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Multicast group communication protocols are used extensively in
fault-tolerant distributed systems. For many such protocols, the ack-
nowledgments for individual messages define a causal order on messages.
Maintaining the consistency of information, replicated on several pro-
cessors to protect it against faults, is greatly simplified by a total order on
messages. We present algorithms that incrementally convert a causal
order on messages into a total order and that tolerate both crash and
Byzantine process faults. Varying compromises between latency to
message ordering and resilience to faults yield four distinct algorithms. All
of these algorithms use a multistage voting strategy to achieve agreement
on the total order and exploit the random structure of the causal order to
ensure probabilistic termination. ] 1999 Academic Press

1. INTRODUCTION

Modern fault-tolerant distributed systems are often built on multicast group
communication protocols. Typically, such protocols impose a causal order on
messages [L]. This causal order is readily derived from the acknowledgments used
to ensure reliable delivery of messages. In many fault-tolerant distributed systems,
information is replicated on several processors to achieve faster access and to
protect against faults. Maintaining the consistency of replicated information is,
however, a significant programming problem that can be simplified by imposing a
total order, rather than a causal order, on messages. The total order ensures that
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exactly the same updates are applied to the replicated data in the same order at all
sites, ensuring consistency and simplifying the application programming.

The Total algorithms presented here are executed independently and con-
currently by each process, and incrementally convert a causal order on messages
into a total order, without requiring the transmission of any additional messages.
These algorithms operate in the presence of asynchrony and communication faults,
which may cause different processes to receive messages in different orders, and they
tolerate both crash and Byzantine process faults [C]. A crash fault causes a process
to stop processing and generating messages. A Byzantine fault allows arbitrary
behavior by the faulty process, including generation of messages intended to mis-
lead the other processes. Byzantine faults are of concern, not only to a small num-
ber of highly critical fault-tolerant applications, but also to a much larger number
of military and civilian applications that must resist deliberate malicious attacks.
The Total algorithms ensure that nonfaulty processes construct identical total
orders on messages and that non-Byzantine processes construct consistent total
orders, provided that the resilience requirements are satisfied.

In prior work [MMA93] we developed two algorithms for deriving a total order
on messages from a causal order. Those algorithms tolerate crash faults but not
Byzantine faults. The simpler of the two algorithms tolerates k crash faults in an
n-process system, where n>3k, while the somewhat more complex algorithm
tolerates k crash faults in an n-process system, where n>2k. In this paper, we
present four algorithms that tolerate both crash and Byzantine faults. The four
algorithms presented here tolerate kc crash faults and kb Byzantine faults in an
n-process system, where kc , kb , and n satisfy the inequalities shown in Table 1.
These algorithms are mixed failure mode algorithms that share resilience between
crash and Byzantine faults. In the presence of fewer Byzantine faults, the algorithms
can tolerate more crash faults, and vice versa, as long as kc and kb are not exceeded.

Of these algorithms, the first and second algorithms employ a slightly simpler
voting strategy, while the third and fourth algorithms employ a more complex
voting strategy that enables them to tolerate more crash faults. In the second and
fourth algorithms, an additional preliminary phase converts Byzantine faults into
crash faults, allowing the algorithms to tolerate more Byzantine faults. An analysis
of the primary performance characteristic, the latency or delay from multicasting a
message until it is placed into the total order, presented in Section 9, shows that
none of these algorithms dominates any other. For each algorithm, there exist

TABLE 1

The Inequalities That Must Be Satisfied by Each of the Four
Algorithms, Expressed in Terms of the Number n of Processes
in the System, the Number k c of Crash Faults, and the Num-

ber k b of Byzantine Faults.

Algorithm 1 n>3kc+5kb

Algorithm 2 n>3kc+3kb

Algorithm 3 n>2kc+5kb

Algorithm 4 n>2kc+3kb
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values of kc , kb , and n such that the algorithm achieves a lower latency than any
of the other algorithms.

Systems capable of tolerating Byzantine faults must be able to confirm the source
of a message and to detect messages that have the same header but different con-
tents and�or acknowledgments within the message. A typical implementation might
use a digital signature to substantiate the source of a message. It might also embed
a digest of the content of each message within the identifier of the message, so
that acknowledgments of messages with different contents will be regarded as
acknowledgments of distinct messages. The acknowledgment and retransmission
mechanisms can then ensure that all versions of a message are delivered to all
destinations. Digital signatures and digests are computationally expensive, but do
not require the additional rounds of message exchange of alternative strategies.

An interesting aspect of the Total algorithms is that they are, as far as we are
aware, the only available truly fault-tolerant total ordering algorithms. All other
multicast total ordering protocols known to us become blocked transiently if even
one process fails. A low-level fault detector algorithm [CT, CHT] detects the faulty
process, and a membership algorithm reconfigures the system to exclude the faulty
process, unblocking the protocol. During the operation of the membership algo-
rithm, no new messages can be ordered and delivered. With high probability, the
Total algorithms continue to order messages even though some of the processes are
faulty, provided that the resilience requirements are satisfied. Message transmission
and acknowledgment scenarios exist for which the Total algorithms are unable to
order and deliver messages, but these occur with negligible probability. Corre-
spondingly, for all known membership algorithms that are not based on a total
order, a small probability exists that the membership algorithm will deliver no
membership or a trivial singleton membership.

In [MMA94] we provided four alternative fault detection and reconfiguration
algorithms that operate on top of the Total algorithms, exploiting the total order
generated by them. These membership algorithms, adapted to Byzantine faults,
allow the values of kc , kb , and n to be reduced as processes fail, and to be increased
as processes recover or as new processes are introduced, thus operating con-
tinuously with the optimal resilience for the available configuration.

2. RELATED WORK

The problem of determining a consistent total order on messages in a distributed
system is related to the problems of agreement and consensus in such systems.
Research into these problems was initiated by Pease, Shostak, and Lamport [PSL]
with an agreement algorithm for a synchronous system in which the behavior of
faulty processes can be Byzantine, i.e. completely arbitrary even to the extent of
being malicious. For their Byzantine model, they showed that, in a synchronous
system, the consensus problem admits a solution if and only if n>3k, where n is
the number of processes and k is the number of Byzantine processes. Their strategy
requires the same number of rounds and the same number of messages, regardless
of whether or not faults actually occur in the system.
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For asynchronous systems, the agreement and consenus problems are more
difficult than for synchronous systems. Fischer, Lynch, and Paterson [FLP]
demonstrated that consensus is impossible to achieve in an asynchronous system,
even for crash faults and just one faulty process. Several researchers [B, Ra] have
developed explicitly randomized protocols for consensus in an asynchronous
system. In those protocols, a randomizer selects one of two or more alternative
statements, the choice of which cannot be predicted by the faulty processes.
Employing a different approach, Bracha [BT] developed consensus protocols for
asynchronous systems in which the randomization is derived implicitly from the
communication medium rather than explicitly from a randomizer. Our algorithms
are also of this type. All of these randomized algorithms are demonstrated to
terminate with probability 1.

Typically, practical systems must make many consensus decisions. The cost of a
single consensus decision in isolation is high, but the cost per decision can be sub-
stantially reduced for a sequence of decisions. Bar-Noy, Deng, Garay, and Kameda
[BDGK] investigated algorithms for such sequences of consensus decisions with
Byzantine processes for synchronous systems, while Bar-Noy and Dolev [BD]
gave an algorithm for finding a sequence of consensus decisions in a pipeline using
single-bit messages, also restricted to synchronous systems. Gopal and Toueg [GT]
investigated the sequence agreement problem for both synchronous and
asynchronous systems, with Byzantine faults in the synchronous case, but restricted
to omission faults in the asynchronous case. The Total algorithms that we have
developed involve a sequence of consensus decisions, each determining a message
to be placed next in the total order.

The four Total algorithms presented here are multiple failure mode algorithms
that can withstand various combinations of crash and Byzantine faults. Multiple
failure mode consensus algorithms for synchronous systems have been considered
by other researchers [GP, M, TP]. The second and fourth Total algorithms essen-
tially convert Byzantine faults into crash faults and then order messages using an
algorithm that is tolerant to crash faults. This technique has also been employed by
other researchers [BN, B, S, TPS]. Many practical systems [ADKM, BV, KT,
MMA90, MMABL, VBM] use consensus and total ordering algorithms that lack
tolerance to crash and Byzantine faults; they combine those algorithms with fault
detectors [CT, CHT] that detect crashed processes and membership algorithms
that remove them from the system. Such an approach can achieve lower costs when
no faults occur, but the cost of consensus or ordering decisions may be quite high
in the presence of faults. Some total ordering algorithms order messages in the
presence of network partitioning faults [DKM, CHD, MMABL]. The Total algo-
rithms are, however, primary component algorithms that do not admit network
partitioning faults.

The Rampart system of Reiter [Re] includes a multicast protocol for total
ordering of messages in the presence of Byzantine faults. The protocol uses digital
signatures and an echo strategy. Under low loads, the echo strategy is quite expen-
sive, both computationally and in the number of messages that must be multicast.
Under high loads, several small messages, even from different sources, can be
packed into a single reliable multicast message, which reduces the overhead.
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However, the latency of the Rampart total ordering protocol is still significantly
higher than that of the Total algorithms, which do not require messages to be
transmitted twice and do not have to wait for echoes from every process. Recently,
considerable efforts have been made to improve the performance of Byzantine total
ordering algorithms [KMM].

3. THE MODEL

We consider an asynchronous distributed system with n processes, where n�2,
in which processes communicate by broadcasting messages. The system is
asynchronous in that no bound can be placed on the time required for a computa-
tion or for communication of a message. Process and communication faults can
occur.

A faulty process may either have crashed or be Byzantine. We consider a process
to have crashed if it makes no further broadcasts after a certain point in its execu-
tion of the algorithm, or if any of its messages is not eventually received by some
nonfaulty process. A Byzantine process cannot be relied upon to execute the algo-
rithms correctly and can disrupt the usual causal order on messages. However, we
assume that a Byzantine process does not send messages that cause other processes
to become corrupted (e.g., viruses).

Each broadcast message has a header consisting of a process identifier and a
message sequence number. We let mpi denote the ith message in the sequence of
messages broadcast by process p. Acknowledgments for individual messages are
piggybacked on the messages when they are broadcast.

