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1. INTRODUCTION 

In a classic paper [ 11, Zadeh introduced the notion of fuzzy sets and 
fuzzy set operations. Chang [2], Wong [3], Lowen [4], and others 
developed a theory of fuzzy topological spaces and Rosenfeld [S] initiated 
a theory of fuzzy groups. These were brought together by Foster [6] to 
form the elements of a theory of fuzzy topological groups. 

Starting with a vector space E, a structure for fuzzy vector spaces and 
fuzzy topological vector spaces was proposed by Katsaras and Liu [7]. In 
this paper, we develop the theory of fuzzy topological vector spaces further 
and introduce the notion of the differentiability of fuzzy continuous map- 
pings defined on fuzzy topological vector spaces. The properties of 
derivatives and formal rules of derivation are also briefly discussed. We 
point out that our approach does not depend upon the imposition of a 
norm on the space E. In particular, the derivative defined here should be 
distinguished from the differential of a “fuzzy function” described by Puri 
and Ralescu [S] which relates to mappings from an open subset of a nor- 
med space into a subset of fuzzy sets defined on a reflexive Banach space. 

2. PRELIMINARIES 

Definitions and notation for fuzzy sets follow Zadeh [I], and those for 
fuzzy points and neighbourhoods follow Pu and Liu 191. 

Let X be a set and I the unit interval [0, 11. A fuzzy set A in X is charac- 
terized by a membership function pa which associates with each point 
x E X its “grade of membership” pLA(x) E I. 
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DEFINITION 2.1. Let A and B be fuzzy sets in X. Then 

A = B-s PAX) = PAX), XEX; 

A = Be PAXI G P&I, XEX; 

C= A u B-P&) = max{p,dx), pB(x)}, XEX; 

D =A n B-P&) = min{dx), PAX)}, XEX; 

E= C,Aops(x)= 1 -/In, x E x. 

More generally for a family {A,], jeJ, of fuzzy sets the union C = IJiEJ A, 
and the intersection D = nJtJ Ai are defined by 

/-k(x) = SUP h,(X), 
jtJ 

PD(X) = ff; PA,(X)? 

x E x, 

x E x. 

We denote by k,. the fuzzy set in X with membership function ,u~,(x) = c, 
c E Z, x E X. The fuzzy set k, corresponds to the set X and the fuzzy set k, to 
the empty set 0. 

DEFINITION 2.2. A fuzzy point in X is a fuzzy set with membership 
function p,;(x), x E X, defined by 

P,;(X) = 4 for x = y, 

= 0, otherwise, 

where 0 < A < 1. The point y is called the support of yj. and 2 its oalue (com- 
pare Goguen [lo], Pu and Liu [9], Sarkar [ 111). The fuzzy point y, is 
said to be contained in, or to belong to, a fuzzy set A, written yj, E A, iff 
2 G PAY). 

DEFINITION 2.3. Let f be a mapping from a set X to a set Y. Let B be a 
fuzzy set in Y, with membership function pB. Then the inverse image of B, 
written f -‘LB], is the fuzzy set in X with membership function defined by 

.L+1CB,(X) = Ps(f(X)h x E x. 

Conversely, let A be a fuzzy set in X, with membership function pa. Then 
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the image of A, written f[A], is the fuzzy set in Y with membership 
function ,nfcA ,( y), y E Y, defined by 

&[,4,(Y) = sup /JLA(z), iff--l(y) is nonempty, 
ZEf ‘(y) 

= 0, otherwise, 

wheref-l(y)= {xlf(x)=y}. 

LEMMA 2.1. Let f be a mapping from a set X to a set Y, let A,, AZ be 
fuzzy sets in X and let B,, Bz be fuzzy sets in Y. Then 

(i) AIcAz*fCAIl cfCA21, 
(ii) B,cB,~f-‘[B,]cf~‘[Bz]. 

Proof: See [2]. 

3. FUZZY TOPOLOGICAL SPACES 

The following definition of a fuzzy topological space is due to 
Lowen [4]. 

DEFINITION 3.1. A fuzzy topology on a set X is a family y of fuzzy sets 
in X which satisfies the following conditions. 

(i) For all c E Z, k, E F. 

(ii) If A, BEG, then An BE?. 

(iii) If A,EF for alljEJ, then (JIEJA,~.F. 

