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A b s t r a c t - - I n  a recent paper which appeared in this journal, Cheon [1] rederived several known 
properties and relationships involving the classical Bernoulli and Euler polynomials. The object of 
the present sequel to Cheon's work [1] is to show (among other things) that the main relationship 
(proven in [1]) can easily be put in a much more general setting. Some analogous relationships 
between the Bernoulli and Euler polynomials are also considered. (~) 2004 Elsevier Ltd. All rights 
reserved. 

K e y w o r d s - - B e r n o u l l i  polynomials, Euler polynomials, Generating functions, Bernoulli numbers, 
Euler numbers, Addition theorem, Multiplication theorem~ Generalized Bernoulli polynomials and 
numbers, Generalized Euler polynomials and numbers. 

1. I N T R O D U C T I O N  

T h e  classical  Bernoulli polynomials Bn(x)  and  the  classical  Euler polynomials En(x)  are usual ly  

def ined by m e a n s  of  t he  fol lowing gene ra t ing  funct ions:  

oo tn 
t ~  -- ~ B~ (x) (Itl < 2¢r) (1) 

e t - 1 ~ .  
n=O 

and 
2eXt oo tn 

J V I  - ~ En (x) ~. (Itl < ~), (2) 
n = 0  
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respectively. The corresponding Bernoulli numbers Bn and Euler numbers En are given by 

B~ := B~ (O) = (-1)'~ B,~ (1) = (21-~- I)-I B,~ (1)  

( n E N o : = N U { 0 } ;  5 : = { 1 , 2 , 3 , . . . } )  

and 

(3) 

and 

t ( n )  B B~ (x + i) = k k (x) (~ e No), (5) 
k----0 

E n ( x + l ) = f i ( n k ) E k ( x )  (n E N0), (6) 
k = 0  

and 

B,, (x) = k BkE~_k (x) (n e No). (7) 
k=O 
(k#l) 

Both (5) and (6) are well-known (rather classical) results and are obvious special cases of the 
following familiar addition theorems: 

k = 0  

or, equivalently, 

E .  (x + y) = k k (x)  (~ e , 
k=O 

when y = 1. ~r thermore,  Cheon's main result (7) is essentially the same as the following known 
relationship (ef., e.g., [3, p. 806, Entry (23.1.29)], [4, p. 29], and [6, p. 66, equation 1.6 (63)]): 

= y ]  ( ) B n - k E k  ( 2 x ) ( n  eN0) (lO) Bn (x) 2 -~ n 
k 

k=O 

k----O 

(n e N0). (11) 

In Section 2 of the present sequel to Cheon's work [1], we propose to verify the equivalence of the 
relationships (7) and (11). And, in Section 3, we shall consider some interesting generalizations 
and analogues of the equivalent relationships (7) and (11). 

(n e No) (8) 

respectively. 
Numerous interesting (and useful) properties and relationships involving each of these polyno- 

mials and numbers can be found in many books and tables on this subject (see, for example, [2-6]). 
Recently, by making use of some fairly standard techniques based upon series rearrangement, 
Cheon [1] rederived each of the following results (cf. [1, p. 366, Theorem 1; p. 368, Theorem 3]): 



Some Relationships 377 

2. EQUIVALENCE OF RELATIONSHIPS (7) A N D  (11) 

For both Bernoulli and Euler polynomials, the following multiplication theorems are well known 
(eft, e.g., [2, p. 37, equation 1.13 (11); p. 41, equations 1.14 (8) and 1.14 (9)]): 

m - 1  Bn(mx)=mn-iEB~(x+-~- ) ( nENo ;  m E N )  (12) 
j=o 

and 

j=o 
E~ (mz)  = 

--~'~--~ E (--1) j Bn+l x + 
j=0 

( n e N o ;  m = 1 , 3 , 5 , . . . ) ,  

(n e N0; m = 2 ,4 ,6 , . . . ) ,  (13) 

which, together, would yield the following relationships between these two polynomials when 
m = 2 (with, of course, n~ ~ n -  1 and x ,  > x /2)  [3, p. 806, Entry (23.1.27)]: 

2n [Bn(X-~l ) En_l(X)-.~_ .-~ - -  -Bn (~)]  

- n  
(n c N). 