The Total algorithms convert a Byzantine causal order on messages into a total
order on messages that is identical at all nonfaulty processes in the system. The
Byzantine causal order is defined in terms of the follows relation, which is derived
from acknowledgments in messages. A message m$ from process q follows a message
m from process p if m$ acknowledges m or m$ acknowledges a message m" that
follows m, where m"{m and m"{m$. This implies that the follows relation is
transitive (Property 2 of the formal definition of Byzantine causal order below).
Furthermore, each message follows itself, which implies that the follows relation is
reflexive (Property 1). Liveness requires that every nonfaulty process must generate
further messages that follow the messages from every nonfaulty process (Property 6).

A message m$ from a non-Byzantine process q acknowledges a message m only
if q has received all messages that m follows before it broadcast m$. The construc-
tion of the follows relation is incremental. Knowledge of the follows relations,
between m and the messages m follows, allows determination of the acknowledg-
ment relation between m$ and m and, thus, of the follows relation between m$ and
m. There is no circularity in the definition of the follows relation, because the ack-
nowledgment relation between m$ and m does not depend on the follows relation
between m$ and m.

A non-Byzantine process q is assumed to receive each message m it broadcasts
and to acknowledge that message in the next message it broadcasts. Consequently,
a message m$ from a non-Byzantine process q follows all messages broadcast earlier
by q (Property 4). This requirement cannot be assured for messages from Byzantine
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processes, because such a process may have transmitted multiple messages that
acknowledge the same or different prior messages, and it may even have trans-
mitted messages of which other processes are unaware.

We assume that a digital signature mechanism in the underlying multicast com-
munication protocol prevents a Byzantine process from originating a message pur-
porting its source to be some other process. Furthermore, we assume that a digest
mechanism ensures that, if a Byzantine process sends two different messages, pur-
porting that they are the same message, then the digest enables the destinations to
recognize the messages as distinct. The digest is included in the message and also
in the acknowledgments for the messages, allowing processes to recognize such
messages as distinct messages, even if they have not received one or both of those
messages.

A Byzantine process can originate a message that occurs within a (nontrivial)
cycle in the causal order. A non-Byzantine process cannot originate a message that
occurs in a cycle (Property 3), because a message m from a non-Byzantine process
cannot acknowledge a message that itself acknowledges m. A nonfaulty process
executing one of the Total algorithms does not advance a message to the total
order unless it has already advanced to the total order all of the messages that
precede that message in the causal order. Thus, a nonfaulty process does not
advance to the total order any message in a cycle, or any message that follows a
message in a cycle. The nonfaulty processes execute a cycle detection algorithm in
their processing of messages and acknowledgments; thus, any message from a non-
Byzantine process does not acknowledge a message involved in a cycle (Property 5).
If a Byzantine process ever participates in a cycle, then none of its subsequent
messages will be ordered and, when the cycle has been detected, the Byzantine
process will be removed from the configuration and never subsequently readmitted.

A Byzantine process can originate two or more concurrent messages with the
same header, but with different contents and�or acknowledgments, neither of which
follows the other and possibly each of which purports to follow different messages.
We call such messages mutants. Although mutant messages are allowed to occur in
the causal order, the voting strategy of the first and third Total algorithms is
resilient to them, and the voting strategy of the second and fourth Total algorithms
allows only one message from a set of mutants to vote. For all four Total algo-
rithms, only one message is ordered from each set of mutants. When a second
mutant message is about to be ordered, the Byzantine process that originated that
message is removed from the configuration.

Thus, we let M be the set of messages of a particular execution of the system, and
define a Byzantine causal order on M in terms of the follows relation, given below.

Byzantine Causal Order. 1. Each message m1 follows itself.

2. If m2 follows m1 and m3 follows m2 , then m3 follows m1 .

3. If m1 and m2 are distinct messages, m2 follows m1 , and m2 is originated by
a non-Byzantine process, then m1 does not follow m2 .

4. If m1 and m2 are both originated by the same non-Byzantine process, then
either m1 follows m2 or m2 follows m1 .
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5. If m1 and m2 are distinct messages, m1 follows m2 , m2 follows m1 , and m3

is originated by a non-Byzantine process, then m3 does not follow m1 or m2 .

6. If m1 is originated by a nonfaulty process p, then for every nonfaulty
process q there exists a message m2 from q such that m2 follows m1 .

When restricted to the messages from non-Byzantine processes, this causal order
is the partial order defined by Lamport [L]. Note that the above properties
guarantee that messages originated by a given non-Byzantine process are totally
ordered.

A prefix A of a Byzantine causal order on M is a subset of the messages of M,
together with the follows relations between them such that, if m$ is an element of
A and m$ follows m, then m is also an element of A. The size of a Byzantine causal
order prefix A is the number of messages in A.

A total order relation on a set of messages satisfies the reflexive, antisymmetric,
transitive, and comparable properties. A total order prefix is a finite set of messages
that is totally ordered and that can, thus, be represented as a finite sequence
mp1 i1

, ..., mptit
.

An internal state of a process consists of a prefix of the Byzantine causal order
and a prefix of the total order. The initial state of a process consists of an empty
prefix of the Byzantine causal order and an empty prefix of the total order.

As each nonfaulty process receives messages, it extends its Byzantine causal order
prefix. Sometimes receipt of a message may result in the addition of no messages
to the causal order prefix, while receipt of another message may lead to the inclu-
sion of several messages.

An execution step consists of a process's extending its Byzantine causal order
prefix A by adding one message m, together with the follows relations between m
and the messages in A, and its total order prefix by zero or more messages. A step
is applicable to an internal state if all of the messages that m follows are in the
Byzantine causal order prefix of that state. Hereafter, we only consider steps that
are applicable.

The asynchronous nature and faulty behavior of the processes and the com-
munication medium are reflected in the Byzantine causal order that is input to the
algorithm and in the order in which messages are supplied to a process to extend
its causal order prefix. A process has no control over which message extends its
causal order prefix in a step, and it cannot determine whether any future extension
of its causal order prefix will involve a message that follows a particular message.
A message from a faulty process may be followed by no other message and, thus,
may be supplied to one process an arbitrary number of steps after it has been
supplied to another process, if at all.

The Total algorithms are designed around the number kc of crash processes that
can be tolerated and the number kb of Byzantine processes that can be tolerated.
For each of our algorithms, kc and kb must satisfy a particular inequality con-
straint. If the actual number of crash processes is at most kc and the actual number
of Byzantine processes is at most kb , then the Total algorithms extend the total
order with probability 1. If the actual number of crash and Byzantine processes
exceeds kc+kb , but the actual number of Byzantine processes is at most kb , then
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the algorithms may block because they may be unable to obtain the required num-
ber of votes. If the actual number of Byzantine processes exceeds kb , then the algo-
rithms may give incorrect answers in that different total orders may be generated
by two nonfaulty processes.

A Byzantine causal order is admissible if it satisfies the following Liveness and
Fairness properties. These properties consider messages from nonfaulty processes
and imply that a faulty process cannot preclude communication between nonfaulty
processes. Byzantine causal orders with these properties are readily obtained from
the acknowledgments in broadcast messages and an appropriate communication
medium.

Liveness. 1. For each message m from a nonfaulty process p, process p even-
tually obtains a prefix A such that m # A.

Let p and q be nonfaulty processes and let m be a message from p. We say that
a message m$ from q directly follows m if and only if m$ follows m and there does
not exist a message m" such that m$ follows m" and m" follows m, where m"{m
and m"{m$. Note that the directly follows relation is neither transitive nor
reflexive.

For nonfaulty processes p and q, p{q, we let E(m, p, q) be the event that there
exists a message m$ from q that directly follows the message m from p.

Fairness. 1. 0<=<probability(E(m, p, q))<1

2. E(m, p, q) is independent of the set of events [E(m� , r, s) | m{m� or q{s].

These Fairness properties formalize an assumption of no bias in the selection of
processes to broadcast or in the choice of processes to receive messages. The intui-
tion underlying the first Fairness property is that, for each nonfaulty process q, the
event that message m from a nonfaulty process p is directly followed by a message
from q is neither guaranteed nor precluded from happening. Similarly, the second
Fairness property requires that such events neither force nor preclude each other.
These Fairness properties must be assumed for liveness, but they are not required
for safety. If the Fairness properties do not hold, the Total algorithms are sound
but may block.

Of course, these assumptions restrict the class of asynchronous behaviors being
considered and, thus, the Byzantine causal orders input to the Total algorithms.
Robust communication mechanisms, involving point-to-point links, spread-spec-
trum codes or ATM switches, provide either independent communication paths or
enforced fairness, ensuring that a faulty process cannot preclude communication
between other processes. Such communication media match the assumptions quite
well. The assumptions cannot, however, be substantiated on an unswitched Ether-
net, where a single Byzantine process could transmit continuously and prevent all
communication between nonfaulty processes.

Observations indicate that these assumptions are reasonable in the absence of
Byzantine faults, but each application must be examined individually to determine
that its patterns of message generation do indeed satisfy the fairness requirements.

The validity of the Total algorithms depends on showing
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Partial Correctness. 1. The total orders determined by any two non-Byzantine
processes are consistent; i.e., if any non-Byzantine process determines that m is the
ith message of the total order, then no non-Byzantine process determines that m$
is the i th message, where m${m.

2. The total order is consistent with the Byzantine causal order; i.e. if m$
follows m in the total order of any non-Byzantine process, then m does not follow
m$ in the Byzantine causal order, where m${m.

Probabilistic Termination. 1. The probability that a nonfaulty process p places
an ith message in the total order increases asymptotically to unity as the number
of steps taken by p tends to infinity.

2. For each message m broadcast by a nonfaulty process q, the probability
that a nonfaulty process p places m in the total order increases asymptotically to
unity as the number of steps taken by p tends to infinity.

Absolute termination is unfortunately precluded by the impossibility result
[FLP].

4. THE TOTAL ORDERING ALGORITHMS

The input to the Total algorithms is a Byzantine causal order of messages, and
the output is a total order of messages. The algorithms accept the Byzantine causal
order and extend the total order, incrementally. Only information derived from the
Byzantine causal order is used to construct the total order; no additional com-
munication between processes is necessary.