The pair (X, r) is called afuzzy topological space, or fts for short, and the 
members of ? are called F-open,fizzy sets, or simply open,fuzzy sets. 

In the definition of a fuzzy topology by Chang [2], the condition (i) is 
just 

(i)’ k,, k, E F. 

The inclusion in y of all fuzzy sets with constant membership function is 
required for the fuzzy continuity of the constant functions. 

DEFINITION 3.2. A fuzzy set in X is said to be F-closed, or closed for 
short, iff its complement is an open fuzzy set. 

DEFINITION 3.3. Let (X, r) be a fts. A fuzzy set A in X is called a 
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neighbourhood of a fuzzy point y, in X iff there exists an open fuzzy set 
BET such that y;,E Bc A. 

LEMMA 3.1. Let (X, y) be a fts and let %‘( y;.) denote the set of all 
neighbourhoods of a fuzzy point yj. in X. Then every member of 9( y;) has the 
following properties. 

(i) Every,fuzzy set which contains a,fuzzy) set belonging to C!?( yr) itself 
belongs to ?9(yJ. 

(ii) Every finite intersection of sets of 9( yj.) belongs to C!?( y;). 

Proof Straightforward. 

DEFINITION 3.4. In a fts (X, y) a fundamental system of neighbourhoods 
of a fuzzy point y, is a set ~(yj,) of neighbourhoods of y;. such that for 
each neighbourhood A of yi. there is a BE 9ZI(yJ such that B c A. 

DEFINITION 3.5. Let (X, F), (Y, V“) be two fts’s. A mappingf of (X, F) 
into (Y, v) is ,fuzzy continuous iff for each open fuzzy set V in 9’ the 
inverse image f --’ [ V] is in F. Conversely, f is fuzzy open iff for each open 
fuzzy set U in F-, the image f [ U] is in 9’. The mapping f is ,fuzzy con- 
tinuous at a point x E X iff for each open fuzzy set V in V:^ containing the 
fuzzy point y, = (f(x)),, 0 < 6 d 1, the inverse image f - ’ [V] is an open 
fuzzy set in F containing Xj,, 0 < /2. < 6. 

LEMMA 3.2. Zf (X, .y), (Y, 9”) are fts's and f is a mapping of (X, y) 
into (Y, v) the following assertions are equivalent. 

(i) The mapping .f is fuzzy continuous. 

(ii) For each fuzzy set A in X and each neighbourhood V q#‘,f[A], 
there is a neighbourhood U of A such that f [ U] c V. 

Proof See [a]. 

DEFINITION 3.6. Let (X, F), (Y, V) be two fts’s. A bijective mapping of 
(X, y) onto ( Y, -t’) is a fuzzy homeomorphism iff both f and ,f ~ ’ are fuzzy 
continuous. 

DEFINITION 3.7. Given a family {(X,, 9J}, Jo .I, of fts’s, we define their 
product r],,, (X,, q) to be the fts (X, F), where X= njaJ X, is the usual 
set product and 5 is the coarsest topology on X for which the projections 
pj of X onto Xi are fuzzy continuous for each j E J. The fuzzy topology .F is 
called the product fuzzy topology on X, and (X, 9) a product fts. 
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LEMMA 3.3. Let {(X,, q)}, ,jE J, he a family of fts’s and (X, CY) the 
product fts. The product fuzzy topology CT on X has as u base the set of,finite 
intersections of fuzzy sets of the form p,- ’ [ Ui], where U, E q, .j E J. 

Proof: See [3]. 

Let {X,},j= 1, 2 ,..., n, be a finite family of sets and for eachj let A, be a 
fuzzy set in X,. We define the product A = n;=, A, of the family {A,} as the 
fuzzy set in X= n;=, Xi that has membership function given by 

PA-~~ ,..., x,) = minb,,(x, L..., Cam,,), (J1., ,...) x,,) E x. 

It follows from the above that if X, has fuzzy topology .q, ,j= 1, 2,..., n, the 
product fuzzy topology F on X has as a base the set of product fuzzy sets 
of the form n;=, U,, where U, E CT, ,j = 1, 2 ,..., n. 

We make use of the following separation property. 

DEFINITION 3.8. A fts (X, 5) is called a ,fuq T, space iff every fuzzy 
point is a closed fuzzy set. 

