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Abstract 

Pretzel, 0. and D. Youngs, Balanced graphs and noncovering graphs, Discrete Mathematics, 

88 (1991) 279-287. 

Probabilistic arguments show that triangle-free noncovering graphs are very common. 
Nevertheless, few specific examples are known. In this paper we describe a simple method of 

constructing a large family of such graphs. We first construct graphs that have very restricted 
diagram orientations and then show that identifying certain sets of vertices in one of these 

graphs produces a noncovering graph. 

Introduction 

A noncovering graph is a graph that cannot be oriented as the (Hasse) diagram 
of a partially ordered set. Probabilistic arguments show that noncovering graphs 
of any girth are very common (see Bollobas, Brightwell and NeSetiil [4] or 
NeSetiil and Rod1 [7]), but nevertheless, they are elusive and few specific 
examples of girth greater than 3 are known. The most familiar examples are the 
Mycielski graphs it4,, based on cycles of length 12, 12 odd. M, is illustrated in Fig. 2. 

In this paper we describe a simple method of constructing noncovering graphs 
including all the graphs M,, and many new examples. The method consists of first 
constructing a ‘balanced graph’ which has very restricted diagram orientations 
and then identifying certain sets of vertices produces a noncovering graph. We 
show that balanced graphs necessarily have girth 4. So the method does not 
produce noncovering graphs of large girth. However, the construction does not 
strictly require a balanced graph at the outset, but only a graph containing a 
‘balanced cycle’. So it is possible that it may be generalised to produce 
noncovering graphs of large girth. 

In the main part of the paper we describe balanced graphs and cycles and give a 
formal proof of two versions of our construction of noncovering graphs. The first 
includes a new and very short proof of the well-known fact that the Mycielski 
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graphs are noncovering. We conclude with a series of examples of new 
noncovering graphs constructed by our method. 

Notation 

We follow the notation of Pretzel [8] closely, but repeat the main definitions 
here for the convenience of the reader. All graphs considered will be assumed to 
be finite, connected and free of loops and multiple edges. 

A walk W from a vertex u1 to a vertex LJ~+~ of a graph G is a sequence of 
vertices W = vl, v2, . . . , v~+~ such that for each i E (1, . . . , k}, the pair 
(Vi, vi+i) is an edge of G. These edges are the edges of W. The length k, of W is 
denoted by 1 WJ, W is empty if k = 0. It is simple if all its vertices are distinct. 
Given two walks W, and W2 such that the last vertex of WI is the first vertex of W, 
we can form their concatenation, WI + W,, The inverse walk -W is obtained by 
reversing the order of the vertices of W. 

A circuit K iS a walk K = vi, . . . , vk+l in which the first vertex v1 is the same 
as the last vk+l. We shall identify K with the shifted circuit v2, . . . , vk+l = vl, v2, 

but distinguish K and the inverse circuit -K. A circuit is simple if k > 2 and the 
vertices vl, . . . , vk are distinct. A circuit is trivial if it is a sum of walks of the 
form W-W. Thusacircuitoftheform U+V-V-U+W-Wis[(U+V)- 
(U+V)]+[W-W] and h ence trivial. Circuits are equivalent if they differ only 
by trivial circuits. 

The subgraph P of G consisting of the vertices and edges of a simple walk or 
circuit is called a path or cycle. 

A set of simple circuits B = {K,, . . . , K,,} is called a circuit basis if every 
circuit is equivalent to a concatenation of elements of B and their inverses. It is 
easily seen that the cycles corresponding to a circuit basis form a cycle basis in the 
usual sense. The converse is, however, not necessarily true. Nevertheless the 
usual construction for a cycle basis starting with a spanning tree of the graph also 
yields a circuit basis. 