From the Byzantine causal order prefix, a nonfaulty process incrementally con-
structs the total order prefix using one of the Total algorithms. The messages in the
causal order prefix that have already been advanced to the total order play no part
in the further extension of the total order prefix (other than to identify the second
mutant) and are effectively removed from the causal order. Some of the messages
in the causal order prefix follow other messages that have not yet been advanced
to the total order; such a message cannot be the next message to extend the total
order prefix.

A candidate message is a message in a process's Byzantine causal order prefix that
is not yet in the total order and that only follows messages already in the total
order (other than itself). A set of candidate messages is a candidate set. Thus,
messages that occur in a cycle cannot be candidate messages. However, mutant
messages that are not in a cycle can be candidate messages and, even, members of
the same candidate set. With the exception of mutants, at most one candidate
message from a given process will be considered for the next advancement to the
total order.

As a process advances a candidate set from its causal order to the total order, the
messages in that set are removed from further consideration and the candidate
set for the next extension is automatically determined. Even though two different
processes may consider different candidate sets for a given extension of the total
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order, the Total algorithms ensure that the two processes decide to extend the total
order with the same candidate set.

Messages in the Byzantine causal order prefix (except those in a cycle) provide
votes on the candidate sets. These votes are not contained explicitly in the
messages, but are deduced from the causal relationships between messages. A non-
faulty process decides to advance a candidate set to the total order based on the
votes of the messages in its causal order prefix. Each process makes its own deci-
sions independently of the other processes. Even though messages may be delayed
or lost and, thus, different nonfaulty processes may have different Byzantine causal
order prefixes, the nonfaulty processes must decide on the same message by which
to extend the total order even though other processes may be Byzantine.

An execution step consists of adding one message to the Byzantine causal order
prefix and executing one of the Total algorithms. In a step, all candidate sets that
can be constructed from the candidate messages in the causal order prefix are con-
sidered. A step may result in a decision to extend the total order prefix. Alter-
natively, a step may result in no candidate set's obtaining a favorable decision and,
thus, no extension to the total order prefix. In the next step, with an additional
message in the causal order prefix, another attempt is made to extend the total
order prefix.

In a step, each candidate set is voted on separately and independently. Voting on
a candidate set takes place in a sequence of stages, and each candidate set has its own
sequence of stages. Voting proceeds sequentially through the stages for a particular
candidate set, but concurrently on all of the candidate sets, since it cannot be predeter-
mined which message is able to vote for which candidate set at which stage.

At stage 0, the vote of a message on a candidate set depends on which candidate
messages that message follows. In particular, a candidate message votes for the set
containing only itself and against all sets that do not contain itself; it does not vote
on any other set at stage 0. At stage i, i>0, the vote of a message on a candidate
set depends on whether that message follows ``enough'' (defined below) messages
that vote at stage i&1. The message itself may be included in the number of
messages required to vote since each message follows itself in the causal order.

A message in the causal order may not vote at a stage i, i�0, if a previous
message from its source votes at stage i. At most one message in a set of mutant
messages may vote on a particular candidate set at a particular stage; a process
chooses the first such message that it received but it could choose any of those
mutants. Messages that occur in a cycle may not vote.

A message may be unable to vote on a candidate set at a stage if the Voting
Criteria (given below) are not satisfied. Conversely, a message may be able to vote
on a candidate set at several stages if the Voting Criteria are satisfied for each of
those stages.

The l th decision of a process p in favor of a candidate set for inclusion in the
total order determines a set S l of candidate messages by which p extends its
(l&1)th total order prefix to obtain its l th total order prefix. The initial candidate
set and the initial total order prefix are empty. The messages of the candidate set
S l are included in the total order, following the messages in the (l&1)th total order
prefix in a deterministic order, such as lexicographic order of process identifiers.

84 MOSER AND MELLIAR-SMITH



5. THE 3k c+5kb TOTAL ALGORITHM

For this algorithm, we assume that the number n of processes, the number kc of
crash processes, and the number kb of Byzantine processes satisfies the constraint
3kc+5kb<n. The algorithm is defined by the Eligibility, Voting and Decision
criteria given below; these criteria determine whether a set S of candidate messages
is chosen for inclusion in the total order.

The number of votes required for a further vote and the number of votes required
for a decision are at least Nv and Nd , where

Nv=(n&kc&kb)�2, Nd=(n+kc+3kb+1)�2.

Eligibility Criteria. At stage i, where i�0,

v a non-Byzantine process determines that a message m is eligible to vote on
S if

�� the process has obtained a prefix A of the Byzantine causal order such
that m # A, and

�� no previous message from the source of m has voted on S at stage i.

Voting Criteria. At stage 0,

v a message votes for S if that message follows every message in S and it
follows no other candidate message (a candidate message votes for the set contain-
ing only itself);

v a message votes against S if that message follows any candidate message
other than those in S (a candidate message votes against all sets of which it is not
a member).

At stage i, where i>0,

v a message votes for S if

�� it follows at least two messages that vote on S at stage i&1,

�� it follows at least Nv messages that vote for S at stage i&1, and

�� it follows fewer messages that vote against S than vote for S at stage
i&1.

v a message votes against S if

�� it follows at least two messages that vote on S at stage i&1,

�� it follows at least Nv messages that vote against S at stage i&1, and

�� it does not vote for S at stage i.

Decision Criteria. At stage i, where i�0,

v a non-Byzantine process decides for S if

�� it determines that at least Nd messages vote for S at stage i, and

�� for each proper subset of S, it decides against that proper subset.
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v a non-Byzantine process decides against S if

�� it determines that at least Nd messages vote against S at stage i, or

�� it decides for a proper subset of S.

The values of Nv and Nd and the constraint 3kc+5kb<n are derived from the
following properties: Votes and decisions do not conflict (Nv+Nd>n+kb), deci-
sions do not conflict (Nd+Nd>n+kb), stages of voting advance (Nv+Nv&1�
n&kc&kb), and decisions are feasible (Nd�n&kc&kb).

5.1. Example

Consider a system of n=6 processes executing the 3kc+5kb Total algorithm
which tolerates a single Byzantine fault, i.e. kc=0 and kb=1. In such a system,
Nv=2.5 and Nd=5. Consider the causal order prefix shown in Fig. 1. Here the
candidate messages are a1 , e1 , and f1 , shown in heavy bold. Note that, at stage 0,
the candidate message e1 does not vote on [e1 , f1] and, similarly, for f1 . The
messages b1 , c1 , d1 , e2 , and f2 all follow both e1 and f1 and do not follow the other
candidate message a1 . Thus, these five messages all vote for [e1 , f1] at stage 0, and
these five votes suffice for a decision in favor of [e1 , f1].

Consider now the scenario shown in Fig. 2 in which process f is Byzantine. Here,
process f has sent a mutant message f $2 to process c. This scenario represents c's
view of the Byzantine causal order; the other processes see the Byzantine causal
order shown in Fig. 1. Note that the mutant message f $2 sent to c votes against
[e1 , f1] because f $2 follows the candidate message a1 . Consequently, process c has
only four stage 0 votes, too few for a decision but enough for a further stage of

FIG. 1. A scenario for n=6 processes executing the 3kc+5kb Total algorithm with kc=0 and
kb=1. Here Nv=2.5 and Nd=5.
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FIG. 2. A variation of the scenario shown in Fig. 1, as seen by process c. Here, a Byzantine process
f has generated two mutant messages. Process c receives a mutant f $2 , while all of the other processes
receive the same message f2 as in the previous scenario.

voting. Note that, at stage 1, b1 and e2 voted for [e1 , f1] at stage 0, but they can
also vote for [e1 , f1] at stage 1. Thus, process c observes stage 1 votes from a2 , b1 ,
c2 , d2 , and e2 for [e1 , f1], enough for a decision at stage 1.

The Total algorithms ensure that, if any nonfaulty process can decide for a
candidate set at some stage, then any other process must see enough votes for that
candidate set at that stage to ensure that it can decide for that candidate set at the
next stage.

5.2. Proof of Correctness

5.2.1. Partial Correctness

The proof of partial correctness involves showing that if two non-Byzantine pro-
cesses p and q make l th extensions to their total order prefixes, then the candidate
sets they choose for those extensions are identical and, thus, their l th total order
prefixes are identical. The proof is by induction on l. The base case is trivial since,
if l=0, then all of these sets are empty. The most interesting part of the proof con-
stitutes establishing the inductive step.

Lemma 5.1 is important because it stipulates that the only information used by
the algorithm to determine the vote of a message is the Byzantine causal order. By
``determine the vote of a message'' we mean determine if the message voted for or
against a candidate set or was unable to vote because it did not follow enough
messages that voted on the candidate set.
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Lemma 5.1. Let p and q be non-Byzantine processes. If p and q each determine
the vote of a message m on a candidate set S for the lth extension of the total order
at stage i, then they determine the same vote of m on S at stage i.

Proof. The proof is by induction on i. If process p determines the vote of a
message m on a candidate set S at stage 0 then, by the Eligibility criteria, p has
obtained a Byzantine causal order prefix A that contains message m and all of the
messages that m follows and similarly for process q. Since the vote of a message m
on a candidate set S at stage 0 is determined by the messages that m follows, p and
q determine the same vote of m.

The proof of the inductive step is similar and depends on the Eligibility criteria
and the fact that the vote of a message at stage i, where i>0, is determined by the
votes of the messages that m follows at stage i&1. K

Lemma 5.2. Each non-Byzantine process p broadcasts at most one message that
votes on a candidate set S at stage i; that message does not vote both for and against
the candidate set S at stage i.

Proof. The first statement follows from the Eligibility criteria that a message is
eligible to vote on a candidate set S at stage i only if no previous message from its
source has voted on S at stage i. The second statement follows from the Voting
criteria. K

Lemmas 5.1 and 5.2 will be used in subsequent proofs without further reference.

Lemma 5.3. If message m follows at least Nd messages that vote for (against) a
candidate set S at stage i&1, then no message m$ votes against ( for) S at stage i,
where i>0.