LEMMA 3.4. A fts (X, Y) is a fuzzy T, space [@for each .Y E X rend each 
2 E I there exists BE F such that pLB(x) = 1 - i., pB( y) = 1, for all ~1 #I. 

Proof: See [9]. 

LEMMA 3.5. !f ((A’,, 9J},j= 1, 2 ,..., n, is a finite ,ftimily qf,fts’s, each of’ 
which is u ,fi(z;y T, spuce, then the product ,fts (X, F) is u ,fuzzy T, spucc. 

Proqfi Every fuzzy point yi, 0 < I. d 1, in X can be thought of as the 
product of fuzzy points (~~)~.,j = 1,2,..., n, each with suport I’, and the same 
value 1. By hypothesis each (y,); is closed, whence the product itself is 
closed (see [12]). 1 

4. FUZZY TOPOLOGICAL VECTOR SPACES 

The first part of this section follows Katsaras and Liu [7]. Let E denote 
a vector space over the field K of real or complex numbers. 

DEFINITION 4.1. Let { Aj}, j = 1, 2,..., n, be a finite family of fuzzy sets in 
a vector space E. The sum A = A r + A, + ... + A,, of the family {A,}, 
j= 1, 2,..., n, is the fuzzy set in E whose membership function is given by 

PA(X) = sup min{~A,(.~,L P~,,(-~,,)J, .Y E E. 
I, + + Y,, = li 
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The scalar product aA of a E K and A a fuzzy set in E is the fuzzy set in E 
that has membership function pIA( x E E, given by 

&A(X) = &4(xIco 
= PO,.(X) 

for x # 0, 

for CI = 0, 

where J=supVCEpLA(~). 

LEMMA 4.1. Let E, F he vector spaces over K, and let f he a linear mapp- 
ing from E into F. Then, for all fuzzy sets A, B in E and all scalars u, 

(i) fCA+W=fCAl+fCB13 
(ii) f [uA] = rxf [A]. 

Proof See [7]. 

COROLLARY. cx[ A + B] = uA + uB ,for all ,fuzzy sets A, B in E and all 
scalars a. 

LEMMA 4.2. If A, B are two fuzzy sets in E and ct E K, CI # 0, then 

crA c B = A c l/czB. 

Proof: Obvious. 

DEFINITION 4.2. A fuzzy set A in a vector space E is said to be balanced 
ifaAcAforallaEK, (al<l. 

LEMMA 4.3. Let A, B be fuzzy sets in E. If A, B are balanced, then the 
sum A + B and the scalar product uA, x E K, are balanced. 

Proof: See [7]. 

LEMMA 4.4. If A is a balancedfuzzy set in E, then 

PAX) = PA -XL x E E. 

Proof: Obvious. 

LEMMA 4.5. Zf A is a balancedfuzzy set in E then 

(i) P~(x)>P.,,(~x), xEE,for all 151 2 1, 

(ii) P,JO)~P,&), x~E. 

Proof: Since A is balanced pA(x) 3 ,uZA(x), x E E, for all u, 1x1 d 1. 
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(i) Choose o! #O and set 5 = l/u. Then Pi > pLIIcA(x) = am for 
151 3 1. 

(ii) Choose M =O. Then by Definition 4.1 pea(x) = &x), XE E, 
where i = supp E E p,,Jy). Thus ~~~(0) =E.>p,(x), XE E, and, since A is a 
balanced fuzzy set, ~~(0) = ~~~(0) > Pi, XE E. 1 

DEFINITION 4.3. Let A be a fuzzy set in a vector space E. The balanced 
hull of A is the intersection of all balanced fuzzy sets in E which contain A. 

LEMMA 4.6. Let A be a fuzzy set in E. Then the balanced hull sf A is the 
fuzzy set U ,%, <I ~4. 

Proof: See [7]. 

DEFINITION 4.4. A fuzzy topological vector space, or ftvs for short, is a 
vector space E over a field K, equipped with a fuzzy topology r such that 
the two mappings 

(i) GY (x, y) +x+ y of (E, <Y-)x (E, 9) into (E, Y), 

(ii) 71: (CI, x) --*LXX of (K, X) x (E, Y) into (E, Y), 

where X is the usual topology on K, are fuzzy continuous. 

In the sequel (E, F), or E for short, denotes a ftvs with scalar field K. 

