Virus Disease (EVD). These facts comprise of signs and symptoms of EVD, while the rules represent patterns to draw deductions from, based on available information. The database consists of Disease-Physical-Signs, Disease-Symptoms, results of diagnostic tests and Patient Diagnosis.

4.1.2. Fuzzy logic

The Ebinformatics diagnosis process takes advantage of the strength of fuzzy logic component in the following progression:

4.1.2.1. Fuzzification of input variables into Ebinformatics. Given a fuzzy set B, defined in (Eq. (1)), representing Ebola Virus Disease diagnosis variables with element denoted by y_i, the fuzzification process involves translating raw input value of each variable into a fuzzy term obtained from set \{mild, mod erate, severe\} defined over the variables. Such values are derived from functions defined to determine the degree of membership of each variable in the fuzzy set (Eq. (1)).

\[B = \{ (y_i, \mu_B(y_i)) \mid y_i \in V, \mu_B(y_i) \in [0, 1] \} \]

(1)

Fuzzification is actually done using the function defined in Eq. (2)

\[\mu_B(y_i) = \begin{cases}
1 & \text{if } y_i < a \\
\frac{y_i - a}{b - a} & \text{if } a \leq y_i < b \\
\frac{c - y_i}{c - b} & \text{if } b \leq y_i < c \\
0 & \text{if } c < y_i
\end{cases}
\]

(2)

where \(\mu_B(y_i) \) is the MF (Membership Function) of \(y_i \) in B using triangular MF while \(\mu_B \) is the degree of membership of \(y_i \) in \(B \), \(a \), \(b \), and \(c \) are parameters of the MF which governs its triangular shape and each attribute is described with lingual terms.
4.1.2.2. Establishment of fuzzy rule base. The rule base for Ebola diagnosis in Ebinformatics is characterized by a set of IF-THEN rules in which the IF parts and THEN parts involve linguistic variables.

The rules were formulated and constructed with the help of medical and research professionals in the management of Ebola and on consultation with existing standard scientific literature.

A rule is executed if the precedence parameters such as mild, moderate and severe evaluate to TRUE, otherwise, no action is performed.

4.1.2.3. Fuzzy inference engine. The fuzzy inference engine is an engine that controls the logic that governs decision making. It achieves this by applying operations from rule base to values of variables input received. Here, the Root Sum Square (RSS) is applied to combine the effects of executed rules in order to draw meaningful inference.

\[
\text{RSS} = \sum_{s=1}^{n} R_s^2
\]

where \(R_s \) is a fired rule where \(s \in 1, \ldots, n \) is the identifier of rules that have been executed, where Eq. (3) can be expanded into Eq. (4) as shown below:

\[
\sqrt{\sum R_s^2} = \sqrt{R_1^2 + R_2^2 + R_3^2 + R_4^2 + R_5^2 + R_6^2 + \ldots + R_n^2}
\]

Here, \(R_1^2 + R_2^2 + R_3^2 + R_4^2 + R_5^2 + R_6^2 + \ldots + R_n^2 \) represent the strength values of different rules which share the same results.

\(R \) is the value of having a rule executed. This RSS method integrates the effects of all applicable rules, scales the functions of such rules at their respective magnitude and finally computes the fuzzy centroid of the composite area.

This method was chosen above all other methods because it provides the best weighted influence to all rules that are being executed.

4.1.2.4. Defuzzification of output values. The output values can be defuzzified by translating the results of the inference engine into compact values. These compact values provide assistance in efficient diagnosis. The development of the operations of the Ebinformatics software employs Center of Gravity (CoG) or Centroid of

Fig. 5.1.2. Age classification of participants in Survey. This figure shows the responses of survey participants by age classification.
Area (CoA) method for its defuzzification by applying Eq. (5).

\[\text{CoA} = \frac{\sum_{i=1}^{n} \mu Y(y_i) y_i}{\sum_{i=1}^{n} \mu Y(y_i)} \]

(5)

where \(\mu Y(y_i) \) is the degree of \(y_i \) in a membership function, while \(y_i \) is the center value in the function.

What informed our choice of this methodology is the computational flexibility, ease and intuitive plausibility that this approach provides.

4.1.2.5. Fuzzification process. Different types of fuzzifiers can be used to achieve fuzzification which involves transforming a real scalar value into a fuzzy value. Of the four (4) types of fuzzifiers namely: Singleton, Gaussian, Triangular and Trapezoidal fuzzifiers [47], the triangular fuzzifier was adopted for the purpose of this research. Fuzzification process occurs through the selection of input parameters into horizontal axis and vertical projection to obtain the membership degree.