Proof. If m follows messages from at least Nd=(n+kc+3kb+1)�2 distinct pro-
cesses that vote for S at stage i&1, then messages from at most n&Nd+kb=
n&(n+kc+3kb+1)�2+kb<(n&kc&kb)�2=Nv processes vote against S at stage
i&1 since the kb Byzantine processes can broadcast messages that vote both
for and against S. If m$ votes against S at stage i, then m$ follows messages
from at least Nv distinct processes that vote against S at stage i&1, which is a
contradiction. K

Lemma 5.4. If message m votes against ( for) a candidate set S at stage j then,
for each i such that 0�i� j, m follows a message that votes against ( for) S at
stage i.

Proof. The proof is by a simple induction on j using the Voting criteria. K

Lemma 5.5. If no message from a non-Byzantine process votes against ( for) a
candidate set S at stage i, then no message from any process votes against ( for) S
at stage j, where j�i. Likewise, if some process p decides for (against) a candidate
set S at stage i, then no message votes against ( for) S at stage j, where j>i.

Proof. To prove the first statement, we note that if a message m from a non-
Byzantine process votes against a candidate set S at stage j then, by Lemma 5.4,
m follows a message that votes against S at stage i, which is a contradiction. The
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second statement follows from the Decision criteria, Lemma 5.3, and the first
statement. K

Propositions 5.1�5.5 below constitute a major part of the proof and are used
in proving Theorem 5.1, which establishes consistency of decisions among the
processes.

Proposition 5.6. Let p and q be non-Byzantine processes. If p decides for a
candidate set S for the lth extension of the total order, then q does not decide for a
proper subset S$ of S for the lth extension.

Proof. The proof is by induction on the cardinality C of S. If C=1, the state-
ment holds since, by the Voting and Decision criteria and a simple induction, no
process decides on the empty candidate set.

Assume that the statement holds for candidate sets S of cardinality less than C.
We argue by contradiction, assuming further that p decides for S and that q decides
for a proper subset S$ of S at some stage j. Thus, q determines that messages from
N$�Nd distinct processes vote for S$ at stage j.

By the inductive assumption, since q decides for a proper subset S$ of S, p does
not decide for a proper subset S" of S$. Thus, since p decides for S, p decides
against S$ at some stage i for the reason that p determines that messages from
N�Nd processes vote against S$ at stage i.

If i= j, then N+N$�Nd+Nd=n+kc+3kb+1>n+kb yields a contradiction,
since only Byzantine processes can broadcast messages that vote both for and
against S$ at stage j. If j>i then, by Lemma 5.5, since p decides against S$ at stage
i, no message votes for S$ at stage j, which is a contradiction. Similarly, if i> j, we
obtain a contradiction by applying Lemma 5.5 to process q with i and j inter-
changed. K

Proposition 5.2. Let p and q be non-Byzantine processes. If p decides for
(against) a candidate set S for the lth extension of the total order, then q does not
decide against ( for) S for the lth extension.

Proof. Assume that p decides for S at stage i and that q decides against S at
stage j. Since p decides for S at stage i, p determines that messages from N�Nd dis-
tinct processes vote for S at stage i of which at most kb are Byzantine. Furthermore,
by Proposition 5.1, q does not decide for a proper subset S$ of S. Thus, q decides
against S at stage j for the reason that q determines that messages from N$�Nd

processes vote against S at stage j of which at most kb are Byzantine.
If i= j, then N+N$�Nd+Nd=n+kc+3kb+1>n+kb yields a contradiction,

since only Byzantine processes can broadcast messages that vote both for and
against S at stage j. Otherwise, a contradiction is reached by Lemma 5.5. K

Lemma 5.6. Let S and S$ denote candidate sets for the lth extension of the total
order such that there exist s # S, s � S$ and s$ # S$, s$ � S. If message m from process
p votes for S at stage i, then m or a previous message from p votes against S$ at
stage i.
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Proof. The proof is by induction on i. If message m from process p votes for S
at stage 0, then it follows the candidate message s # S. Since m follows s and s � S$,
by the Voting criteria, m or a previous message from p votes against S$ at stage 0,
which establishes the base case.

We now assume the statement for i&1. Let m follow N messages that vote for
S at stage i&1, N� messages that vote against S at stage i&1, N$ messages that vote
for S$ at stage i&1, and N� $ messages that vote against S$ at stage i&1. Since m
votes for S at stage i, N�Nv , N>N� , and N+N� �2. Thus, N�2. By the inductive
assumption, if a message votes for S at stage i&1, that message or a previous
message from its source votes against S$ at stage i&1. Thus, N� $�N. Similarly, if
a message votes for S$ at stage i&1, that message or a previous message from its
source votes against S at stage i&1. Thus, N� �N$. Consequently, N� $�Nv , N� $>N$
and N$+N� $�2. Thus, m or a previous message from p votes against S$ at stage
i unless a previous message from p votes for S$ at stage i.

Now suppose that there exists such a message m$ from p that votes for S$ at stage
i. As above, we conclude that m$ or a previous message from p votes against S at
stage i unless a previous message from p votes for S at stage i. Since m votes for
S at stage i, we have a contradiction by Lemma 5.2. K

Proposition 5.3. Let p and q be non-Byzantine processes and let S and S$ denote
candidate sets for the lth extension of the total order such that there exist messages
s # S, s � S$ and s$ # S$, s$ � S. If p decides for S for the lth extension of the total
order, then q does not decide for S$ for the lth extension.

Proof. If process p decides for S at stage i, then p determines that at least Nd

messages vote for S at stage i and, thus, p has obtained a prefix of the Byzantine
causal order containing those messages and all of the messages that they follow. Let
m denote any message that votes for S at stage i. By Lemma 5.6, m or a previous
message from its source votes against S$ at stage i. Thus, p determines that at
least Nd messages vote against S$ at stage i and, therefore, p decides against S$ at
stage i. By Proposition 5.2, q does not decide for S$. K

The main theorem, Theorem 5.1, guarantees that the total orders determined by
non-Byzantine processes are consistent.

Theorem 5.1. Let p and q be non-Byzantine processes. If p determines that m is
the ith message in the total order, then q does not determine that m$ is the ith
message, where m${m.

Proof. If p determines that m is the i th message in the total order, then there
exists an l>0 such that m is in p's candidate set S for the l th extension of the
total order. By Proposition 5.2, if p decides for S, then q does not decide against
S and, by Propositions 5.1 and 5.3, q does not decide for S$, where S${S. Thus,
if q selects a candidate set for the l th extension, then q selects S and determines
that m is the i th message in the total order since the elements of S are ordered
deterministically. K
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Theorem 5.2 guarantees that no message that follows a message in the Byzantine
causal order precedes that message in the total order. Thus, the total order is not
arbitrary but is consistent with the Byzantine causal order.

Theorem 5.2. If m$ follows m in the total order prefix of a non-Byzantine process
p, where m${m, then m does not follow m$ in the Byzantine causal order.

Proof. Before process p can advance m to its total order prefix, m must become
a candidate message. As a candidate message, m only follows messages in the
Byzantine causal order that are already in p's total order prefix. Since m$ follows m
in the total order, m$ is not in process p's total order prefix when m becomes a
candidate message. Thus, m does not follow m$ in the Byzantine causal order. K

5.2.2. Probabilistic Termination

The proof of probabilistic termination depends on a specific pattern of com-
munication between nonfaulty processes, called a deciding pattern, defined below.
The proof demonstrates that if a nonfaulty process's partial order prefix contains a
deciding pattern, then that process decides on the next extension of the total order.
The proof also demonstrates that the probability that the partial order prefix con-
tains a deciding pattern increases asymptotically to unity as the size of the prefix
increases. There is, however, a small probability that no decision can be made, as
required by the impossibility result [FLP].

A deciding pattern consists of three ranks, as shown in Fig. 3, such that

1. each rank contains messages from n&kc&kb distinct nonfaulty processes,
and all ranks contain messages from the same n&kc&kb processes,

FIG. 3. A deciding pattern of three ranks. Each rank contains messages from n&kc&kb distinct
nonfaulty processes, and all three ranks contain messages from the same n&kc&kb processes. Here
n=9, kc=1 and kb=1.
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2. each message in the second rank directly follows every message in the first
rank and no other message, and

3. each message in the third rank directly follows every message in the second
rank and no other message.

A deciding pattern is only one of many possible Byzantine causal order patterns
that lead to a decision to extend the total order. This particular pattern was chosen
because it is easy to analyze, because every message in the second rank follows
exactly the same set of messages, aside from itself, and every message in the third
rank follows exactly the same set of messages, aside from itself. The nonzero prob-
ability of this pattern follows from the admissibility requirements of Section 3. This
pattern is, however, quite improbable. Other causal order patterns exist that are
much more likely and that lead to a decision to extend the total order just as
quickly but that require more complex proofs.

In Proposition 5.6 we show that there always exists a candidate set that can be
advanced to the total order at the l th extension; i.e., a non-Byzantine process
cannot decide against all available candidate sets.

Proposition 5.6. Let S* be the largest set of candidate messages for the lth
extension of the total order, each of which is followed by a message from a nonfaulty
process. Then S*{, and a nonfaulty process p cannot decide against S*, unless p has
decided for a proper subset of S*.

Proof. For each nonfaulty process q consider the message mqj in the Byzantine
causal order with the smallest sequence number j that is not in process p's (l&1)th
total order prefix. There exist at least n&kc&kb such messages from nonfaulty pro-
cesses. Furthermore, there exists at least one such message that does not follow any
messages other than those in process p's (l&1)th total order prefix. Thus, S*{,.

If p decides against S* at stage i and p has not decided for a proper subset of
S*, then p determines that at least Nd messages vote against S* at stage i. Now
Nd=(n+kc+3kb+1)�2>kc+kb and, therefore, at least one of those messages is
from a nonfaulty process. Let m be such a message. By Lemma 5.4, m follows a
message m$ that votes against S* at stage 0. Thus, m$ follows a candidate message
s such that s � S*. But, m also follows s, which contradicts the definition of S*. K

The next three lemmas are used to prove Lemma 5.10, which states that there
exists a largest stage i at which a message m or a previous message from its source
votes on a candidate set S.

Lemma 5.7. If message m votes on a candidate set S at stage i, where i>0,
then m follows a message that votes on S at stage i&1 but does not vote on S at
stage i.