PROPOSITION 4.1. For each a E E and each !I E K, cx # 0, the mapping 
x -+ c(x + a of (E, F) into (E, Y) is a fuzzy homeomorphism. 

Proof: The mappings x + (a, x) and x -+ (x, a) are fuzzy continuous 
(see [6]) and the mappings (a, x) +xx and (x, a) --+.~+a are fuzzy con- 
tinuous by Definition 4.4. 1 

The structure of a ftvs places constraints on which fuzzy sets can be 
neighbourhoods, as the following lemma shows. 

LEMMA 4.7. Let 0, be a fuzzy point in E. Let V be a fuzzy set in E con- 
taining Oj,. If there is a point aE E such that pv(ka) =O, for all nonzero 
k E K, then V is not a neighbourhood of 0;. 

Proof. Suppose that V is a neighbourhood of O;., and without loss in 
generality that V is open, Consider the function rc: (k, a) -+ ka and let a,. 
O< 6 6 2, be a fuzzy point. For k =0 the point ka, E V. Since r-r is fuzzy 
continuous there is a neighbourhood of (0, ad) such that p2.,(x)6 it, 
x E E, for E a nonzero scalar. Set x = EU. Then p”,(a) d p V(~a). But this con- 
tradicts the definition of V. 1 
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Let 01 be a fuzzy point and A, B be fuzzy sets in a ftvs E. The following 
lemmas are needed for Proposition 4.2. 

LEMMA 4.8. If A and B are neighbourhoods of 0, then the sum A + B and 
the scalar product ctA, SC E K, c( # 0, are neighbourhoods of 0;. 

Proof: If A, B are neighbourhoods of 0; there exist two open fuzzy sets 
U, V in E such that Oj, E U, 0, E V and U c A, V c B. The sum U + V can be 
represented as the union u ~ E E (x,, + V), where v = ,D V(x). But x,, + V is an 
open fuzzy set in E since its membership function is given by pr, + V(y) = 
supr,+rz=j. min{k(xI)~ P&Z)) = min{h PAY - -x)f = min{/-h,.(y), 
P~~~~,(Y)I~ YEE, where k,, is the fuzzy set with constant membership 
function and f,: y + y + x, i.e., x,, + V is the intersection of two open fuzzy 
sets. Since U + V is the union of open fuzzy sets, it is itself open. Obviously 
U + V c A + B. The membership function of U + V is given by 

x E E. 

If x, =x2=0, then min{~~,(x,),~,,(xZ)} 32, and, a fortiori, 

Pu+ v(O) = SUP min{p,(x,), pv(x2)} 3i. 
r, + q=O 

The second statement of the Lemma is obvious. [ 

LEMMA 4.9. If A is a neighbourhood of 0, then there exists a 
neighbourhood B of Oj, such that B + B c A. 

Proof By fuzzy continuity of the sum, for every neighbourhood A of 0; 
there exist neighbourhoods B,, B, of 0, such that pie, + B2(x) d pA(x), x E E. 
Let B= B, n B,. Then pBfB(x) 6 Pi, +&x), for all XE E. 1 

LEMMA 4.10. If A is a neighbourhood of 0, then there exists a 
neighbourhood B of 0, such that aB c A ,for every z E K, 1 c(/ 6 1. 

Proof: Let A be a neighbourhood of 0,. Since the scalar product is con- 
tinuous there exist an E>O and a neighbourhood U of 0; such that for 
~EK, 151 <E, ~Lev(x)<~A(~), XGE. By hypothesis Ial < 1. Hence 1~51 <E 
and p,&x) 6 pA(x). Set [U= B, and the result follows. 1 

PROPOSITION 4.2. Let E be a ,ftvs. For every fuzzy point O,, 0 < ,I .G 1, 
there exists a fundamental system of neighbourhoods @O,) in E for which 
the following results hold. 

(i) For each UE~(O,) there is a VESS(O~) with V+ VC U. 
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(ii) For each U E B(0,) there is a VE B(O;,) for which srV c CJ ,for all 
CIE K, 1~11 < 1. 

(iii) Every U E Gl(O,) is balanced. 

