On Modules with Trivial Self-Extensions

Takayoshi Wakamatsu
Institute of Mathematics, University of Tsukuba, Jbaraki, 305, Japan, and Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada KIS 5B6

Communicated by Kent R. Fuller
Received May 20, 1986

DEDICATED TO THE MEMORY OF PROFESSOR AKIRA HATTORI

Throughout this note, all rings will be self-basic connected artin algebras over a fixed commutative local artin ring k and all modules will be finitely generated. Homomorphisms will be written on the opposite side of the scalars. By mod- A (resp. A-mod), we denote the category of all right (resp. left) A-modules for an artin algebra A. The ordinary duality functor is denoted by $D: \bmod -A \rightleftarrows A$-mod, i.e., $D=\operatorname{Hom}_{k}(?, I)$ with the minimal injective cogenerator I over k.

We are interested in the bimodules ${ }_{B} T_{A}$ with the following properties:
$B=\operatorname{End}\left(T_{A}\right)$ and $\operatorname{End}\left({ }_{B} T\right)=A$,
(A2) $\operatorname{Ext}_{B}^{i}(T, T)=0=\operatorname{Ext}_{A}^{i}(T, T)$ for all integers $i \geqq 1$.
It is well known that a tilting module T_{A} with $B=\operatorname{End}\left(T_{A}\right)$ has the above properties. Another example of such a module appears in the study of generalized Nakayama conjecture: Let

$$
0 \rightarrow A \rightarrow I_{0} \rightarrow I_{1} \rightarrow I_{2} \rightarrow \cdots
$$

be the minimal injective resolution of the module A_{A}. Let T_{A} be the direct sum of all representatives of indecomposable injective A-modules which appear in the above resolution as direct summands of some term and put $B=\operatorname{End}\left(T_{A}\right)$. Then the bimodule ${ }_{B} T_{A}$ has the properties. This fact was already used by Tachikawa [3] in the study of Nakayama's conjecture.

By $n\left(X_{A}\right)$ we denote the number of nonisomorphic indecomposable direct summands of a module X_{A}.

For a tilting module T_{A} with $B=\operatorname{End}\left(T_{A}\right)$, it is proved by Happel and Ringel [2] that ${ }_{B} T$ becomes again a tilting module and $n\left({ }_{B} T\right)=n\left(T_{A}\right)$.

Auslander and Reiten [1] conjectured that the injective module T_{A} 106
defined as the second example above is, in fact, an injective cogenerator. They called it the generalized Nakayama conjecture. It is obvious that the validity of their conjecture follows from the conditions $\operatorname{id}\left({ }_{B} T\right)=\operatorname{id}\left(T_{A}\right)$ or $n\left({ }_{B} T\right)=n\left(T_{A}\right)$.

Therefore, it is natural to consider the following problems on the bimodule ${ }_{B} T_{A}$ which has the properties (A1) and (A2):

Problem 1. $\quad \operatorname{pd}\left({ }_{B} T\right)=p d\left(T_{A}\right) ?\left(\operatorname{id}\left({ }_{B} T\right)=\operatorname{id}\left(T_{A}\right)\right.$?)
Problem 2. $n\left({ }_{B} T\right)=n\left(T_{A}\right)$?
In this note, we consider the above problems and prove the following

Theorem. (1) If $p d\left({ }_{B} T\right), p d\left(T_{A}\right)<\infty$ then $p d\left({ }_{B} T\right)=p d\left(T_{A}\right)$.
(2) If $\left({ }_{B} T\right), \operatorname{id}\left(T_{A}\right)<\infty$ then $\operatorname{id}\left({ }_{B} T\right)=\operatorname{id}\left(T_{A}\right)$.
(3) If $\quad \operatorname{pd}\left({ }_{B} T\right), \quad p d\left(T_{A}\right)<\infty \quad$ or $\quad \operatorname{id}\left({ }_{B} T\right), \quad \operatorname{id}\left(T_{A}\right)<\infty \quad$ then $n\left({ }_{B} T\right)=n\left(T_{A}\right)$.