Proof. There are two cases to consider: (1) Message m is originated by a non-
Byzantine process. Since m votes on S at stage i, by the Voting criteria, m follows
at least two messages that vote on S at stage i&1. Consider the set of all messages
that m follows and that vote on S at stage i&1. This set is finite. Since m is
originated by a non-Byzantine process, m does not follow a message that occurs
within a nontrivial cycle; thus, no message in this set occurs within a nontrival
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cycle. Consequently, this set contains a message m$ that follows no message that
votes on S at stage i&1, aside from itself. Therefore, m$ does not vote on S at
stage i.

(2) Message m is originated by a Byzantine process. Since m votes on S at stage
i and since Nv=(n&kc&kb)�2>kb , m follows at least one message m$ from a non-
Byzantine process. If m$ does not vote on S at stage i, then we are done. If m$ votes
on S at stage i, then we apply Case (1) to m$. K

Lemma 5.8. If message m from process p votes on a candidate set S at stage j
then, for each i such that 0�i� j, m or a previous message from p votes on S at
stage i.

Proof. The proof is by induction on j. If j=0, then the statement holds trivially.
If j=1, then m follows at least Nv>0 messages that vote for S at stage 0 or at least
Nv>0 messages that vote against S at stage 0. Each of these messages follows every
message in S or a candidate message not in S. Thus, m follows every message in
S or a candidate message not in S. Consequently, m or a previous message from
p votes on S at stage 0.

Now assume that the statement holds for j&1, where j>1. If m votes on S at
stage j, then m follows at least Nv>0 messages that vote for S at stage j&1 or at
least Nv>0 messages that vote against S at stage j&1. Each of these messages
follows at least two messages that vote on S at stage j&2 and at least Nv messages
that vote for S at stage j&2 or at least Nv messages that vote against S at stage
j&2. Thus, m follows at least two messages that vote on S at stage j&2 and at least
Nv messages that vote for S at stage j&2 or at least Nv messages that vote against
S at stage j&2. Consequently, m or a previous message from p votes on S at stage
j&1. The inductive assumption now yields the result. K

Lemma 5.9. If message m votes on a candidate set S at stage i, then m follows at
least i distinct messages that vote on S at stages 0 through i&1.

Proof. The proof is by a simple induction on i using Lemmas 5.7 and 5.8. K

Lemma 5.10. If message m from process q follows each message in a candidate set
S, then there exists an i such that m or a previous message from q votes on S at stage
i and neither m nor any previous message from q votes on S at stage i+1.

Proof. The number of messages that precede message m in the Byzantine causal
order is finite, say x, and the number of messages that precede any previous
message from process q is less than x. By Lemma 5.9, there exists a j (for example,
j=x+1) such that neither m nor any previous message from q votes on S at stage
j. Since m follows each message in S, m or a previous message from q votes on S
at stage 0. Thus, there exists an i, 0�i< j, such that m or a previous message from
q votes on S at stage i and neither m nor a previous message from q votes on S
at stage i+1. K

Lemma 5.10 is used in the proof of Lemma 5.11, which demonstrates that a
deciding pattern is indeed a pattern that enables a nonfaulty process to decide.
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Lemma 5.11. If the Byzantine causal order prefix of a nonfaulty process p
contains a deciding pattern such that each message in its first rank follows all of the
messages in a candidate set S, then p decides on S.

Proof. Every message in the second rank of the deciding pattern follows exactly
the same set of messages, aside from itself. Thus, if any message in the second rank
or a previous message from its source votes on S at stage i, then every message in
the second rank or a previous message from its source votes on S at stage i. Conse-
quently, by Lemma 5.10, there exists a largest stage i at which every message in the
second rank or a previous message from its source votes on S.

Now every message in the third rank follows the same set of messages, aside from
itself. In particular, each of these messages follows exactly the same set of at least
n&kc&kb messages that vote on S at stage i and follows no message that votes
on S at stage i+1, aside from itself. Consequently, by the Voting criteria, all
n&kc&kb third-rank messages vote for S at stage i+1 or all vote against S at
stage i+1. Since Nd�n&kc&kb , by the Decision criteria and induction on the
cardinality of the candidate sets, process p decides on S at stage i+1. K

Lemma 5.12 shows that the probability that a Byzantine causal order prefix
contains a deciding pattern that follows a candidate set increases as the size of the
prefix increases, while Lemma 5.13 shows that the probability that a nonfaulty
process selects a candidate set for the l th extension increases as the number of steps
taken by the process increases.

Lemma 5.12. Let S be a candidate set, each message of which is followed by a
message from a nonfaulty process. The probability that a Byzantine causal order
prefix of size x obtained by a nonfaulty process p contains a deciding pattern, such
that each message in its first rank follows all of the messages in S, increases
asymptotically to unity as x tends to infinity.

Proof. Consider a substructure of process p's Byzantine causal order prefix con-
sisting of three consecutive messages from each of n&kc&kb nonfaulty processes,
all of which follow the messages in the candidate set S. A message m in the first
rank of a deciding pattern, directly followed by a message in the second rank, is an
event E(m, p, q) and, similarly, for the second and third ranks.

By Fairness property 1, for each such substructure, the probability of each such
event E(m, p, q) is greater than some positive constant =, while by Fairness
property 2, these probabilities are independent. Thus, the probability that the
substructure is a deciding pattern is greater than some positive constant $.

By Fairness property 2, each increment to the Byzantine causal order prefix con-
stitutes a Bernoulli trial, with a probability greater than $ that the prefix contains
a substructure that is a deciding pattern. As x tends to infinity, the number of
messages added to the Byzantine causal order prefix and, thus, the number of such
Bernoulli trials tends to infinity.

Consequently, the probability that the Byzantine causal order prefix contains a
deciding pattern, such that each message in its first rank follows all messages in the
candidate set S, increases asymptotically to unity as x tends to infinity. K
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Lemma 5.13. The probability that a nonfaulty process p selects a set S of
candidate messages for the lth extension of its total order prefix increases asymptoti-
cally to unity as the number t of steps taken by p tends to infinity.

Proof. Let S* be the largest set of candidate messages in the Byzantine causal
order for the l th extension of the total order, each of which is followed by a
message from a nonfaulty process. By Proposition 5.6, p cannot decide against S*
unless p has decided for a proper subset of S*. By Lemma 5.11, if all of the
messages of S* are followed by each of the messages of a deciding pattern, then p
decides for S* or for a proper subset of S*. By Lemma 5.12, the probability that
each message of S* is followed by all of the messages of a deciding pattern tends
to unity as the size x of p's Byzantine causal order prefix tends to infinity and, thus,
as the number t of steps taken by p tends to infinity. K

This leads directly to Theorems 5.3 and 5.4, which establish the Probabilistic
Termination requirements.

Theorem 5.3. The probability that a nonfaulty process p places an ith message in
the total order increases asymptotically to unity as the number of steps taken by p
tends to infinity.

Proof. By Lemma 5.13 and elementary probability theory, for any given l,
the probability that a nonfaulty process p selects a set S l of candidate messages for
the l th extension of its total order prefix increases asymptotically to unity as the
number of steps taken by p tends to infinity. Choose an l such that l�i. Then the
ith message in the total order is contained in the l th total order prefix. K

Theorem 5.21. For each message m from a nonfaulty process q, the probability
that a nonfaulty process p places message m in the total order increases asymptoti-
cally to unity as the number of steps taken by p tends to infinity.

Proof. Since message m is broadcast by a nonfaulty process q, m is followed by
a message from each nonfaulty process. Since each such message follows a finite
number of messages in the Byzantine causal order, there exists a finite number, say
l, of messages that are followed by a message from a nonfaulty process and that do
not follow m. By Lemma 5.13, the probability that p selects a set S l of candidate
messages for the l th extension of its total order prefix increases asymptotically to
unity as the number of steps taken by p tends to infinity. At the l th extension, either
m is already in its (l&1)th total order prefix or all messages that are followed by
a message from a nonfaulty process and that do not follow m are in its (l&1)th
total order prefix. In the latter case, m is the only candidate message and is selected
for the l th extension. K

6. THE 3k c+3kb TOTAL ALGORITHM

For this algorithm, we assume that the relationship between the number n of
processes, the number kc of crash processes and the number kb of Byzantine
processes is 3kc+3kb<n. The Eligibility criteria now has a third requirement. This
third requirement essentially converts the messages from Byzantine processes into
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messages from crash processes. With this requirement, mutants that are not
followed by Ne messages never become eligible to vote. The rest of the algorithm
is the same as the 3kc+5kb algorithm with kb set to 0 and kc set to kc+kb and by
removing all references to Byzantine processes.

The number of messages required for eligibility to vote, the number of votes
required for a further vote and the number of votes required for a decision are at
least Ne , Nv , and Nd , where

Ne=(n+kb+1)�2, Nv=(n&kc&kb)�2, Nd=(n+kc+kb+1)�2.

Eligibility Criteria. At stage i, where i�0,

v A non-Byzantine process determines that a message m is eligible to vote on
S if

�� the process has obtained a prefix A of the Byzantine causal order such
that m # A,

�� no previous message from the source of m votes on S at stage i, and

�� the prefix A contains at least Ne messages from distinct processes, each
of which follows m and does not follow a mutant of m.

The proof for the 3kc+3kb algorithm is based on the following lemmas. The rest
of the proof can be obtained from that for the 3kc+5kb algorithm by setting kb to
0 and kc to kc+kb and by removing all references to Byzantine processes.

Lemma 6.1. If message m is eligible to vote on S at stage i, then no mutant m$
of m is eligible to vote on S at stage i.

Proof. If m is eligible to vote on S at stage i, then m is followed by N�Ne=
(n+kb+1)�2 messages from distinct processes, none of which follows a mutant m$.
Similarly, if the mutant m$ of m is eligible to vote on S at stage i, then m$ is
followed by N$�Ne=(n+kb+1)�2 messages from distinct processes, none of
which follows the message m. At most kb of the processes are Byzantine and,
thus, each can generate two messages, one following m but not m$ and the other
following m$ but not m. Thus, the number of processes is at least N+N$&kb�
(n+kb+1)�2+(n+kb+1)�2&kb=n+1, which is a contradiction. K

Lemma 6.2. If message m has no mutant, then m is eligible to vote on S at
stage i.