Definition 1. Given a walk W = vI, . . . , vk+l in a graph G and an orientation R 
of the edges of G, we call an edge (Vi, vi+J a forward edge of W if R directs it 
towards ui+l. Otherwise the edge is a backward edge. If W is not simple the same 
edge may occur several times and we distinguish each of these occurrences, so it 
is quite possible for the same edge to occur twice as a forward edge and ten times 
as a backward edge. The set of forward edges of W (with multiplicities) is 
denoted by W,’ and the set of backward edges is denoted by W,. The flow 
difference of W is 

J?(W) = IWil - IKI. 
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It is obvious that the flow difference of the concatenation of two walks is just 
the sum of their individual flow differences and that a trivial circuit has zero flow 
difference. Hence equivalent circuits have the same flow differences and the flow 
differences of all circuits are completely determined by the flow differences of the 
elements of a circuit basis. 

Diagram orientations R are characterized by the condition that ]K,] 2 2 for all 
nontrivial circuits K (as (-K); = Ki, the same condition for KL follows). This 
condition must be verified for all simple circuits-it is not sufficient to verify it 
only on a circuit basis. 

We now come to the central concept of this paper. 

Definition 2. Let R be a diagram orientation of the graph G and K a circuit of G. 
(i) K is called R-balanced if fR(K) = 0. 

(ii) R is a balanced orientation if all circuits are R-balanced. 
(iii) K is a balanced circuit if it is R-balanced for all diagram orientations R. 
(iv) G is a balanced graph if all its circuits are balanced circuits or equivalently 

if all its diagram orientations are balanced orientations. 

We shall abuse notation and call the cycle underlying a simple balance circuit a 
balanced cycle. It should be emphasised that the use of any of these terms 
implicitly includes the statement that the graph G is a covering graph. 

Of course, trivial circuits are always balanced circuits, but the usefulness of the 
concept lies in the fact that 4-cycles are always balanced. Further obvious facts 
are that balanced circuits have even length and so a graph with a balanced 
orientation must be bipartite. Conversely, any bipartite graph has an obvious 
balanced orientation. 

Clearly, a graph with a circuit basis of balanced circuits is a balanced graph. It 
is not immediately clear that the graph is also balanced if it has a cycle basis of 
balanced cycles (that is shown in Bandelt, Pretzel and Rival [2]). Bandelt and 
Rival [3] have shown that a planar balanced graph has a cycle basis of 4-cycles, in 
[2] an example is given to show that this is not true in general. 

We conclude this section by showing that any balanced graph that is not a tree 
contains 4-cycles. 

Proposition 1. A balanced graph G that is not a tree has girth 4. 

Proof. G is bipartite. So its girth is at least 4. Suppose G has girth at least 6 and 
let C be a cycle of G. Let R be a balanced orientation of G and let S be obtained 
from R by reversing a single edge e E C. For every nontrivial circuit K, 

Hence S is a diagram orientation. On the other hand for a simple circuit K with C 
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as its underlying cycle, 

f,(K) =fR(K) f 2 # 0. 

Hence S is not a balanced orientation, contradicting the assumption that G is a 
balanced graph. Cl 

Noncovering graphs from balanced graphs 

Suppose that G is a graph containing a balanced cycle C, and that G’ is 
obtained from G by identifying certain vertices of C. Then any orientation R’ of 
G’ induces an orientation R of G, and so the fact that C is a balanced cycle places 
constraints on R’. It is quite easy to ensure that these constraints cannot be 
satisfied by a diagram orientation. Thus the main difficulty in this approach to the 
construction of noncovering graphs is finding balanced cycles. 

Definition. Let G be a graph. We say that a surjective graph homomorphism 
f : G-, G’ is an identification of G if the induced map f : E(G)+ E(G’) is 
surjective. 

Note that to avoid loops in G’, we do not permit identification of adjacent 
vertices. We shall frequently describe the identification in an intuitive manner and 
leave a formal definition of the map f to the reader. We will usually represent 
vertices and edges of G’ by any of their pre-images, using several different 
pre-images for the same object if that is convenient. It is quite possible that an 
identification of a covering graph produces a noncovering graph, but the converse 
is not possible. 

Proposition 2. Let f : G + G’ be an identification and let R’ be a diagram 
orientation of G’. Then the orientation R = f -l(R’) is a diagram orientation of G. 