For the purpose of this research, the description of the input and output parameters was based on three linguistic variables (mild, moderate, and severe). The fuzzy value range for these variables is described in Table 4 below. Fuzzy sets are constructed for parameters as shown in Eqs. (6)–(8). The range of fuzzy value for each linguistic is shown in Table 4 below:

\[\mu_{\text{Mild}}(Y) = \begin{cases} 0 & \text{if } y \leq 0.1 \\ \frac{y - 0.1}{0.2} & \text{if } 0.1 \leq y \leq 0.3 \\ \frac{y - 0.3}{0.2} & \text{if } 0.2 \leq y \leq 0.3 \\ 0 & \text{if } y \geq 0.2 \end{cases} \]

(6)

\[\mu_{\text{Moderate}}(Y) = \begin{cases} 0 & \text{if } y \leq 0.3 \\ \frac{y - 0.3}{0.2} & \text{if } 0.3 \leq y \leq 0.6 \\ \frac{y - 0.6}{0.3} & \text{if } 0.45 \leq y \leq 0.6 \\ 0 & \text{if } y \geq 0.45 \end{cases} \]

(7)

\[\mu_{\text{Severe}}(Y) = \begin{cases} 0 & \text{if } y \leq 0.5 \\ \frac{y - 0.6}{0.1} & \text{if } 0.6 \leq y \leq 0.8 \\ \frac{y - 0.8}{0.2} & \text{if } 0.7 \leq y \leq 0.8 \\ 0 & \text{if } y \geq 0.8 \end{cases} \]

(8)

It should be noted that the region of residence of a patient, and whether the patient has visited any recently hit Ebola country in West Africa, or whether the patient had previously visited any Ebola stricken country collectively influence the prediction of the intensity of possible individual Ebola infection (as shown in Table 5 above).
Some of the rules (Rules 1, 3, and 11) in Table 5 can be interpreted as follows:

Rule1: IF Bleeding Eyes = mild and Bloody cough = moderate and Bleeding gums = severe and Bleeding mouth = severe and backache = moderate and Breathing difficulty = severe and Chest Pain = moderate and Fever = moderate and Fatigue = moderate and Patient resides in West Africa, and patient has lived in or visited Sierra Leone in the last week or last 1 month and patient has visited any Ebola affected country in the last 3 months THEN possibility of having Ebola Virus Disease (EVD) = **HIGH**
Rule 3: IF Bleeding Eyes = mild and Bloody cough = mild and Bleeding gums = mild and Bleeding mouth = mild and Back-ache = mild and Breathing difficulty = mild and Chest Pain = mild and Fever = mild and Fatigue = mild and Patient resides in Europe, and patient has NOT lived in nor visited any Sierra Leone, Guinea, Mali, and Liberia, in the last 1 week or last 1 month and has NOT visited nor lived in any Ebola affected country in the last 3 months THEN possibility of having Ebola Virus Disease (EVD) = LOW

Rule 11: IF Bleeding Eyes = mild and Bloody cough = mild and Bleeding gums = severe and Bleeding mouth = severe and Backache = mild and Breathing difficulty = mild and Chest Pain = severe and Fever = severe and Fatigue = severe and Patient resides in Africa, and patient has NOT lived in or nor visited Sierra Leone, Guinea, Mali and Liberia in the last week or last 1 month and patient has NOT visited any Ebola affected country in the last 3 months THEN possibility of having Ebola Virus Disease (EVD) = MEDIUM

4.2. EbInformatics Algorithm

The Algorithm for the Ebola diagnostic process is as follows:

Step 1: Enter the signs and symptoms of patient into EbInformatics software, where $s_1, s_2, s_3, s_4, s_5, s_6, s_7, \ldots s_n$ is the number of signs and symptoms.

Step 2: Knowledge-base is searched for the possible disease d from the list of diseases d_1, d_2, d_3 whose signs and symptoms have been specified.

Step 3: The weighing factors (wf) are gotten. In this case $wf = 1, 2, 3$ where Mild = 1, Moderate = 2 and Severe = 3.

Step 4: Fuzzy rules are applied.

Step 5: Degree of membership is determined by associating respective weighing factors with fuzzy inputs through mapping.

Step 6: Rule base are determined.

Step 7: Execution strength of the rules are determined.

Step 8: Determine each rule’s degree of truth through the non-zero minimum evaluation.

Step 9: Calculate the intensity of Ebola Virus Disease by factoring whether a patient has lived in or visited an Ebola endemic country before presenting the final intensity of the disease.

Step 10: Provide the output of the diagnosis.

Step 11: Provide the appropriate recommendation.

4.3. Experimental sample on Ebola Virus Disease (EVD)

Some paradigms are true about EVD. (i) The chances of survival become increased especially through an early identification of the disease. (ii) Sharing common symptoms with other infectious diseases can make it tedious to identify the specific disease in question.

In such a situation, fuzzy algorithm plays a very important role. Suppose for instance we considered a set of three diseases D, and
Fig. 5.1.6. Survey response of participants to know if general feverish conditions are parts of the symptoms of Ebola Virus Disease (EVD). This figure highlights the responses of survey participants to know if general feverish conditions are parts of the symptoms of Ebola Virus Disease (EVD).