Proof. Messages from at most kb Byzantine processes may claim to follow a
mutant of m but, since m has no mutant, m is followed by messages from at least
n&kc&kb nonfaulty processes that do not claim to follow a mutant of m. Since
Ne=(n+kb+1)�2�n&kc&kb , m is eligible to vote on S at stage i. K

7. THE 2k c+5kb TOTAL ALGORITHM

For this algorithm, we assume that the number n of processes, the number kc of
crash processes, and the number kb of Byzantine processes satisfies the constraint

96 MOSER AND MELLIAR-SMITH



2kc+5kb<n. The algorithm is defined by the Eligibility, Voting, Proposing, and
Decision criteria given below; these criteria determine whether the candidate set S
is chosen for inclusion in the total order.

The number of messages related to an indifferent proposal, the number of votes
required for a proposal and the number of proposals required for a decision are at
least Nv , Np , and Nd , respectively, where

Nv=n&kc&kb , Np=(n+kb+1)�2, Nd=kc+2kb+1.

Eligibility Criteria. At stage i, where i�0,

v a non-Byzantine process determines that a message m is eligible to vote on
S if

�� the process has obtained a prefix A of the Byzantine causal order such
that m # A, and

�� no previous message from the source of m has voted on S at stage i;

v a non-Byzantine process determines that a message m is eligible to propose
on S if

�� the process has obtained a prefix A of the Byzantine causal order such
that m # A, and

�� no previous message from the source of m has proposed on S at stage i.

Voting Criteria. At stage 0,

v a message votes for S if it follows every message in S and it follows no other
candidate message (a candidate message votes for the set containing only itself);

v a message votes against S if it follows a candidate message not in S (a can-
didate message votes against all sets of which it is not a member).

At stage i, where i>0,

v a message votes for S if

�� it follows a message that proposes for S at stage i&1;

v a message votes against S if

�� it follows a message that proposes against S at stage i&1,

or

�� it follows no message that proposes for or against S at stage i&1, and

�� it follows at least Nv messages that propose indifferent to S at stage i&1.

Proposing Criteria. At stage i, where i�0,

v a message proposes for S if

�� it follows at least Np messages that vote for S at stage i;

v a message proposes against S if

�� it follows at least Np messages that vote against S at stage i;
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v a message proposes indifferent to S if

�� it does not propose for or against S at stage i, and

�� it follows at least Nv messages that vote on S at stage i.

Decision Criteria. At stage i, where i�0,

v a non-Byzantine process decides for S if

�� it determines that at least Nd messages propose for S at stage i, and

�� for each proper subset of S, it decides against that proper subset;

v a non-Byzantine process decides against S if

�� it determines that at least Nd messages propose against S at stage i, or

�� it decides for a proper subset of S.

The values of Nv , Np , and Nd and the constraint 2kc+5kb<n are derived from
the following properties: Votes and decisions do not conflict (Nv+Nd>n+kb),
proposals do not conflict (Np+Np>n+kb), decisions do not conflict (Nd>kc+kb),
stages of voting and proposing advance (Nv�n&kc&kb), proposals for or
against are feasible (Np�n&kc&kb and Np�Nv&kb), and decisions are feasible
(Nd�n&kc&kb).

The proof of correctness for the 2kc+5kb algorithm is similar to that for the
3kc+5kb algorithm and can be found in Appendix I.

8. THE 2k c+3kb TOTAL ALGORITHM

For this algorithm we assume that the number n of processes, the number kc of
crash processes, and the number kb of Byzantine processes satisfies the constraint
2kc+3kb<n. The Eligibility criteria for voting are the same as those for the
3kc+3kb algorithm. In addition, here we have identical Eligibility criteria for
proposing. The rest of the algorithm is the same as the 2kc+5kb algorithm with kb

set to 0 and kc set to kc+kb and by removing all references to Byzantine processes.
The number of messages required for eligibility to vote, the number of messages

related to an indifferent proposal, the number of votes required for a proposal, and
the number of proposals required for a decision are at least Ne , Nv , Np , and Nd ,
where

Ne=(n+kb+1)�2, Nv=n&kc&kb , Np=(n+1)�2, Nd=kc+kb+1

Eligibility Criteria. At stage i, where i�0,

v a non-Byzantine process determines that a message m is eligible to vote
(propose) on S if

�� the process has obtained a prefix A of the Byzantine causal order such
that m # A,
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�� no previous message from the source of m votes (proposes) on S at
stage i, and

�� the prefix A contains at least Ne messages from distinct processes, each
of which follows m and does not follow a mutant of m.

The proof for the 2kc+3kb algorithm is based on the following lemmas. The rest
of the proof can be obtained from that for the 2kc+5kb algorithm by setting kb to
0 and kc to kc+kb and by removing all references to Byzantine processes. Since
2(kc+kb)<2kc+3kb<n, our assumption 2kc+3kb<n for this algorithm implies
the assumption 2(kc+kb)<n for the 2kc+5kb algorithm, where there are k=
kc+kb crash processes and no Byzantine processes.

The proof of correctness is similar to that for the 3kc+3kb algorithm and can be
found in Appendix II.

9. PERFORMANCE TRADE-OFFS OF THE ALGORITHMS

The primary performance measure for a total ordering algorithm, such as one of
the Total algorithms, is the mean latency from transmission of a message to
delivery of that message into the total order. The worst-case latency is, unfor-
tunately, not a useful measure since it is necessarily infinite. The analysis of the
latency of a total ordering algorithm in the presence of Byzantine faults, or even of
message loss, is difficult. Fortunately, in a well-designed system that uses LANs
or ATM connections, the probability of message loss is low (<10&6) and the
probability of crash faults is even lower (<10&10), and neither significantly affects
the mean latency. Moreover, Byzantine faults can be assumed to be rare, since a
Byzantine fault leads to the identification and removal of the faulty process.

Consequently, we provide here a straightforward analysis of the mean latency for
each of the Total algorithms in the most probable case that for each message in
the causal order the probability that a process originated that message is the same
for all processes, each message is received by all processes, there are no faulty
processes, and the causal order is a linear order. Under low or moderate load
and assuming reliable message communication, a process can have received all
prior messages from other processes and can have prepared the appropriate
acknowledgments before transmitting its own messages, resulting in a linear causal
order. Under high load, two or more processes can transmit simultaneously or
almost simultaneously, resulting in concurrent messages in the causal order and a
more difficult latency analysis, and the latency can be affected by contention for the
communication medium itself. The analysis of latency under high load is the subject
of ongoing research.

Under the assumptions given above, there is never more than one candidate
message and all messages vote for that candidate message. The mean latency is the
mean number of messages that must be considered in the causal order to obtain the
required number of votes from distinct processes. Thus, the mean number of
messages required to obtain messages from m distinct processes for a system of n
processes is
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The 3kc+5kb algorithm requires only Nd votes from distinct processes to decide.
Thus, the mean latency is L(n, Nd). The 3kc+3kb algorithm has the extra eligibility
requirement that a message must be acknowledged by Ne messages before it can
become eligible to vote. Thus, the mean latency is L(n, Ne)+L(n, Nd)&1.

The 2kc+5kb algorithm involves proposals in addition to votes. Since a message
counts as both the last required message to vote and also as the first message to
propose, the mean latency is L(n, Np)+L(n, Nd)&1. The 2kc+3kb algorithm also
has the extra eligibility requirement. Thus, the mean latency is L(n, Ne)+
L(n, Np)+L(n, Nd)&2.

Figure 4 shows the mean latencies for the 3kc+5kb algorithm and for the
3kc+3kb algorithm. The latencies are shown for various numbers of processes and
for various levels of resilience. In representing the resilience, the number of crash
faults is indicated before the number of Byzantine faults; thus, 3�2 represents a
system resilient to three crash faults and two Byzantine faults. Note that in some
cases the latencies are the same for two different resiliencies. An odd�even effect is
clearly visible in the graphs.

As the graphs show, the mean latency is lower for the 3kc+5kb algorithm than
for the 3kc+3kb algorithm, but there are many cases in which, for the same num-
ber of processes, the 3kc+3kb algorithm can tolerate a larger number of faults. The
increased resilience to Byzantine faults of the 3kc+3kb algorithm has a price; the
extra eligibility requirement increases the latency. For example, in a 12-process
system resilient to two crash faults and one Byzantine fault, the mean latency is
15.24 messages for the 3kc+5kb algorithm and 21.08 messages for the 3kc+3kb

algorithm. In a 10-process system, however, resilience to two crash faults and one
Byzantine fault is impossible for the 3kc+5kb algorithm, but it can be achieved for
the 3kc+3kb algorithm. Thus, neither algorithm dominates the other.

Figure 5 shows the corresponding mean latencies for the 2kc+5kb algorithm and
for the 2kc+3kb algorithm. It is evident that the differences between these two algo-
rithms are very similar to those between the first two algorithms. Again, neither
algorithm dominates the other.

When comparing Fig 4 with Fig. 5, however, it is much less clear whether the
3kc+5kb algorithm has a lower latency than the 2kc+5kb algorithm, or whether
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FIG. 4. The mean latency, measured in messages, from transmission to delivery into the total order
for various numbers of processes and for various levels of resilience. The resilience is indicated as the
number of crash faults followed by the number of Byzantine faults.

FIG. 5. The mean latency, measured in messages, from transmission to delivery into the total order
for various numbers of processes and for various levels of resilience. The resilience is indicated as the
number of crash faults followed by the number of Byzantine faults.
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the 3kc+3kb algorithm has a lower latency than the 2kc+3kb algorithm. In each
case, for some numbers of processes and levels of resilience, one has a lower latency
and, for other numbers of processes and levels of resilience, the other has a lower
latency. Overall, none of the four algorithms dominates any of the other algorithms
and the choice of algorithm must be made for each application individually, based
on the specific needs of that application.