We start by characterizing the one-sided module T_{A} for which the bimodule ${ }_{B} T_{A}$ with $B=\operatorname{End}\left(T_{A}\right)$ has the properties (A1) and (A2).

Proposition 1. Let T_{A} be a module with $B=\operatorname{End}\left(T_{A}\right)$ and X_{A} another module. Assume that there is an infinite exact sequence

$$
0 \rightarrow X \rightarrow T_{0} \xrightarrow{f_{0}} T_{1} \xrightarrow{f_{1}} T_{2} \xrightarrow{f_{2}} \cdots,
$$

such that $T_{k} \in \operatorname{add}\left(T_{A}\right)$ and $\operatorname{Ext}_{A}^{1}\left(\operatorname{Ker} f_{k+1}, T\right)=0$ for any $k \geqq 0$. Then the canonical morphism $d_{X}: X_{A} \rightarrow \operatorname{Hom}_{B}\left(\operatorname{Hom}_{A}(X, T), T\right)_{A}$ is an isomorphism and further $\operatorname{Ext}_{B}^{i}\left(\operatorname{Hom}_{A}(X, T), T\right)=0$ for any $i \geqq 1$.

Proof. We denote the contravariant functors $\operatorname{Hom}\left(?,{ }_{B} T_{A}\right)$ and $\operatorname{Ext}^{i}\left(?,{ }_{B} T_{A}\right)$ by $F=F_{0}$ and F_{i}, respectively. From the short exact sequences

$$
0 \rightarrow \operatorname{Ker} f_{k} \rightarrow T_{k} \rightarrow \operatorname{Ker} f_{k+1} \rightarrow 0 \quad\left(k \geqq 0, \text { Ker } f_{0}=X\right),
$$

we have the following exact sequences

$$
0 \rightarrow F\left(\operatorname{Ker} f_{k+1}\right) \rightarrow F\left(T_{k}\right) \rightarrow F\left(\operatorname{Ker} f_{k}\right) \rightarrow F_{1}\left(\operatorname{Ker} f_{k+1}\right)=0
$$

Hence we obtain a projective resolution of the left B-module $F(X)$,

$$
\cdots \xrightarrow{F\left(f_{2}\right)} F\left(T_{2}\right) \xrightarrow{F\left(f_{1}\right)} F\left(T_{1}\right) \xrightarrow{F\left(f_{0}\right)} F\left(T_{0}\right) \rightarrow F(X) \rightarrow 0,
$$

where $\operatorname{Cok} F\left(f_{k}\right)=F\left(\operatorname{Ker} f_{k}\right)$ for each $k \geqq 0$.

Now consider the following commutative diagrams with exact rows:

$$
\begin{aligned}
& 0 \rightarrow F^{2}\left(\operatorname{Ker} f_{k}\right) \rightarrow F^{2}\left(T_{k}\right) \rightarrow F^{2}\left(\operatorname{Ker} f_{k+1}\right) \rightarrow F_{1} F\left(\operatorname{Ker} f_{k}\right) \rightarrow 0 .
\end{aligned}
$$

Since $\operatorname{Ker} f_{k}$ are cogenerated by T_{k}, all the maps $d_{\text {Ker } f_{k}}$ are monomorphisms and all the maps $d_{T_{k}}$ are isomorphisms by our assumption. Then, by the snake lemma, we know that all the maps $d_{\text {Ker } f_{k}}$ are isomorphisms and $F_{i} F(X) \cong F_{1} F\left(\operatorname{Ker} f_{i-1}\right)=0$ for all $i \geqq 1$.

This completes the proof.
Corollary 2. Let $B=\operatorname{End}\left(T_{A}\right)$ and assume that there is an infinite exact sequence

$$
0 \rightarrow A \rightarrow T_{0} \xrightarrow{f_{0}} T_{1} \xrightarrow{f_{1}} T_{2} \xrightarrow{f_{2}} \cdots,
$$

such that $T_{k} \in \operatorname{add}\left(T_{A}\right)$ and $\operatorname{Ext}_{A}^{1}\left(\operatorname{Ker} f_{k}, T\right)=0$ for all $k \geqq 0$. Then the bimodule ${ }_{B} T_{A}$ has the property (A 1) and satisfies the condition $\operatorname{Ext}_{B}^{i}(T, T)=0$ for all $i \geqq 1$.