Fig. 5.1.7. Survey response of participants to know if Ebola Virus Disease (EVD) presently has a cure. This figure highlights the responses of survey participants to know if Ebola Virus Disease (EVD) presently has a cure.
Fig. 5.1.8. Survey response of participants to know if Ebola Virus Disease (EVD) can be transmitted by touching infected dead bodies. This figure highlights the responses of survey participants to know if Ebola Virus Disease (EVD) can be transmitted if an uninfected person touches a dead person who died as a result of Ebola infection.

Fig. 5.1.9. Survey response of participants to know if fruit bats are the primary carriers of Ebola Virus Disease (EVD). This figure highlights the responses of survey participants to know if fruit bats are the primary carriers of Ebola Virus Disease (EVD).
medical professionals defined sets of signs and symptoms S relevant to a particular infectious disease (say Ebola Virus Disease (EVD)).

$$D = \{d_1, d_2, d_3\}$$
d where d_1, d_2, d_3 represents the three different infectious diseases.

$$S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7, \ldots \ldots \ldots \ldots s_n\}$$
de where $s_1, s_2, s_3, s_4, s_5, s_6, s_7, \ldots \ldots \ldots \ldots s_n$ represents the signs and symptoms of a particular infectious disease.

In order to specify the intensity of the signs and symptoms for a specific patient, weighing factors were applied to the set S, thus assigning fuzzy values to the signs and symptoms. Fuzzy values were derived from the fuzzy set:

$$(\text{Mild}(1), \text{Moderate}(2), \text{Severe}(3))$$

The patient’s health state with respect to Ebola Virus Disease (EVD), was evaluated based on signs, symptoms and personal investigations. We rated the intensity of signs and symptoms as mild(1), moderate(2) and severe(3).

From Table 6 above, it is ambiguous to say a patient has low or moderate fever, low chest pain, low bleeding nose, and moderate bleeding gums. It is thus essential to specify the degree to which one can actually say a sign and symptom is low, moderate and severe. A fuzzifier helps with these. The fuzzifier employed for this purpose is the triangular fuzzifier (see Eq. (2)).

Table 7 defines the degree to which we can say signs and symptoms are mild, moderate and severe. For instance if a patient tells a medical doctor that he or she has a severe chest pain, the doctor assigns 3 (out of 3) value to the chest pain. Thus, the system will evaluate the degree of the chest pain as $(3 - 1)/3 = 2/3 = 0.6667 \approx 0.67$ by applying triangular fuzzifier to derive the triangular fuzzy numbers.

Derived triangular values for Ebola Virus Disease (EVD) signs/symptoms are as shown in Table 7.

From the 14 rules executed in Table 8, only 11 of the rules generated non-zero minimum values.

By applying the RSS inference technique, the output membership function strength for each variable (mild, moderate, severe) was computed from possible rules (R1-R14).

Mild $$= \sqrt{R_2^2 + R_9^2}$$

$$= \sqrt{0.33^2 + 0.33^2}$$

$$= \sqrt{0.33^2 + 0.33^2}$$

$$= \sqrt{0.1089 + 0.1089}$$

$$= 0.2718$$

$$= 0.1359$$

Moderate$$= \sqrt{R_2^2 + R_9^2}$$

Severe $$= \sqrt{R_1^2 + R_2^2 + R_3^2 + R_4^2 + R_5^2 + R_6^2 + R_7^2 + R_8^2 + R_9^2 + R_{10}^2 + R_{11}^2 + R_{14}^2}$$

$$= \sqrt{0.67^2 + 0.67^2 + 0.67^2 + 0.67^2 + 0.67^2 + 0.67^2 + 0.67^2 + 0.67^2 + 0.67^2 + 0.67^2 + 0.67^2 + 0.67^2}$$

$$= 3.5912^2 = 1.7956$$

This fuzzy set as highlighted above is now defuzzified into produce compact outputs.
Fig. 5.1.11. Survey response of participants to know if only mammals can get infected with and spread the Ebola Virus Disease (EVD). This figure highlights the responses of survey participants to know if only mammals can get infected with or spread Ebola Virus Disease (EVD).

<table>
<thead>
<tr>
<th>Answer Choices</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>58.59%</td>
</tr>
<tr>
<td>No</td>
<td>16.16%</td>
</tr>
<tr>
<td>I don't know</td>
<td>25.25%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.1.12. Survey response of participants to know if the Ebola Virus Disease (EVD) can be transmitted through body contacts without contact with body fluids. This figure highlights the responses of survey participants to know if Ebola Virus Disease (EVD) can be transmitted through body contacts without contact with body fluids.

<table>
<thead>
<tr>
<th>Answer Choices</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>59.00%</td>
</tr>
<tr>
<td>No</td>
<td>34.00%</td>
</tr>
<tr>
<td>I don't know</td>
<td>7.00%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 5.1.13. Survey response of participants to know if the Ebola Virus Disease (EVD) is both Air-borne and water borne. This figure highlights the responses of survey participants to know if Ebola Virus Disease (EVD) is both air-borne and water borne.