9.1. Mixed-Mode Operation

To illustrate mixed-mode operation of the Total algorithms, we consider the
3kc+5kb algorithm and a system of n=24 processes, with kc=2 and kb=3. For
these values of kc and kb , Nv=9.5 and Nd=18. In this case, the algorithm can
tolerate two crash faults and three Byzantine faults, or three crash faults and two
Byzantine faults, or four crash faults and one Byzantine fault, or five crash faults
and no Byzantine faults, since any crash fault can be covered by a Byzantine fault.
Examination of the inequalities at the end of Section 4 reveals that, with Nv=9.5
and Nd=18, the algorithm can also tolerate six crash faults and no Byzantine
faults. Thus, a reduction in the number of Byzantine faults allows an increase in the
total number of faults that can be tolerated. The mean latency for this case is
L(24, 18)=31.8 messages.

If, instead, we consider the 3kc+5kb algorithm and a system of n=24 processes,
with kc=6 and kb=1, then we obtain Nv=8.5 and Nd=17. In this case, the algo-
rithm can tolerate six crash faults and one Byzantine fault, or seven crash faults and
no Byzantine faults. The mean latency for this case is L(24, 17)=21.4 messages.
Note that in the previous case the ability to tolerate more Byzantine faults reduced
the total number of faults that could be tolerated, and also increased the latency.

10. CONCLUSION

The four Total algorithms presented here derive a total order from a causal order
on messages in the presence of crash and Byzantine faults. These algorithms are
distributed algorithms that are executed independently at each of the processes and
require no additional communication between processes. The algorithms employ a
multistage voting strategy to achieve agreement on the total order and exploit the
random structure of the causal order to achieve probabilistic termination. They
ensure that nonfaulty processes construct identical total orders on messages and
that non-Byzantine processes construct consistent total orders, provided that the
resilience requirements are satisfied.

Two of the four Total algorithms include messages from Byzantine processes in
the voting. These two algorithms exhibit excellent latency, but do not achieve the
maximum possible resilience. The other two Total algorithms use an extra eligibility
requirement for voting that essentially converts Byzantine faults into crash faults
and increases the resilience of the algorithms. Converting Byzantine faults into
crash faults seldom yields the most efficient algorithms. We continue to seek a
voting strategy that tolerates the theoretical maximum number of Byzantine faults
and that matches the lower latency of our most efficient algorithms.
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APPENDIX I

We present here the proof of correctness for the 2kc+5kb algorithm given in
Section 7. This proof is similar to that for the 3kc+5kb algorithm.

I.1. Partial Correctness

The proof of partial correctness involves showing that if two non-Byzantine pro-
cesses p and q make l th extensions to their total order prefixes, then the candidate
sets they choose for those extensions are identical and, thus, their l th total order
prefixes are identical. The proof is by induction on l. The base case is trivial since,
if l=0, then all of these sets are empty. The heart of the proof constitutes estab-
lishing the inductive step.

As in the 3kc+5kb algorithm, we have the following lemma which states that the
only information used by the algorithm is the Byzantine causal order on messages.

Lemma 7.1. Let p and q be non-Byzantine processes. If p and q each determine
the vote of a message m on a candidate set S at stage i, then they determine the same
vote of m on S at stage i.

Proof. The proof is similar to that of Lemma 5.1. K

Lemma 7.2. Each non-Byzantine process p broadcasts at most one message that
votes on a candidate set S at stage i; that message does not vote both for and against
the candidate set S at stage i.

Proof. Since p broadcasts at most one message that votes on S at stage i, it
suffices to show that if a message m votes for (against) a candidate set S at stage
i, then m does not vote against (for) S at stage i. The proof is by induction on i.
For i=0, the Voting criteria imply the statement.

We now assume the statement for i&1 and argue by contradiction to establish
the statement for i. Thus, we assume that m votes both for and against S at stage i.
By the Voting criteria, since m votes for S at stage i, it follows a message that
proposes for S at stage i&1. Consequently, since m votes against S at stage i, it
follows a message that proposes against S at stage i&1. By the Proposing criteria,
m follows N�Np messages that vote against S at stage i&1. Moreover, the induc-
tive assumption implies that those messages do not vote for S at stage i&1. Thus,
since a Byzantine process can broadcast messages that vote for and against S at
stage i&1, the number of messages from distinct processes that vote for S at stage
i&1 is at most n&N+kb�n&Np+kb=(n&kb&1)�2+kb<(n+kb+1)�2+
kb=Np+kb . Consequently, no message proposes for S at stage i&1, which is a
contradiction. K

Lemma 7.2.1. If message m votes against ( for) a candidate set S at stage i, then
m follows a message that votes against ( for) S at stage i&1, where i>0.

Proof. Assume that m votes against S at stage i and that m follows no message
that votes against S at stage i&1. Then, by the Proposing criteria, m follows no
message that proposes against S at stage i&1. But m votes against S at stage i.
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Therefore, by the Voting criteria, m follows at least Nv messages that propose indif-
ferent to S at stage i&1. Hence, by the Proposing criteria, m follows N�Nv

messages that vote on S at stage i&1. If all such messages from non-Byzantine pro-
cesses vote for S, then m proposes for S at stage i&1 (rather than proposing indif-
ferent), since 2kc+5kb<n implies that Nv=n&kc&kb�(n+kb+1)�2+kb=
Np+kb . Thus, m votes for S at stage i, which is a contradiction. Consequently, at
least one of the N messages votes against S at stage i&1. The proof in the case that
m votes for S at stage i is obvious. K

Lemma 7.2.2. If message m proposes for (against) a candidate set S at stage i,
then no message proposes against ( for) S at stage i.

Proof. The statement follows from Lemma 7.2 and the fact that Np+Np>
n+kb since only a Byzantine process can broadcast messages that propose for and
against S at stage i. K

Lemma 7.2.3. Each non-Byzantine process p broadcasts at most one message that
proposes on a candidate set S at stage i; that message proposes only once at stage i.

Proof. The first statement follows from the requirement that a message proposes
on a candidate set S at stage i only if no previous message from its source has
proposed on S at stage i. The second statement is given by Lemma 7.2.2. K

Lemma 7.3. If message m follows at least Nd messages that propose for (against)
a candidate set S at stage i&1, then no message m$ votes against ( for) S at stage
i, where i>0.

Proof. Assume that message m$ votes against S at stage i. Then, either (1) m$
follows a message that proposes against S at stage i&1, or (2) m$ follows at least
Nv messages that propose indifferent to S at stage i&1. By the hypothesis and
Lemma 7.2.2, Case (1) cannot occur. In Case (2), by the hypothesis, Lemma 7.2.3,
and the fact that a Byzantine process can broadcast messages that propose for
(against) S and indifferent to S at stage i&1, at most n&Nd+kb=n&kc&
2kb&1+kb<n&kc&kb=Nv messages propose indifferent to S at stage i&1,
which is a contradiction. The proof for the alternative statement of the lemma is
similar but simpler, because only Case (1) arises. K

Lemma 7.4. If message m votes against ( for) a candidate set S at stage j
then, for each i such that 0�i� j, m follows a message that votes against ( for) S at
stage i.

Proof. The proof is similar to that of Lemma 5.4 and uses Lemma 7.2.1 in place
of the Voting criteria. K

Lemma 7.5. If no message from a non-Byzantine process votes against ( for) a
candidate set S at stage i, then no message from any process votes against ( for) S
at stage j, where j�i. Likewise, if some process p decides for (against) a candidate
set S at stage i, then no message proposes against ( for) S at stage j, where j>i.

Proof. The proof of the first statement is identical to that of the first statement
of Lemma 5.5. To prove the second statement, we note that if p decides for a
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candidate set S at stage i, then p determines that at least Nd messages propose for
S at stage i. By Lemma 7.3, no message votes against S at stage i+1. By the first
statement, no message votes against S at stage j, where j�i+1. Therefore, by the
Proposing criteria, no message proposes against S at stage j, where j>i. K

Proposition 7.1. Let p and q be non-Byzantine processes. If p decides for a
candidate set S for the lth extension of the total order, then q does not decide for a
proper subset S$ of S for the lth extension.

Proof. The proof is similar to that of Proposition 5.1, but it is based on Lemma
7.1, Lemma 7.2.2, and Lemma 7.5. K

Proposition 7.2. Let p and q be non-Byzantine processes. If p decides for
(against) a candidate set S for the lth extension of the total order, then q does not
decide against ( for) S for the lth extension.

Proof. The proof is similar to that of Proposition 5.2, but it is based on
Proposition 7.1, Lemma 7.1, Lemma 7.2.2, and Lemma 7.5. K

The statement of Lemma 7.6 is weaker than that of Lemma 5.6, but it suffices to
prove Lemma 7.6.1, which is needed to prove Proposition 7.3 below.

Lemma 7.6. Let S and S$ denote candidate sets for the lth extension of the total
order such that there exist s # S, s � S$ and s$ # S$, s$ � S. If message m from a
non-Byzantine process p votes for S at stage i, then no message from p votes for S$
at stage i.

Proof. The proof is by induction on i. If message m from process p votes for S
at stage 0, then it follows the candidate message s # S and no previous message
from p votes on S. Since m follows s and s � S$, m votes against S$ at stage 0. By
Lemma 7.2, no message from p votes for S$ at stage 0.

We now assume the statement for i&1. If m votes for S at stage i then, by the
Voting and Proposing criteria, m follows N�Np messages from distinct processes
that vote for S at stage i&1. By the inductive assumption, for each such message
from a non-Byzantine process, no message from that process votes for S$ at stage
i&1. Thus, at most n&N+kb�n&Np+kb=(n+kb&1)�2<(n+kb+1)�2=Np

messages from distinct processes vote for S$ at stage i&1. Consequently, by the
Proposing criteria, no message proposes for S$ at stage i&1 and, by the Voting
criteria, no message votes for S$ at stage i. K

Lemma 7.6.1. Let S and S$ denote candidate sets for the lth extension of the total
order such that there exist s # S, s � S$ and s$ # S$, s$ � S. If message m proposes for
S at stage i, then no message proposes for S$ at stage i.

Proof. If m proposes for S at stage i then, by the Proposing criteria, at least Np

messages from distinct processes vote for S at stage i. By Lemma 7.6, for each such
message from a non-Byzantine process, no message from that process votes for S$
at stage i. Thus, at most n&Np+kb=(n+kb&1)�2<(n+kb+1)�2=Np messages
from distinct processes vote for S$ at stage i. By the Proposing Criteria, no message
proposes for S$ at stage i. K
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Proposition 7.3. Let p and q be non-Byzantine processes, and let S and S$
denote candidate sets for the lth extension of the total order such that there exist
messages s # S, s � S$ and s$ # S$, s$ � S. If p decides for S for the lth extension of the
total order, then q does not decide for S$ for the lth extension.