Proposition 3. Assume that the bimodule ${ }_{B} T_{A}$ has the property (A1) and satisfies the condition $\operatorname{Ext}_{A}^{1}(T, T)=0$. Suppose that a module ${ }_{B} Y$ is T-reflexive (i.e., $Y \leadsto F^{2}(Y)$) and satisfies the condition $\operatorname{Ext}_{B}^{i}(Y, T)=0$ for all $i \geqq 1$. Then there is an infinite exact sequence

$$
0 \rightarrow F(Y)_{A} \rightarrow T_{0} \longrightarrow \mathrm{f}_{0} T_{1} \xrightarrow{f_{1}} T_{2} \xrightarrow{f_{2}} \cdots,
$$

such that $T_{k} \in \operatorname{add}\left(T_{A}\right)$ and $\operatorname{Ext}_{A}^{1}\left(\operatorname{Ker} f_{k+1}, T\right)=0$ for all $k \geqq 0$.
Proof. Let $\cdots \rightarrow{ }^{g_{2}} P_{2} \rightarrow{ }^{8_{1}} P_{1} \rightarrow{ }^{g_{0}} P_{0} \rightarrow Y \rightarrow 0$ be a projective resolution of the left B-module Y. From the exact sequences

$$
0 \rightarrow \operatorname{Cok} g_{k+1} \rightarrow P_{k} \rightarrow \operatorname{Cok} g_{k} \rightarrow 0 \quad\left(k \geqq 0, \operatorname{Cok} g_{0}=Y\right),
$$

we have the sequences

$$
0 \rightarrow F\left(\operatorname{Cok} g_{k}\right) \rightarrow F\left(P_{k}\right) \rightarrow F\left(\operatorname{Cok} g_{k+1}\right) \rightarrow F_{1}\left(\operatorname{Cok} g_{k}\right) \cong F_{k+1}(Y)=0 .
$$

Hence we obtain an infinite exact sequence

$$
0 \rightarrow F(Y) \rightarrow F\left(P_{0}\right) \xrightarrow{F\left(g_{0}\right)} F\left(P_{1}\right) \xrightarrow{F\left(g_{1}\right)} F\left(P_{2}\right) \xrightarrow{F\left(g_{2}\right)} \cdots,
$$

where $\operatorname{Ker} F\left(g_{k}\right)=F\left(\operatorname{Cok} g_{k}\right)$ and $F\left(P_{k}\right) \in \operatorname{add}\left(T_{A}\right)$ for all $k \geqq 0$.

We have to prove $F_{1} F\left(\operatorname{Cok} g_{k}\right)=0$ for each $k \geqq 1$. By the condition $\operatorname{Ext}_{A}^{1}(T, T)=0$, we have the following commutative diagrams with exact rows:

$$
\begin{array}{llll}
0 \rightarrow \operatorname{Cok} g_{k+1} & \rightarrow P_{k} & \rightarrow \operatorname{Cok} g_{k} \rightarrow 0 \\
& d_{\text {Cok } g_{k+1}} \downarrow \\
0 \rightarrow F^{2}\left(\operatorname{Cok} g_{k+1}\right) & \rightarrow F^{2}\left(P_{k}\right) & \rightarrow F^{2}\left(\operatorname{Cok} g_{k}\right) \rightarrow F_{1} F\left(\operatorname{Cok} g_{k+1}\right) \rightarrow 0 .
\end{array}
$$

From those diagrams, by using the snake lemma, we see that $\operatorname{Ker} d_{\text {Cok } g_{k}+1}=0, \quad \operatorname{Cok} d_{\text {Cok } g_{k+1}} \cong \operatorname{Ker} d_{\text {Cok } g k} \quad$ and $\quad \operatorname{Cok} d_{\text {Cok } g k} \cong$ $F_{1} F\left(\right.$ Cok $\left.g_{k+1}\right)$ for each $k \geqq 0$. For $k=0$, by our assumption, the map $d_{\text {Cok } g k}$ is an isomorphism. Therefore, by induction on k, we know that all the maps $d_{\text {Cok } g_{k}}$ are isomorphisms and $F_{1} F\left(\operatorname{Cok} g_{k+1}\right) \cong \operatorname{Cok} d_{\text {Cok } g_{k}}=0$.