Fig. 5.1.14. Survey response of participants to know if washing of hands reduces the risk of contacting the Ebola Virus Disease (EVD). This figure highlights the responses of survey participants to know if washing of hands and the use of hand sanitizers can reduce the chances or risks of contacting the Ebola Virus Disease (EVD).
Fig. 5.1.15. Survey response of participants to know if the Ebola Virus Disease (EVD) can be transmitted through body hugs, kissing and hand shaking. This figure highlights the responses of survey participants to know if the Ebola Virus Disease (EVD) can be transmitted by body hugs, kissing, and hand shaking especially with contact with body fluids during these acts.

Fig. 5.1.16. Survey response of participants to know if Ebola can be transmitted by consuming bush meat. This figure highlights the responses of survey participants to know if Ebola can be transmitted by consuming bush meat. 50% of the respondents selected YES.
Fig. 5.1.17. Survey response of participants to know if Ebola symptoms and Malaria symptoms share certain things in common. This figure highlights the responses of survey participants to know if malaria symptoms can be associated with Ebola symptoms.

Fig. 5.1.18. Survey response of participants to know if skin irritations and hair loss are symptoms of Ebola Virus Disease (EVD). This figure highlights the responses of survey participants to know if skin irritations and hair loss are symptoms of Ebola Virus Disease (EVD).
Using the CoG technique, we defuzzify as follows:

\[
\text{Output} = \frac{(0.33 \times 0.2) + (0.1359 \times 0.45) + (1.7956 \times 0.7)}{0.33 + 0.1359 + 1.7956}
\]

\[
= \frac{0.066 + 0.061 + 1.257}{0.33 + 0.1359 + 1.7956} = \frac{1.384}{2.2615} = 0.611 = 0.61
\]

= 61% possibility which is falls into the MEDIUM intensity.

Entering the symptoms of Patient 0002 into EbInformatics software, it yielded a MEDIUM intensity = 58.65% ± 60% (See...
It was assumed that such a patient has never visited any Ebola endemic country. This helps to validate the correlation of EbInformatics prediction with the results derived from Equations (See Table 9).

We should bear in mind that the current region of residence, Ebola endemic Countries visited or lived in (Guinea, Liberia, Sierra Leone, Mali), in the last 1 week or 1 month and Ebola endemic countries visited or lived in, in the last 3 months all were designed separately but they have the tendency of influencing the intensity of predicted EVD if integrated into the results predicted by the Fuzzy-predicted method. Fuzzy logic is a type of logic where truth values range between 0 and 1 [48]. The introduction of linguistic variables to fuzzy logic makes fuzzy logic very applicable in many artificial intelligence-related applications [49,50,51]. Fuzzy logic and Bayesian classifiers address different variations of uncertainty. Fuzzy set theory adopts and applies the concept of fuzzy set membership. Some Schools of thought showed that probability theory is a “subset” of fuzzy logic. Some went further to derive Baye’s theorem from the concept of Fuzzy subsethood, while others were able to fuzzify probability to fuzzy probability and provide a generic application of it to possibility theory [52]. Thus, we chose fuzzy logic algorithm because of its computational simplicity and the intuitive plausibility it provides as a result of its adoption.

5. Results

5.1. Survey results on Knowledge and Perception Analysis of Ebola transmission factors

First, from the survey was re-conducted on the knowledge and perception of individuals about factors responsible for the

Table 2

Demographic information about users that participated in the knowledge and perception survey of Ebola Virus Disease (EVD) transmission factors.

<table>
<thead>
<tr>
<th>Participants</th>
<th>Region of participants</th>
<th>Types of participants [field of study]</th>
<th>Age [bracket]</th>
<th>Gender [M—male and F—female]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduates or BSc degree holders 78 (78.79%) West African countries 98 (98%)</td>
<td>Physical Sciences 91(91%) Biological Sciences 4(4%)</td>
<td>18–24</td>
<td>Male 69 (69%) Female 31 (31%)</td>
<td></td>
</tr>
<tr>
<td>MSc students, MSc degree holders, Mphil/PhD degree holders 4 (4.04%)</td>
<td>Other fields (Law, Engineering, Business, Social Sciences) 4(4%)</td>
<td>25–34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhD degree holders 3 (3.03%) South Africa 2 (2%)</td>
<td></td>
<td>35–44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School students, Adult Education, Literacy class products 12 (12.12%) No formal education 2 (2.02%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.1.20. Survey response of participants to know if Ebola Virus Disease (EVD) can be contained by isolating and providing special treatments to infected patients. This figure highlights the responses of survey participants to know if Ebola Virus Disease (EVD) can be contained by isolating and providing special treatments to infected patients.
transmission of EVD. The response analysis result is shown in Table 1. This result shows that there were appreciable number of people with good knowledge and perception about factors responsible for the transmission of EVD. However, there were other sets of people that had very poor knowledge and perception of factors responsible for the transmission of EVD.