(14) 

Since B1 = -1 /2 ,  by separating the second (k = 1) term of the sum in (11), we readily find 
from (11) that 

k=O 
(k#l) 

which, in light of the second relationship in (14), immediately yields (7). And, by simply reversing 
these steps, we can easily deduce (11) from (7). 

3. GENERALIZATIONS A N D  A N A L O G U E S  OF THE 
EQUIVALENT RELATIONSHIPS (7) A N D  (11) 

For a real or complex parameter a, the generalized Bernoulli polynomials B(a)(x)  and the 
generalized Eulerpolynomials E(~)(x),  each of degree n in x as well as in a, are defined by 
means of the following generating functions (see, for details, [6, Section 1.6], [7, p. 253 et seq.], 
and [8, Section 2.8]): 

= Z (°) (x) (Itl < 2~-; 1 '~ := 1) (16) 
'n~0 

and 

e ~t = ~ E(~ ~) (x) ~ (It] < ~; 1 ~ := 1), (17) 

respectively. Clearly, we have 

B (1) (x) = B~ (x) and E (1) (x) = E~ (x) (n E No). (18) 
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Moreover, it is easily observed from (16) and (17) that 

k = 0  

and 

respectively. 

(n C No) (19) 

E (a+~) (x + y) : f i  {n'~ re(a) E(~k No) (20) ~=0 \ k ) = ~  (x) (y) (~ e , 

In fact, several further addition theorems analogous to the well-known (rather 
classical) results (19) and (20) were considered, two decades ago, by Srivastava et al. [91 (see 
also [6, p. 62, equations 1.6 (26) and 1.6 (27); p. 66, equation 1.6 (68)]). 

From the generating functions (16) and (17), it follows also that 

and 

B (~) (x + 1) - B(~ ~) (x) = n ~ _  1 (x) (n e No) (21) 

E~ (~) (x + i) + E~ (~) (x) : 2E~ (~-1) (x) (~ e No), (22) 

respectively. Furthermore, since 

B (°) (x) = E (°) (x) = x ~ (n E No), (23) 

upon setting/3 = 0 in the addition theorems (19) and (20) and interchanging x and y, we obtain 

k = 0  

and 

--"~ (~ ~(~)(y)~n-~ (~ e No) (25) Ei  ~) (x +y)  = <k)~ 
k=0  

respectively. Obviously, the familiar addition theorems (8) and (9) correspond to the special 
cases of (24) and (25), respectively, when c~ -- 1. 

Next, by combining (21) and (24) (with x = 1 and y ~ x), we find that 

1 f i  ( n ~ I ) B ( ~ )  (x) (n E No) (26) B (a-i) (x) -- n + I 
k=0  

which, in the speciM case when a = 1, immediately yields the following familiar expansion (cf., 
e.g., [4, p. 26]): 

1 E ( n + l ) B k ( x  ) ( n e N 0 )  (27) 
n / x 

X n - -  

n + l  k 
k=0  \ / 

in series of the classical Bernoulli polynomials {Bn (x)}~=0 . In precisely the same manner, the 
addition theorem (25) in conjunction with (22) would lead us to 

and 

E(# -~) (~) : ff (~) + (x) 
~:o t ,k) 

(n e No) (28) 

= 7 E.  (x) + Ek (x) (n e No). (29) 
k = 0  

In view of (23), this last familiar expansion (29) (el., e.g., [4, p. 30]) in series of the classical Euler 
polynomials {En(x))~_ 0 is indeed an immediate consequenee of (28) when ~ = 1. 