Proof. Any nontrivial circuit K of G induces a circuit K’ = f (K) of G’ and 
lK,( 3 lz$;;( 3 2. 0 

Our main theorem which follows gives one way of identifying vertices in a 
balanced cycle that will produce a noncovering graph. This theorem has many 
variations and we shall prove one of them in the next section because it leads to 
some interesting examples. However, the basic idea is very simple and would only 
be obscured by an attempt at maximum generality. 

Theorem. Suppose K = ul, v2, . . . , vk+l = v1 is a simple chord-free balanced 
circuit of a graph G and p > 3 is an odd divisor of k. Construct G’ from G by 
identifying vertices Vi and Vj of K if i E j (modp). Then G’ is a noncovering graph. 
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Proof. Let K’ be the circuit vl, v2, . . . , v~+~ = v1 in G’. Of course K’ is no 
longer simple. Indeed K’ is the p/k - fold concatenation of the circuit 

K = v,, v*, . . . , up+1 = 211 

with itself. Suppose that G’ has a diagram orientation R’ and let R be the induced 
orientation of G as in Proposition 2. Then R is a diagram orientation. Hence 

0 =&(K) = k/p .&(K’). 

Thus &,(K’) = 0. But K’ is an odd cycle and hence it cannot have zero flow 
difference. Thus the assumption that G’ has a diagram orientation leads to a 

contradiction. 0 

It is quite possible that G’ contains a triangle and so is trivially a noncovering 
graph. So care has to be exercised in choosing the vertices to be identified to 
prevent that happening. That is the reason for excluding the case p = 3, even 
though the proof works just as well then. 

We illustrate our theorem by producing an easy construction of MS that 
immediately shows that it is a noncovering graph. As in all our examples we 
produce balanced cycles by beginning with a balanced graph with a cycle basis of 
4-cycles. Recall that the face cycles of a planar graph form a cycle basis (see e.g. 
Giblin [6, p. 381). W e recall that a face cycle is one that has no vertices of the 
graph in its interior. 

Example 1. Let G1 be the graph illustrated in Fig. 1. The graph Gi is balanced, 
since all its face cycles are 4-cycles. If we apply Theorem 1 to the boundary circuit 

of the outer region of G1 with p = 5, we find Cl = Ms. This is shown in Fig. 2. 
Fig. 3 illustrates how this construction extends to M,, for arbitrary odd IZ. 

Fig. 1. 
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A generalization and some further examples 

The identification of the vertices of the boundary cycle of a planar graph is 
strongly reminiscent of the way closed surfaces are constructed from a polygon in 
topology. There however, some edges may be reversed before they are 

identified. If we emulate this in our construction we obtain more complicated 
conditions but we may still be able to show that they cannot be satisfied by a 
diagram orientation. Before formulating a (fairly) general version of our 
theorem, we give an example to show that the generalization really is worthwhile. 

Example 2. Let Gz be the graph illustrated in Fig. 4. Then G2 is balanced for the 
same reasons as G1. We again choose the boundary circuit K2 = ui, . . . , u19 = u1 

as our balanced circuit. Now however we identify the top and bottom paths 
directly while we reverse the left path before identifying it with the right hand 
one. We can represent this by the scheme used in topology (see Fig. 5). The 
graph G; obtained by this identification is illustrated in Fig. 6. The image of K2 in 
G; has the form 

K’=X+Y-X+Y, 

where X is a 4-circuit and Y is a 5-circuit. Hence if G; has a diagram orientation 
R’ and R is the orientation of G2 inducing R’ we have 

0 =fR(K) =fR,(K’) = 2&(Y) # 0. 

This contradiction shows that Gi is a noncovering graph. 
Note that Gi is 4-regular. So it is a new example of a 4-regular 4-chromatic 

graph as well as being an example of a 4-regular noncovering graph. It is well 
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known that if the girth of a graph G is greater than its chromatic number, then G 
is a covering graph, see Aigner and Prins [l]. The Chvatal 4-regular, 4-chromatic 
graph (see Bondy and Murty [5, p. 2411) is also a noncovering graph, however in 
that example two edges can be removed leaving a noncovering graph. Like the 
Mycielski graphs, our example is edge critical. 