23 (23%) of the participants agreed that it is possible for insects or mosquitoes to aid in the transmission and spread of the Ebola Virus Disease, 30 (30%) are ignorant about this. 47 (47%) of the participants agreed that the Ebola Virus Disease is a fear and a threat to the general public.

Table 3
Criterion for Ebinformatics testing and evaluation.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Evaluation Criterion</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ability</td>
<td>This criterion checks whether EBINFORMATICS has the ability to identify or diagnose users ailments based on the symptoms they have supplied to the software.</td>
</tr>
<tr>
<td>2</td>
<td>Data Validation 1</td>
<td>This criterion helps to check whether EBINFORMATICS accepts appropriate data type for each field.</td>
</tr>
<tr>
<td>3</td>
<td>Data Validation 2</td>
<td>This criterion helps to ascertain if EBINFORMATICS prompts error message whenever wrong data is supplied or when important input fields are omitted.</td>
</tr>
<tr>
<td>4</td>
<td>Sufficiency</td>
<td>This criterion helps users to check if EBINFORMATICS is sufficiently robust.</td>
</tr>
<tr>
<td>5</td>
<td>Security</td>
<td>This criterion is profitable in ascertaining whether EBINFORMATICS possesses adequate access control (security).</td>
</tr>
<tr>
<td>6</td>
<td>Intention to Use</td>
<td>This criterion is profitable in ascertaining whether EBINFORMATICS will act as a complementary resource for supplementary healthcare support.</td>
</tr>
<tr>
<td>7</td>
<td>Ease of Use 1</td>
<td>This Ease of Use 1 criterion helps to check if EBINFORMATICS software is very easy to use.</td>
</tr>
<tr>
<td>8</td>
<td>Satisfaction</td>
<td>This criterion helps to ascertain if users are actually satisfied with the services provided by EBINFORMATICS.</td>
</tr>
<tr>
<td>9</td>
<td>Supportive</td>
<td>This criterion checks if EBINFORMATICS will be particularly supportive to developing countries with recent incidences of Ebola Outbreak.</td>
</tr>
<tr>
<td>10</td>
<td>Useful</td>
<td>This criterion helps to check if EBINFORMATICS would be useful as an Ebola-supporting software.</td>
</tr>
</tbody>
</table>