This finishes the proof.

Corollary 4. Assume that the bimodule ${ }_{B} T_{A}$ has the property (A1) and satisfies the conditions $\operatorname{Ext}_{A}^{1}(T, T)=0$ and $\operatorname{Ext}_{B}^{i}(T, T)=0$ for any $i \geqq 1$. Then there is an infinite exact sequence

$$
0 \rightarrow A \rightarrow T_{0} \xrightarrow{f_{0}} T_{1} \xrightarrow{f_{1}} T_{2} \xrightarrow{f_{2}} \cdots,
$$

such that $T_{k} \in \operatorname{add}\left(T_{A}\right)$ and $\operatorname{Ext}_{A}^{1}\left(\operatorname{Ker} f_{k}, T\right)=0$ for any $k \geqq 0$.
Combining Corollary 2 with Corollary 4 , we get a characterization of bimodules ${ }_{B} T_{A}$ possessing the properties (A1) and (A2).

Proposition 5. For a module T_{A} with $B=\operatorname{End}\left(T_{A}\right)$, the following two assertions are equivalent:
(1) ${ }_{B} T_{A}$ has the properties (A1) and (A2).
(2) (i) $\operatorname{Ext}_{A}^{i}(T, T)=0$ for any $i \geqq 1$;
(ii) there is an infinite exact sequence

$$
0 \rightarrow A \rightarrow T_{0} \xrightarrow{f_{0}} T_{1} \xrightarrow{f_{1}} T_{2} \xrightarrow{f_{2}} \cdots,
$$

such that $T_{k} \in \operatorname{add}\left(T_{A}\right)$ and $\operatorname{Ext}_{A}^{1}\left(\operatorname{Ker} f_{k}, T\right)=0$ for any $k \geqq 0$.
From now on, we assume that the bimodule ${ }_{B} T_{A}$ has the properties (A1) and (A2).

We call an exact sequence $0 \rightarrow X \rightarrow T_{0} \rightarrow{ }^{f_{0}} T_{1} \rightarrow{ }^{f_{1}} T_{2} \rightarrow{ }^{f_{2}} \cdots$, a T-sequence of X_{A} if $T_{k} \in \operatorname{add}\left(T_{A}\right)$ and $\operatorname{Ext}_{A}^{1}\left(\operatorname{Ker} f_{k+1}, T\right)=0$ for any
$k \geqq 0$. Further, we define for a module X_{A} which has a T-sequence its T-dimension, T - $\operatorname{dim}\left(X_{A}\right)$, to be the natural number or the symbol ∞ :
$\inf \left\{n \mid\right.$ There is a T-sequence of X such that $T_{n} \neq 0$ and $T_{k}=0$ for any $k \geqq n+1\}$.

By the proofs of Proposition 1 and Proposition 3, we know that there is a bijection between the set of all projective resolutions of ${ }_{B} F(X)$ and the set of all T-sequences of X_{A}. By this bijection, we have

Corollary 6. The equalities T - $\operatorname{dim}\left(X_{A}\right)=p d\left({ }_{B} F(X)\right)$ and $p d\left(F(Y)_{A}\right)=$ T - $\operatorname{dim}\left({ }_{B} Y\right)$ hold for any modules X_{A} and ${ }_{B} Y$ which have their T-sequences.

By using this corollary, we can prove the statements (1) and (2) in the theorem.

Proposition 7. (1) $p d\left({ }_{B} T\right), p d\left(T_{A}\right)<\infty \Rightarrow p d\left(_{B} T\right)=p d\left(T_{A}\right)$.
(2) $\mathrm{id}\left({ }_{B} T\right), \mathrm{id}\left(T_{A}\right)<\infty \Rightarrow \operatorname{id}\left({ }_{B} T\right)=\mathrm{id}\left(T_{A}\right)$.