In order to simplify the statement of the theorem we make the following 
definition. 

Definition 3. Let U = ui, u2, . . . , uk and V = vl, v2, . . . , vk be two walks in a 
graph G. We will say we are identifying U and V if we identify ui with vi for all 
i=l . . > k, and that we are identifying U with -V if we are identifying ui with 
u&i for all i = 1, . . . , k. 

Theorem 2. Let G be a graph with a simple, chord-free balanced circuit 
K = 211, 212, . . . , vk+l= VI. Suppose further that ni, ai, b;, i = 1, . . . , 1 are 
nonnegative integers such that: 

(i) llyl = Ef=i ni(ai + bi). 
(ii) The equation 0 = ci=,f;(ai - bi) has no solutions with IJl cni and 

5 s ni (mod 2). 

Write K as the concatenation (in any order) of simple walks W< of length ni, where 
i runs from 1 to I and j runs from 1 to ai + bi. ( This is possible by condition (i).) 
Let the graph G’ be obtained by identifying 

W!, . . . , WF, -WpI+‘, . . . , -Wp+bc for all i = 1 to 1. 

Then G’ is a noncovering graph. 



286 0. Pretzel, D. Youngs 

Proof. Suppose that R’ is a diagram orientation of G’. Then for the induced walk 
W’= Wf in G’, J=f&(W’) = JW’( =ni (mod2). Now let R be the diagram 
orientation of G obtained by giving each edge the orientation of the induced edge 
in G’ (see Proposition 2). Then for all i = 1, . . . , I, 

and 

f,(W$ =L for j = 1, . . . , Ui 

f,(Wj) = -f;: for j = U; + 1, . . . , Uj + bi. 

Hence 
I o;+bi 

o=.fR(K) = C C fR(wj) = i fi(“i - bi)7 
i=l j=l i=l 

contradicting (ii). 0 

Example 2 corresponds to the case IK( = 18, a1 = 6, = 1, a2 = 2, bZ = 0, n, = 4 
and n2 = 5 in Theorem 2. Clearly 2f2 = 0 cannot be satisfied for odd fi. The 
example therefore leads to a whole family of noncovering graphs using the same 
identification, where the width of the initial grid may be any number greater than 
3 and its height may be any odd number greater than 4. 

If we ensure that the walks W{ in Theorem 2 reduce to circuits in G’ then we 
can restrict the values f;: in condition (ii) further, because the flow difference of a 
circuit K in a diagram orientation R satisfies I&(K)1 c max(O, JKI - 4). We state 
this formally in a corollary and then demonstrate its use in a final example. 

"16 "15 "14 "13 "12 "11 

Fig. 7. Fig. 8. 
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Corollary. Suppose that for i = 1, . . . , k in Theorem 2, Wj reduces to a circuit in 

G’ then condition (ii) may be replaced by: 

(ii)’ 0 = Ci=,J(ai - bi) has no solutions with 

I&l=Zmax(0,ni-4) fori=l,. . .,I, 

lhl s ni fori=k+l,...,l, 

$=n,(mod2) fori=l,...,l. 

Example 3. Let G3 be the balanced graph illustrated in Fig. 7 and let 
K = 211, v2, . . . ) v21 = v1 be the boundary circuit of its outer region. Construct Gi 
by identifying vi with v~+~ for i = 6, . . . , 16. That corresponds to a choice of 
aI = 1, a, = 3, bI = b2 = 0, n, = n2 = 5 in Theorem 2 (see Fig. 8). Then the only 
choices of odd fi and f2 with IjJ < 5 such that f, + 3f2 = 0, are fi = f3 and f2 = Tl. 
But as the walk W: reduces to a 5-circuit in G’, fi must satisfy fi c 1. Hence the 
restricted form of condition (ii) is satisfied. So Gj is a noncovering graph. 
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