Table 4
Ebinformatics Range of Fuzzy Values.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Linguistic variables</th>
<th>Fuzzy values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mild</td>
<td>0.1 ≤ y < 0.3</td>
</tr>
<tr>
<td>2</td>
<td>Moderate</td>
<td>0.3 ≤ y < 0.6</td>
</tr>
<tr>
<td>3</td>
<td>Severe</td>
<td>0.6 ≤ y < 0.8</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Rule no</th>
<th>Bleeding eyes</th>
<th>Bloody cough</th>
<th>Bleeding gums</th>
<th>Breathing difficulty</th>
<th>Chest pain</th>
<th>Fever</th>
<th>Fatigue</th>
<th>Region</th>
<th>Countries visited</th>
<th>3-months visit</th>
<th>Conclusion</th>
<th>Ebola intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mild</td>
<td>Moderate</td>
<td>Mild</td>
<td>Severe</td>
<td>Severe</td>
<td>Moderate</td>
<td>Mild</td>
<td>Backache</td>
<td>West Africa</td>
<td>Sierra Leone</td>
<td>Yes</td>
<td>High (82.06%)</td>
</tr>
<tr>
<td>2</td>
<td>Moderate</td>
<td>Mild</td>
<td>Moderate</td>
<td>Severe</td>
<td>Severe</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Backache</td>
<td>America</td>
<td>None</td>
<td>No</td>
<td>High (80%)</td>
</tr>
<tr>
<td>3</td>
<td>Mild</td>
<td>Moderate</td>
<td>Mild</td>
<td>Mild</td>
<td>Mild</td>
<td>Severe</td>
<td>Mild</td>
<td>Backache</td>
<td>Europe</td>
<td>None</td>
<td>No</td>
<td>Low (0%)</td>
</tr>
<tr>
<td>4</td>
<td>Moderate</td>
<td>Mild</td>
<td>Moderate</td>
<td>Severe</td>
<td>Severe</td>
<td>Moderate</td>
<td>Mild</td>
<td>Backache</td>
<td>Middle East</td>
<td>None</td>
<td>No</td>
<td>Medium (54.52%)</td>
</tr>
<tr>
<td>5</td>
<td>Mild</td>
<td>Mild</td>
<td>Severe</td>
<td>Severe</td>
<td>Severe</td>
<td>Severe</td>
<td>Mild</td>
<td>Backache</td>
<td>Africa</td>
<td>Guinea</td>
<td>Yes</td>
<td>High (80.32%)</td>
</tr>
<tr>
<td>6</td>
<td>Mild</td>
<td>Mild</td>
<td>Mild</td>
<td>Mild</td>
<td>Mild</td>
<td>Severe</td>
<td>Mild</td>
<td>Backache</td>
<td>Africa</td>
<td>Mali</td>
<td>Yes</td>
<td>High (80%)</td>
</tr>
<tr>
<td>7</td>
<td>Moderate</td>
<td>Mild</td>
<td>Moderate</td>
<td>Severe</td>
<td>Severe</td>
<td>Moderate</td>
<td>Mild</td>
<td>Backache</td>
<td>Africa</td>
<td>South Africa</td>
<td>Yes</td>
<td>High (80%)</td>
</tr>
<tr>
<td>8</td>
<td>Mild</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Severe</td>
<td>Moderate</td>
<td>Mild</td>
<td>Backache</td>
<td>Africa</td>
<td>Asia</td>
<td>No</td>
<td>Low (0%)</td>
</tr>
<tr>
<td>9</td>
<td>Mild</td>
<td>Mild</td>
<td>Mild</td>
<td>Mild</td>
<td>Moderate</td>
<td>Mild</td>
<td>Mild</td>
<td>Backache</td>
<td>Africa</td>
<td>South Africa</td>
<td>None</td>
<td>Medium (59.52%)</td>
</tr>
<tr>
<td>10</td>
<td>Moderate</td>
<td>Mild</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Severe</td>
<td>Moderate</td>
<td>Mild</td>
<td>Backache</td>
<td>Africa</td>
<td>Asia</td>
<td>Yes</td>
<td>Medium (59.52%)</td>
</tr>
<tr>
<td>11</td>
<td>Mild</td>
<td>Moderate</td>
<td>Mild</td>
<td>Moderate</td>
<td>Severe</td>
<td>Moderate</td>
<td>Mild</td>
<td>Backache</td>
<td>Asia</td>
<td>Liberia</td>
<td>Yes</td>
<td>Medium (56.23%)</td>
</tr>
<tr>
<td>12</td>
<td>Moderate</td>
<td>Mild</td>
<td>Moderate</td>
<td>Medium</td>
<td>Severe</td>
<td>Moderate</td>
<td>Mild</td>
<td>Backache</td>
<td>Asia</td>
<td>South Africa</td>
<td>No</td>
<td>Low (55%)</td>
</tr>
<tr>
<td>13</td>
<td>Mild</td>
<td>Mild</td>
<td>Mild</td>
<td>Moderate</td>
<td>Mild</td>
<td>Moderate</td>
<td>Mild</td>
<td>Backache</td>
<td>Africa</td>
<td>Liberia</td>
<td>No</td>
<td>Medium (59.52%)</td>
</tr>
<tr>
<td>14</td>
<td>Moderate</td>
<td>Mild</td>
<td>Moderate</td>
<td>Mild</td>
<td>Mild</td>
<td>Severe</td>
<td>Mild</td>
<td>Backache</td>
<td>Liberia</td>
<td>Asia</td>
<td>Yes</td>
<td>Medium (59.52%)</td>
</tr>
</tbody>
</table>
Table 6
Weights assigned to patients by doctors who have interacted with such patients.

<table>
<thead>
<tr>
<th>Patients no.</th>
<th>Bleeding eyes</th>
<th>Bloody cough</th>
<th>Bleeding gums</th>
<th>Bleeding mouth</th>
<th>Breathing difficulty</th>
<th>Chest pain</th>
<th>Fever</th>
<th>Fatigue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0002</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0003</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0004</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

All symptoms-specific in File EbinformaticsSymtoms.doc

Table 6: above shows the weights assigned to patients by doctors who have interacted with such patients.

Table 7
Derived triangular values for Ebola Virus Disease (EVD) signs/symptoms.

<table>
<thead>
<tr>
<th>Patients ID</th>
<th>Bleeding Eyes</th>
<th>Bloody Cough</th>
<th>Bleeding Gums</th>
<th>Bleeding Mouth</th>
<th>Breathing difficulty</th>
<th>Chest pain</th>
<th>Fever</th>
<th>Fatigue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>0.67</td>
<td>0.67</td>
<td>0.33</td>
<td>0</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0</td>
</tr>
<tr>
<td>0002</td>
<td>0</td>
<td>0.33</td>
<td>0.67</td>
<td>0</td>
<td>0.33</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>0003</td>
<td>0.67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0004</td>
<td>0.67</td>
<td>0.33</td>
<td>0</td>
<td>0.67</td>
<td>0.33</td>
<td>0</td>
<td>0.67</td>
<td>0.33</td>
</tr>
</tbody>
</table>

If we are to analyze and provide detail description for the entries made for the second patient for instance, from Table 7, the values entered for patient 2 (with ID=0002), Record of Patient 2 is highlighted YELLOW in the Table 7.