Proof. If p decides for S at stage i then, by the Decision criteria, p determines
that a message (in fact, at least Nd messages) proposes for S at stage i. Thus, by
Lemma 7.6.1, no message proposes for S$ at stage i. Consequently, by the Decision
criteria, q does not decide for S$ at stage i. K

The main theorem, Theorem 7.1, guarantees that the total orders determined by
non-Byzantine processes are consistent.

Theorem 7.1. Let p and q be non-Byzantine processes. If p determines that m is
the ith message in the total order, then q does not determine that m$ is the ith
message, where m${m.

Proof. The proof is identical to that of Theorem 5.1. K

Theorem 7.2 guarantees that no message that follows a message in the Byzantine
causal order precedes that message in the total order. Thus, the total order is not
arbitrary but is consistent with the Byzantine causal order.

Theorem 7.2. If m$ follows m in the total order prefix of a non-Byzantine process
p, where m${m, then m does not follow m$ in the Byzantine causal order.

Proof. The proof is identical to that of Theorem 5.2. K

I.2. Probabilistic Termination

To prove probabilistic termination we use the following definition.
A deciding pattern consists of five ranks such that

1. each rank contains messages from n&kc&kb distinct nonfaulty processes,
and all ranks contain messages from the same n&kc&kb processes,

2. each message in the second rank directly follows every message in the first
rank and no other message,

3. each message in the third rank directly follows every message in the second
rank and no other message,

4. each message in the fourth rank directly follows every message in the third
rank and no other message, and

5. each message in the fifth rank directly follows every message in the fourth
rank and no other message.

In Proposition 7.6 we show that a process cannot decide against all available
candidate sets.

Proposition 7.6. Let S* be the largest set of candidate messages in the Byzan-
tine causal order for the lth extension of the total order, each of which is followed by
a message from a nonfaulty process. Then S*{, and, if a non-Byzantine process p
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makes the lth extension of its total order prefix, then p cannot decide against S*
unless p has decided for a proper subset of S*.

Proof. The proof that S*{, is identical to the corresponding proof of Proposi-
tion 5.6. Now, if p decides against S* at stage i and p has not decided for a proper
subset of S*, then p determines that at least Nd messages propose against S* at
stage i. Each of those messages follows at least Np messages that vote against S*
at stage i. Since Np=(n+kb+1)�2>kc+kb (since 2kc+5kb<n), at least one of
those messages is from a nonfaulty process. Let m be such a message. By Lemma
7.4, m follows a message m$ that votes against S* at stage 0. Thus, m$ follows a
candidate message s such that s � S*. But, m also follows s, which contradicts the
definition of S*. K

The next three lemmas are used to prove Lemma 7.10, which states that there
exists a largest stage i at which a message m or a previous message from its source
votes on a candidate set S.

Lemma 7.7. If message m votes on a candidate set S at stage i, where i>0,
then m follows a message that votes on S at stage i&1 but does not vote on S at
stage i.

Proof. There are two cases to consider: (1) Message m is originated by a non-
Byzantine process. Since m votes on S at stage i, by the Voting criteria m follows
at least two messages that vote on S at stage i&1. Consider the set of all messages
that m follows and that vote on S at stage i&1. This set is finite. Since m is
originated by a non-Byzantine process, m does not follow a message that occurs
within a nontrivial cycle. Consequently, this set contains a message m$ that follows
no message that votes on S at stage i&1, aside from itself. Since Np=
(n+kb+1)�2>1 and Nv=n&kc&kb>1 (since 2kc+5kb<n), m$ does not
propose on S at stage i&1 and thus does not vote on S at stage i.

(2) Message m is originated by a Byzantine process. Since m votes on S at stage
i and since Nv=n&kc&kb>kb , m follows at least one message m$ from a non-
Byzantine process. If m$ does not vote on S at stage i, then we are done. If m$ votes
on S at stage i, then we apply Case (1) to m$. K

Lemma 7.8. If message m from process p votes on a candidate set S for the lth
extension of the total order at stage j then, for each i such that 0�i� j, m or a
previous message from p votes on S at stage i.

Proof. The proof is by induction on j. If j=0, then the statement holds trivially.
If j=1, then three cases arise: (1) m follows a message m$ that proposes for S at
stage 0 and, thus, m$ follows at least Np messages that vote for S at stage 0, (2) m
follows a message m$ that proposes against S at stage 0 and, thus, m$ follows at
least Np messages that vote against S at stage 0, or (3) m follows at least Nv

messages that propose indifferent to S at stage 0, each of which follows at least Nv

messages that vote on S at stage 0. In each case, m follows a message that votes
on S at stage 0 and, thus, m follows every message in S or a candidate message not
in S. Consequently, m or a previous message from p votes on S at stage 0.
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Now assume that the statement holds for j&1, where j>1. If m votes on S at
stage j, then three cases arise: (1) m follows a message m$ that proposes for S at
stage j&1 and, thus, m$ follows at least Np messages that vote for S at stage j&1,
each of which follows a message that proposes for S at stage j&2, (2) m follows
a message m$ that proposes against S at stage j&1 and, thus, m$ follows at least
Np messages that vote against S at stage j&1, each of which follows a message that
proposes against S at stage j&2 or follows at least Nv messages that propose indif-
ferent to S at stage j&2, or (3) m follows at least Nv messages that propose indif-
ferent to S at stage j&1, each of which follows at least Nv messages that vote on
S at stage j&1; each of these messages either follows a message that proposes for
S at stage j&2, follows a message that proposes against S at stage j&2, or follows
at least Nv messages that propose indifferent to S at stage j&2. In each case, m or
a previous message from p votes on S at stage j&1. The inductive assumption now
gives the result. K

Lemma 7.9. If message m votes on a candidate set S for the lth extension of the
total order at stage i, then m follows at least i distinct messages that vote on S at
stages 0 through i&1.

Proof. The proof is identical to that of Lemma 5.9. K

Lemma 7.10. If message m from process q follows each message in a candidate set
S, then there exists an i such that m or a previous message from q votes on S at stage
i and neither m nor any previous message from q votes on S at stage i+1.

Proof. The proof is identical to that of Lemma 5.10. K

The above lemma is used in the proof of Lemma 7.11, which demonstrates that
a deciding pattern is indeed a deciding pattern.

Lemma 7.11. If the Byzantine causal order prefix of a nonfaulty process p con-
tains a deciding pattern such that each message in its first rank follows all of the
messages in a candidate set S, then process p decides on S.

Proof. Every message in the second rank of the deciding pattern follows exactly
the same set of messages, aside from itself. Thus, if any message in the second rank
or a previous message from its source votes on S at stage i, then every message in
the second rank or a previous message from its source votes on S at stage i. Conse-
quently, by Lemma 7.10, there exists a largest stage i at which every message in the
second rank or a previous message from its source votes on S.

If any message in the second rank proposes on S at stage i, then all messages in
the second rank propose on S at stage i and, furthermore, they all propose the same
way. Four cases arise: (1) All messages in the second rank propose for S or all
propose against S at stage i. This results in a decision at stage i based on the
proposals by messages in the second rank. (2) All messages in the second rank
propose indifferent to S at stage i. In this case, all messages in the third rank vote
against S at stage i+1, and all messages in the fourth rank propose against S at
stage i+1, resulting in a decision against S at stage i+1. (3) No message in the
second rank proposes on S at stage i, and all messages in the third rank propose
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for S or all propose against S at stage i, resulting in a decision at stage i. (4) No
message in the second rank proposes on S at stage i and all messages in the third
rank propose indifferent to S at stage i. In this case, all messages in the fourth rank
vote against S at stage i+1, and all messages in the fifth rank propose against S
at stage i+1, resulting in a decision against S at stage i+1. K

Lemma 7.12 shows that the probability that a Byzantine causal order prefix
contains a deciding pattern that follows a candidate set increases as the size of the
prefix increases, while Lemma 7.13 shows that the probability that a nonfaulty
process selects a candidate set for the l th extension increases as the number of steps
taken by the process increases.

Lemma 7.12. Let S be a candidate set, each message of which is followed by a
message from a nonfaulty process q. The probability that a Byzantine causal order
prefix of size x obtained by a nonfaulty process p contains a deciding pattern, such
that each message in its first rank follows all of the messages in S, increases
asymptotically to unity as x tends to infinity.

Proof. The proof is identical to that of Lemma 5.12. K

Lemma 7.13. The probability that a nonfaulty process p selects a set S l
p of

candidate messages for the lth extension of its total order prefix T l
p , contingent on

its having constructed the (l&1) th extension of its total order prefix, increases
asymptotically to unity as the number of steps taken by p tends to infinity.

Proof. The proof is identical to that of Lemma 5.13. K

This leads directly to Theorems 7.3 and 7.4, which establish the Probabilistic
Termination requirements.

Theorem 7.3. The probability that a nonfaulty process p places an ith message in
the total order increases asymptotically to unity as the number of steps taken by p
tends to infinity.

Proof. The proof is identical to that of Theorem 5.3. K

Theorem 7.4. For each message m from a nonfaulty process q, the probability
that a nonfaulty process p places message m in the total order increases asymptoti-
cally to unity as the number of steps taken by p tends to infinity.

Proof. The proof is identical to that of Theorem 5.4. K

APPENDIX II

We present here the proof of correctness for the 2kc+3kb algorithm given in
Section 7. This proof is similar to that for the 3kc+3kb algorithm.

Lemma 8.1. If message m is eligible to vote ( propose) on S at stage i, then no
mutant m$ of m is eligible to vote ( propose) on S at stage i.

Proof. The proof for eligibility to vote is identical to that of Lemma 7.1, as is
the proof for eligibility to propose. K

109TOTAL ORDERING ALGORITHMS



Lemma 8.2. If message m has no mutant, then m is eligible to vote ( propose) on
S at stage i.

Proof. The proof for eligibility to vote is identical to that of Lemma 7.2, as is
the proof for eligibility to propose. K
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