Proof: Let .G?(O,) be any fundamental system of neighbourhoods. Then 
(i) and (ii) are true by Lemmas 4.9 and 4.10, respectively. For (iii) we first 
show that the set of balanced hulls of fuzzy sets in &?(O,) is itself a fun- 
damental system of neighbourhoods of 0,. Let W be a neighbourhood of 
01. Then there exists a fuzzy set VE 28(0;) such that pZl;(x) < am, x E E, 
Ial < 1. The membership function of the balanced hull U of V is 
P”(X) = SUPI,, c 1 &v (x), XE E. Hence p&x) >~Jx), .YE E. We show next 
that every U is balanced. Let E be a scalar such that (6 6 1. Suppose that 
pU(x) = pL,Jx), XE E, for CI = 0. Then 11,(,(x) = am,. Next suppose that it 
is not true that pU(x) = pO,,(x), x E E. Let E # 0. Then p,J.u) = ~Jx/E) = 
suPIIl< 1 /&&Is) = sup1,1< 1 A,V(X). Defining CG = <, we obtain Gus, = 
suplrl GE Pan < supIt <I ~~dx) = ccl,(x). If E = 0, then pd.u) is nonzero 
only for x = 0. Suppose that ~~~(0) > ~~(0) i.e., there is an x # 0 such that 
p,Jx) > ~~(0). Since ~Jx) = suplXI <, P,,,(X), there must exist a nonzero CC,, 
such that p,,(y) > ~~(0) with y = x/M~. But, by the definition of balanced 
hull, ~~(O)~Y,,(~)=SUP... p,,(x), i.e., pLu(0) 3 ,U J y), which contradicts 
the initial supposition. 1 

5. FUZZY DIFFERENTIATION 

The treatment here is based on the definition given by Lang [13] of the 
derivative of a mapping from one topological vector space to another. Let 
E, F be two fuzzy topological vector spaces and let 4 be a mapping from E 
into F. Let o(t) denote any function of a real variable t such that lim, ,[I 
o( t )/t = 0. 

DEFINITION 5.1. The mapping 4 is said to be tangent to 0 if given a 
neighbourhood W of Ob, 0 < 6 d 1, in F there exists a neighbourhood V of 
O,, 0 < 1 Q 6, in E such that 

for some function o(t). 

dCtV1 co(t) w, 

LEMMA 5.1. If the mapping 4 is tangent to 0, then 4 is,fuzzy continuous 
at OEE. 

Proof. By Lemma 4.10, for every neighbourhood W of Oh, 0 < 6 6 1, in 
F there exists a neighbourhood w’ such that ,u~~,~)~( y) d am, y E F, 
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lo(t)1 d 1. By Definition 5.1, for each w’ there exist neighbourhoods V, v’, 
V=tV’, of Oj,, O<id6, in E such that ~~~~I(Y)=~~C~~,(Y)~~*~(~)~(Y), 
YEF. 1 

LEMMA 5.2. If 4 and $ are two mappings tangent to 0 then their sum 
4 + $ is a mapping tangent to 0. 

Prooj For every neighbourhood W of OS, 0 < 6 < 1, in F there exists, 
by Lemma 4.9, a neighbourhood IV’ such that IV’+ w’ c W. Hence, 
P,(,)w +o(I) W(Y) = P~(~)[w+ w&~) G L(~) dvh Y E F, by Corollary to 
Lemma 4.1, and Lemma 2.1. By Definition 5.1, there exist two 
neighbourhoods V, and V, of 01, 0 < 3.~ 6, in E such that ~~[,~,,(y) < 
Pan, ~~~~~~~~~~ APEX. Set V= 6 n b Then PLOY) 6 
PO(,) w(Y), P~[lY,(YKPO(,)w’(Y). Whereupon P$5[/v]+~c,v,(Y)~ 
rQ,w(Y). 1 

LEMMA 5.3. Let E, F, G be ftvs’s. If I$ is a mapping of E into F tangent 
to 0 and f is a linear mapping of F into G that is fuzzy continuous at 0 E F, 
then f 0 4 is tangent to 0. Conversely if f is a linear mapping qf E into F, 
fuzzy continuous at OE E, and I#I is a mapping Qf F into G tangent to 0, then 
40 f is tangent to 0. 