participants disagreed. 59 (59%) of the participants agreed that it is possible that Ebola Virus Disease can be transmitted through body contact without contact with body fluids; 34 (34%) disagreed; 7 (7%) were ignorant about this. 43 (43%) of the participants were sure that Ebola Virus Disease is both air-borne and water-borne. 33 (33%) disagreed, while 24(24%) were ignorant about whether EVD is both air-borne and water-borne. 50 (50%) agreed that it is true that Ebola can be transmitted majorly through the consumption of bush meat. 24 (24%) disagreed, while 26 (26%) do not know the answer to the question. 28 (28%) of the participants agreed that there is presently a known cure for EVD; 41 (41%) disagreed; 31 (31%) do not know whether there is presently a known cure for EVD or not. 79 (79.8%) agreed that it is possible for the Ebola virus to be transmitted when an uninfected person touches a dead person that died as a result of Ebola infection; 5 (5.05%) disagreed, while 15 (15.15%) were ignorant of the answer. 1 (1%) person skipped and avoided this particular question during the survey. 86 (86%) agreed that washing of hands and the use of hand sanitizer can reduce the chances or risks of contacting the Ebola virus, 8 (8%) disagreed, while the remaining 6 (6%) were ignorant. 56 (56%) of the participants agreed that fruit bats are the primary carriers of Ebola virus, 13 (13%) disagreed, while 31 (31%) were ignorant. (See Table 1)

5.2. Graphical User interfaces of Ebinformatics Software

Second, the output of the Ebinformatics software was captured as screenshots. Figs. 6 – 10 reveal the screenshots of the various sections of the graphical user interface of our Ebinformatics software. Fig. 5 revealed the splash welcome screen of Ebinformatics.

The homepage of the Ebinformatics software is depicted in Fig. 6. This figure provides an overall depiction (an overview) of the entire system. It consists of a section for diagnosing patients. There is also another section that provides information about symptoms and facts about the Ebola Virus Disease (EVD).

Fig. 7 is the diagnosis section of the Ebinformatics software. This section consists of a basic information section to be filled-in by the users, another section allows the user to select possible symptoms currently affecting such patients, and lastly a section of pertinent questions that will help prevent onward transmission of the EVD if the patient had already been infected.

Fig. 8 shows an example of an already filled-in diagnosis section of the Ebinformatics software. Fig. 9 revealed the predictive result of the Ebinformatics software after analyzing input data.

5.3. Results of comprehensive testing of Ebinformatics software by users

Third, a comprehensive user-testing evaluation of the Ebinformatics software produced the following results: 33 (73%) agreed that Ebinformatics diagnosis feature was very good; 9 (20%) disagreed, while 3 (6.67%) were neutral. 31 (68.89%) agreed that the Ebinformatics software was well modeled, 4 (9%) disagreed, while 10 (22.22%) were neutral. With respect to user satisfaction based on the testing of the Ebinformatics software, 27 (60%) were satisfied, while 7 (16%) were dissatisfied, while 11 (24%) were neutral. 31 (69%) agreed that Ebinformatics software was supportive and will be a complementary supportive tool for individuals, medical practitioners and patients, 9 (20%) disagreed, 5 (11%) were neutral. With respect to the evaluation criterion of Ease of use1 of the Ebinformatics software, 30 (66.67%) agreed, 6 (13.33%) disagreed, while 9 (20%) were neutral; concerning how well the Ebinformatics software made decisions and provided recommendations to users, 28 (62%) of the participants agreed that it was...
It is evident that ignorance plays a role in the transmission of EVD. Many are still in the category of being ignorant about the transmission factors responsible for the spread of EVD. In the recent outbreak of Ebola among some West African countries in 2014, many people were infected with the disease as a result of ignorance by them with respect to the transmission factors of the disease. From the survey results as specified in Table 1, ignorance played a major role. Thus, the rapid transmission of EVD in 2014 among West African countries was as a result of lack of EVD knowledge and factors responsible for its transmission. Medical professionals in training and researchers consistently seek effective informatics tools to complement their needs in meeting the demands of present day infectious disease like Ebola.

The success of Ebinformatics illustrates the potentials of applying an informatics tool on operational and research platforms as a means of fostering critical tasks such as patient diagnosis, prediction and proffering appropriate recommendations. However, only a handful of biomedical informatics literatures have discussed the development of informatics applications for Ebola detection, diagnosis and how it can be helpful to affected regions of the world [28,29]. Despite a slightly above average knowledge of the disease and its modes of transmissions [30], it is pertinent to keep more of the world populace well informed about Ebola and factors responsible for its transmission through the development of Ebola informatics-related tools.

Several lessons have been learnt through the interactions of users with the Ebinformatics software. First, users of the software desired simplicity. This is evident in the results obtained during the user-evaluation of the Ebinformatics software where about 70% agreed that simplicity is an essential factor in determining how readily informatics software can be accepted for use by consumers. Second, users of the Ebinformatics software acknowledged and embraced the supportiveness and complementary nature of the software especially in the health industry. This is evident in the result where about 70% indicated their agreement after using the software.

Third, we found that a high percentage (over 70%) of users of the Ebinformatics software embraced the diagnostic feature more than anticipated and this is further corroborated by the satisfaction level expressed by users as observed in the results.