Making use of some of the above known formulas and identities, we now prove an interesting 
generalization of the equivalent relationships (7) and (11), which is given by Theorem 1 below. 
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THEOREM 1. The following relationship: 

B(~ ~) (~ + y) = ~ B~ ~ (y) + @) E~_~ (~) 
(30) k=O 

(~ E c ;  n e No) 

holds true between the generalized BernouIli polynomials and the classical Euler polynomials. 

PROOF. First of all, upon suitably substituting from (29) into the right-hand side of (24), we get 

[ ] 
k=O j=O 

{ ~  .~ )  (y) E~_~ (x) (31) 1 
= -~ t,k),- '~ 

k=O 

£ 1 (n'~,~¢<,l , , - k  
+ Ej (x )  , 

i t ,k)-~ z_., j k=O j=O 

which, by inverting the order of summation, yields --'(.) 1 n (0) 
B~ ~) (x + y) : i k Bk (Y) E~_k (x) + i Ej (=) Z ~ -k a B~) @). (32) 

k=O "= k=0 
The innermost sum in (32) can be evaluated by means of (24) itself with, of course, 

x = l  and nl  , n - j  (0=<j_<n; n, j E N 0 ) .  

We thus find from (32) that 

B=(o~ (x + y) = i ,<:o t ,k)  k (,) ~,,-,, (=) + i j :o 

or, equivalently, that 

~-<~ '~ ÷ ~' - ~'£.o ( ; ) I  =~<'~ '~ '+ =~'~ '~÷ ,,I =.-~ ,~, , ,~, 
which, in light of the recurrence relation (21), leads us at once to relationship (30) asserted by 
Theorem 1. 

REMARK 1. In terms of the generalized Bernoulh numbers s~(~)x°° by setting y = 0 in k ~ n  J n = 0 ,  

Theorem 1, we obtain the following special case: 

B~) (~) = B~) + 2 -~ - '  ) E~_~ (=) (~ e C; ~ ~ N0). (35) 
k = 0  

Since, by definition (16), 

B~ ~) = --~ and S~ °) = ~,0 (~ e N0), (36) 
2 

a further special case of (35) when a = 1 would yield the equivalent relationships (7) and (11), 
5,,,~ being the Kronecker delta. 

REMARK 2. Alternatively, in view of (23), assertion (30) of Theorem 1 gives us the following 
(presumably new) relationship between the classical Bernoulli and the classical Euler polynomials 
when a = 1: 

k=O 

which, by letting y -* 0, immediately yields the equivalent relationships (7) and (II) once again. 

Finally, by appealing instead to (25) and (27), our demonstration of Theorem 1 can be applied 
mutatis mutandis in order to derive an interesting analogue of Theorem I, which is given by 
Theorem 2 below. 
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THEOREM 2. The following relationship: 

k=0 ~ ~k+l  
(a  • C ;  n • N o )  (38) 

holds true between the generalized Euler polynomials and the classical Bernoulli polynomials. 

REMARK 3. In light of (23), a special case of assertion (38) of Theorem 2 when a = 1 gives us 
the following relationship: 

f i  2 ( k ) [ Y k + l - - E k + l ( Y ) ] B ~ - k ( x ) ,  E~ (~ + y) = -Z-j-i 
k=O 

(39) 

which, upon sett ing y -- 0, immediate ly  yields 

2 n 
(n •No). (40) 

This last relationship (40) between the classical Euler and the classical Bernoulli polynomials 
is evidently analogous to the equivalent relationships (7) and (11). In fact, since [5, p. 29] 

En (0) = ( - 1 ) "  E .  (1) = 2 (1 - 2 ~+1) 
n + 1 B~+I (n • N) ,  (41) 

relationship (40) can easily be rewrit ten in the following equivalent form: 

( 2 ) - 1 ~ ( ~ )  (2 n -k  1) B n - k B k ( x )  En-2  (x) = 2 
k:0 

( n e N \  {1}), (42) 

which incidentally is a known result recorded by (for example)  Abramowitz  and Stegun [3, p. 806, 
Ent ry  (23.1.28)] (see also [4, p. 29]). 
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