Proof: By fuzzy continuity of f, for every neighbourhood W of O,., 
0 < v < 1, in G there is a neighbourhood V of O,, 0 < 6 < v, in F such that 
ark,,, < p ,,&z), z E G. For every such V there exists a neighbourhood U of 
O,, 0 <A < 6, in E such that pLdlruI( y) <p,,(,),,( y), y E F. By Lemmas 2.1 
and 4.1, ~~~~~~~~~~~~ 6 Pact, &) = P~~(~)~~~,(z) <A(,) dz), z E G. The proof 
of the second part of the Lemma proceeds in a similar way. 1 

COROLLARY. If q4 is a mapping tangent to 0 then the scalar product L$ is 
a mapping tangent to 0. 

DEFINITION 5.2. Let E, F be two ftvs’s, each endowed with a T, fuzzy 
topology. Let f: E + F be a fuzzy continuous mapping. We say that f is 
fuzzy differentiable at a point x E E if there exists a linear fuzzy continuous 
mapping u of E into F such that we can write 

f(x+Y)=f(X)+U(Y)+~(Y), Y E E, 

where C$ is tangent to 0. The mapping u is called the fuzzy derivative off at 
x. We denote the fuzzy derivative by f’(x); it is an element of L(E, F), the 
set of all linear fuzzy continuous mappings of E into F. 

From this point on we shall suppose that each ftvs is equiped with a T1 
fuzzy topology. 
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PROPOSITION 5.1. The fuzzy derivative .f’(x) of a mapping ,f‘ of E into F 
at a point x E E is unique. 

Proof: Suppose that the derivative is not unique. Then there exist two 
linear fuzzy continuous mappings u,, u2 such that u,(y) + d(y) = 
Q(Y) + $(y), y E E, where 4 and $ are each tangent to 0. Set 
n(y) = ul(y) - uAY), Y E E. Then n(y) = $(Y) - d(y), and, by Lemma 5.2, 
n(y) must be tangent to 0. By hypothesis, n is not zero. Let a E E be such 
that n(a) = r # 0. By Lemma 3.4, for each Y # 0, r E F, there exists an open 
fuzzy set B in F such that ~~(0) = 1 and pB(r) = 0. If 98(0,) is a fundamen- 
tal system of balanced neighbourhoods of O,, 0 < 6 < 1, in F, there is a 
WE&? with membership function p&z) <pg(z), ZE F, with 
&W(z)<pW(z) for all 1~1 < 1. If r= l/& for EZO, then p,+([r)<p&r)=O, 
151 > 1. It follows that for every r’ of the form kr, k E K, k # 0, there exists t 
such that pw(@‘) = 0. Since n is tangent to 0, there must be a 
neighbourhood V of O;, 0 < 1% < 6, in E such that ,u,,~,,,,(z) < pL,(,,Jz), z E F, 
whence P,,c&) G P(,(~)I~) w (z) by linearity of n and Lemma 4.2. In par- 
ticular, setting z = r’ and t/o(t) = t, we have p,,c,,,(r’) = ~up.,~~~,(~~) 
py(x) = 0, which implies ,u,(ka) = 0. But, by Lemma 4.7, a fuzzy set V with 
a membership function p ,,(ka) = 0 for all k # 0 is not a neighbourhood of 
0,. Hence n must be zero. The fuzzy derivative is thus unique. 1 

PROPOSITION 5.2. A constant function from a ftvs E into a ftvs F is fuzzy 
dijferentiable at every point of E. 

ProoJ Straightforward. 

PROPOSITION 5.3. The fuzzy derivative of a linear fuzzy continuous mapp- 
ing u of a ftvs E into a ftvs F exists at every point x E E. 

Proof: Straightforward. 

PROPOSITION 5.4. Suppose that F = JJ’= , F, is the product ftvs of a finite 
family of ftvs’s F,, j = 1, 2 ,..., n, and that f is a fuzzy continuous mapping of E 
into F. In order for f to be fuzzy differentiable at x E E, a necessary and suj: 
ficient condition is that each pia f be fuzzy differentiable at x. 

Proof ( * ) By linearity of the projections p, we can write, for every j, 
Pj(f(x + Y) -f(x)) = Pj(f ‘(x)(Y)) + Pi), Y E E. BY Definition 3.7, 
pro f’(x) is fuzzy continuous and linear, and, by Lemma 5.3, pi04 is 
tangent to 0. Since f’(x) is unique p, 0 f’(x) is unique. 