Thirdly, since the goal of the Ebinformatics software is to assist and complement users to diagnose and make an informed decision on their health status, the usability of such software in presenting acceptable results is very critical in determining its success. In Ebinformatics software, we implemented graphical user interface (visual aids) and also provided definitive steps to guide users in exploring the features embedded therein, the results, identify information of interest and study information around the software’s environment. Based on the user feedback we received, it is our belief that the usability of the software has played a very important role in growing our user base and sustaining the interest of existing users.

6.2. Ebinformatics software as a feasible solution to complement efforts of health infrastructure in Ebola affected West African countries

An unhealthy nation is a fainting or dying nation. It was observed in 2014 that the health systems in Guinea, Liberia and...
Sierra Leone collapsed under the heavy weight and shock of Ebola [31]. These West African countries lacked quality health infrastructures. However, in Nigeria, the Ebola cases were brought under control through early reporting and isolation for specialized treatment [32,33]. These nations also lacked sufficient medical personnel. Furthermore, these countries lacked useful informatics.
software to conduct a preliminary self-diagnosis or checkup on the
Ebola status of rural community, urban and city dwellers in these
countries. These problems, coupled with others, led to the esca-
latory trend of Ebola in these Ebola-hit West African countries
[34–37].

Quality health infrastructures are essential in curbing the
menace of Ebola. These infrastructures are numerous and they
include: high-quality health laboratories, Standard hospitals and
health centers, High number of qualified medical doctors, phar-
macists, nurses, good work conditions for health workers, man-
power and capacity for effective operations in public health
institutions, good transportation and communication infra-
structures, private–public collaborations by jointly investing in
Ebola-affected developing countries, setting aside strange tradi-
tions and culture, adequate remunerations for health workers,
success by Government to provide adequate financial resources to
implement result-oriented health goals, good electricity, good
sanitation and hygiene, Ebola health facilities for isolating and
treating Ebola patients [34,35,38–46].

However, these infrastructures cannot individually function in
isolation. In essence, they cannot function independently. Each
infrastructure has to depend on two or more other infrastructures
to yield an excellent result. Our Ebinformatics software acts as a
feasible solution to complement the efforts of existing health
infrastructures. The software creates awareness in people about
the possible existence of Ebola and prompts people to go for
medical tests and checkups.

In situations that symptoms highlighted share similarities with
other infectious diseases, a more comprehensive clinical check-up
is very essential to actually ascertain the authenticity that it is not
EVD. This is the reason for incorporating the recommender mod-
ule of the Ebinformatics software. However, if Ebola Virus Disease
(EVD) was confirmed after a detailed and comprehensive medical
examination and checkups, it helps medical doctors and health
practitioners to urgently isolate such Ebola patient for intensive
treatment and management. Thus, Ebinformatics software acts as
a complementary platform for facilitating rapid containment of
EVD.

6.3. Recommendations

For future work the Ebinformatics system is open for further
reviews and improvements, therefore the following recommenda-
tions are made concerning the improvements of the system.

(1) Multi-Lingua facilities can be incorporated into future versions
of the Ebinformatics software especially for countries that do
not have English as their official language.

(2) Web-Based and Mobile features can be integrated into Ebin-
formatics in order to make it more accessible and more
available to users.

(3) Ebinformatics with interactive voice-enabled explanatory
facility can also be incorporated into future versions of
Ebinformatics software.

7. Conclusion

This paper reports the development of Ebinformatics software
and its application to facilitate the diagnosis and early contain-
ment of Ebola-related medical conditions. Based on the user eva-
uation result, it has proven to be a valuable addition to the
operational and research enterprise in the fight against Ebola. For
institutions, communities, hospitals interested in adopting our
Ebinformatics software, the software is freely available at no cost
for use.

Fig. 9. Diagnosis Section of Ebinformatics Software with symptom selection. legend: This section consists of the symptoms section after symptoms identified on a patient have been added to a list within the Ebinformatics software.
Contributorship statement

Oluwengbaga Oluwengbaga conceived the project. Oluwengbaga also contributed to the design and development of the Ebinformatics software as well as the experimental aspect of implementing the software through some codes, the mathematical aspects of detailing the internal components of the software, the acquisition, analysis and interpretation of the data, and drafting of the manuscript. He also conceived the Ebinformatics algorithm and provided guidance to the implementation of the algorithm in the Ebinformatics software.

Folakemi Oluwagbemi contributed to the design, analysis of the Ebinformatics software, interpretation of the data, and drafting of the manuscript.

Oluyemi Abimbola contributed to the coding of the Ebinformatics software, analysis and interpretation of the data.

Conflict of interest

None.

Acknowledgments

This research was partly supported in kind (through the provision of computers, software and internet support for the research by) The Oluwengbaga Research, Development and Philanthropic Foundation (TORDPF). We wish to acknowledge and thank all the anonymous individual participants who contributed in the knowledge of transmission factors regional survey and the user-test evaluation of the Ebinformatics software.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.imu.2015.12.001.

References