(-+I Foreveryjwecan writepj(f(x+y))-p,(f(x))=u,(y)+dj(y), 
where uj is a linear fuzzy continuous mapping and dj is tangent to 0. Let W 
be a neighbourhood of O,, 0 < 6 < 1, in F. By the remark following 
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Lemma 3.3, W can be expressed without loss in generality as the product 
of neighbourhoods W, of O6 in Fi, j= 1, 2,..., n. By hypothesis, for every W, 
there is a neighbourhood V, of On, 0<%<6, in E such that ~~,~(~,,(z,)< 
Po(,) w,(zj), zj E f’,. Setting I’= nj Vj, we have P~,~,v~(z/) d ~~,~,v,~(z,) < 
P,(,)w,(z~), ZjEFjj for all& But P~~(~)~(z) = min(pcJ(,,,+,,(zj)lj= 1, L..., n}. Set 
4 = FI,“, 1 4j. Then pgCtv$z) <min{p fj,[rV]tzj) > G kI) &), i.e., 4 is tangent 
to 0. Define f’(x) = n;=, Uj. This mapping is linear and fuzzy continuous 
by the fuzzy continuity of the U, (see [6]). The uniqueness off’(x) follows 
by the uniqueness of the uj. J 

PROPOSITION 5.5. Let E, F, G he ,ftvs’s, ,f a fuzzy continuous mapping of 
E into F, and g a fuzzy continuous mapping of F into G. Let XE E and 
y=f(x). lff. f IS uzzy differentiable at x and g is fuzzy differentiable at y, 
then the composition h = go f is fuzzy differentiable at x. 

Proof: By hypothesis ,f and g are fuzzy differentiable. Hence we can 
write 

f(x + rl -f(x) =f’tx)(r) + (S(r), rEE, 

AL’+ s) - g(Y) = g’(Y)(s) + W), s E F, 

where 4 and $ are each tangent to 0. Defining h = go f, we obtain, 
after substitution, h(x + r) - h(x) = g’( y)(,f ‘(x)(r)) + g’( y)(d(r)) + 
$(f’(x)(r) + d(r)), r E E. By Lemma 5.3, g’(y) 0 4 is tangent to 0. 
Consider the mapping $0 (.f’(x) + 4). For every neighbourhood W of O,., 
0 < v d 1, in G there is a neighbourhood V of 0,) 0 < 6 < v, in F such 
that P#~,~,(z) d ~,~,,,d-r), z E G. Given V there exists a neighbourhood V 
of 0, such that V’+ V’c V. We can suppose, without loss in generality, 
that both V and v’ belong to a fundamental system of balanced neigh- 
bourhoods g(O,). By the fuzzy continuity of.f’(x) there is a neighbourhood 
A of O;, O<i.<6, in E such that p ,.,.r,lAl(y) 6 pV( y), which implies that 
kj~(rj~A1(~) d PRY), i.e., P ,,crjr,A1(y)d~,V(y), YEF. For every P” there 
exists a neighbourhood B of 0, in E for which ~#r,~,( y) <p<,(,,,,,( y) and, 
for lo(t)/tl d 1, pL,(,,,,.(y) d~,~.(y), YE F. Setting U= A n B and using 
Lemma 2.1, we obtain ~LIc,UI + ,,(rjC,uI( y) < ~,~(y), which implies that 
$[4[tU] + f’(x)[tU]] c II/[tV] co(t) W, i.e., the mapping $0 (f’(x) + 4) 
from E to G is tangent to 0. Thus at last we can write h(x+r) - h(x) = 
g’(y)0 f’(x)(r) + X(r), r E E, where g’( y)of’(x) is linear and fuzzy con- 
tinuous, and x, the sum of two mappings tangent to 0, is tangent to 0. 1 

PROPOSITION 5.6. Let 5 g be two fuzzy continuous mappings of E into F. 
If f and g are fuzzy differentiable at x, so are f + g and CX~ c( E K. 

Proof: The mapping ,f + g is composed of x 4 (,f(x), g(x)) from E into 
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F x F and of (u, o) -+ u + u from F x F into F. The first is fuzzy differentiable 
by Proposition 5.4 and the second by definition of the sum; the result 
follows from Proposition 5.5. For af it is sufficient to note that the map- 
ping u + au of F into itself is fuzzy differentiable by Proposition 5.3. i 
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