Proof. (1) By the above corollary, we may assume $p d\left(T_{A}\right) \leqq p d\left({ }_{B} T\right)$. Suppose that $p d\left(T_{A}\right)=n, p d\left({ }_{B} T\right)=T-\operatorname{dim}\left(A_{A}\right)=n+m$ and $m \geqq 1$. Let

$$
0 \rightarrow A \rightarrow T_{0} \xrightarrow{f_{0}} T_{1} \xrightarrow{f_{i}} \cdots \longrightarrow T_{n+m-1} \xrightarrow{f_{n+m-1}} T_{n+m} \rightarrow 0
$$

be a T-sequence of A_{A}. From the exact sequences $0 \rightarrow \operatorname{Ker} f_{k} \rightarrow$ $T_{k} \rightarrow \operatorname{Ker} f_{k+1} \rightarrow 0 \quad(0 \leqq k \leqq n+m-1)$, we have $\operatorname{Ext}_{A}^{i}\left(T, \operatorname{Ker} f_{k+1}\right) \cong$ $\operatorname{Ext}_{A}^{i+1}\left(T\right.$, Ker $\left.f_{k}\right)$ for any $i \geqq 1$. Therefore, we have the isomorphisms

$$
\begin{aligned}
0 & =\operatorname{Ext}_{A}^{n+1}\left(T, \operatorname{Ker} f_{m-1}\right) \cong \operatorname{Ext}_{A}^{n}\left(T, \operatorname{Ker} f_{m}\right) \\
& \cong \cdots \cong \operatorname{Ext}_{A}^{1}\left(T, \operatorname{Ker} f_{n+m-1}\right)
\end{aligned}
$$

$\operatorname{Ext}_{A}^{1}\left(T, \operatorname{Ker} f_{n+m-1}\right)=0$ implies that the short exact sequence

$$
0 \rightarrow \text { Ker } f_{n+m-1} \rightarrow T_{n+m-1} \rightarrow T_{n+m} \rightarrow 0
$$

is splitting. Obviously, this contradicts $T-\operatorname{dim}\left(A_{A}\right)=n+m$.
The assertion (2) is now obvious, since ${ }_{B} T_{A}$ has the properties (A1) and (A2) if and only if so does the dual bimodule ${ }_{A} D T_{B}$.

In order to prove Proposition 9, we need the following.
Lemma 8. Consider the commutative diagram with exact rows:

Denote by K_{i}, C_{i}, and I_{i} the modules $\operatorname{Ker} f_{i}, \operatorname{Cok} f_{i}$, and $\operatorname{Im} f_{i}$, respectively. Then the isomorphisms

$$
H\left(K_{3} \rightarrow K_{4} \rightarrow K_{5}\right) \cong H\left(I_{2} \rightarrow I_{3} \rightarrow I_{4}\right) \cong H\left(C_{1} \rightarrow C_{2} \rightarrow C_{3}\right)
$$

hold, where $H\left(X \rightarrow{ }^{f} Y \rightarrow{ }^{g} Z\right)$ denotes the homology group $(\operatorname{Ker} g) /(\operatorname{Im} f)$ for a sequence $X \rightarrow{ }^{f} Y \rightarrow{ }^{g} Z$ with $g f=0$.

Proof. An exercise in homological algebra.
Proposition 9. Let $0 \rightarrow X_{1} \rightarrow{ }^{"} P_{0} \rightarrow{ }^{P} X_{A} \rightarrow 0$ be an exact sequence with P_{0} projective. Put $X^{*}=\operatorname{Cok} F(p)$. Denote by v the inclusion map $X^{*} \rightarrow F\left(X_{1}\right)$ and by q the projection map $F\left(X_{1}\right) \rightarrow F_{1}(X)$. By using these notations, the following statements hold:
(1) $F_{i+1}\left(X^{*}\right) \cong F_{i} F(X)$ for any $i \geqq 1$.
(2) $\quad F_{1}\left(X^{*}\right) \cong \operatorname{Cok} d_{X}$.
(3) The following infinite sequence is exact:

$$
\begin{aligned}
0 & \rightarrow F F_{1}(X) \xrightarrow{\operatorname{Cok} d_{X_{1}} \cdot F(q)} \operatorname{Cok} d_{X_{1}} \rightarrow \operatorname{Ker} d_{X} \\
& \rightarrow F_{1} F_{1}(X) \xrightarrow{F_{1}(q)} F_{1} F\left(X_{1}\right) \xrightarrow{F_{1}(v)} F_{1}\left(X^{*}\right) \\
& \rightarrow F_{2} F_{1}(X) \xrightarrow{F_{2}(q)} F_{2} F\left(X_{1}\right) \xrightarrow{F_{2}(v)} F_{2}\left(X^{*}\right) \\
& \rightarrow \cdots .
\end{aligned}
$$

Proof. From the exact sequence $0 \rightarrow F(X) \rightarrow{ }^{F(p)} F\left(P_{0}\right) \rightarrow X^{*} \rightarrow 0$, we have $0 \rightarrow F\left(X^{*}\right) \rightarrow F^{2}\left(P_{0}\right) \rightarrow{ }^{(2(p)} F^{2}(X) \rightarrow F_{1}\left(X^{*}\right) \rightarrow 0 \quad$ and $\quad F_{i+1}\left(X^{*}\right) \cong$ $F_{i} F(X)$ for any $i \geqq 1$. Consider the following commutative diagram with exact rows:

By the snake lemma, we see that $\operatorname{Cok} d_{X} \cong F_{1}\left(X^{*}\right), \operatorname{Ker}\left(F(v) \cdot d_{X_{1}}\right)=0$ and $\operatorname{Cok}\left(F(v) \cdot d_{X_{1}}\right) \cong \operatorname{Ker} d_{X}$.

From the exact sequence $0 \rightarrow X^{*} \rightarrow{ }^{v} F\left(X_{1}\right) \rightarrow{ }^{a} F_{1}(X) \rightarrow 0$, we have the long exact sequence

$$
\begin{aligned}
& 0 \rightarrow F F_{1}(X) \xrightarrow{F(q)} F^{2}\left(X_{1}\right) \xrightarrow{F(v)} F\left(X^{*}\right) \rightarrow F_{1}^{2}(X) \xrightarrow{F_{1}(q)} F_{1} F\left(X_{1}\right) \\
& \xrightarrow{F_{1}(v)} F_{1}\left(X^{*}\right) \rightarrow \cdots .
\end{aligned}
$$

Next consider the following commutative diagram with exact rows:

where the map m is the canonical one induced from the commutativity of the left-hand square. Applying the previous lemma to the above diagram, we have the isomorphisms

$$
\text { Ker } m \cong H(0 \rightarrow \operatorname{Ker} m \rightarrow 0) \cong H\left(F F_{1}(X) \rightarrow \operatorname{Cok} d_{X_{1}} \rightarrow 0\right)
$$

and

$$
0 \cong H\left(\operatorname{Ker} d_{X_{1}} \rightarrow 0 \rightarrow \operatorname{Ker} m\right) \cong H\left(0 \rightarrow F F_{1}(X) \rightarrow \operatorname{Cok} d_{x_{1}}\right)
$$

Those isomorphisms imply the exactness of the sequence:

$$
0 \rightarrow F F_{1}(X) \rightarrow \operatorname{Cok} d_{X_{1}} \rightarrow \operatorname{Ker} m \rightarrow 0
$$

It is easy to see that $\operatorname{Im}(m)$ is isomorphic to $\operatorname{Im}\left(F\left(X^{*}\right) \rightarrow F_{1}^{2}(X)\right)$. Hence we have the desired long exact sequence. This completes the proof.

Using the long exact sequence in the above proposition, we can prove statement (3) in the theorem.

Theorem 10. Assume $\operatorname{id}\left({ }_{B} T\right), \operatorname{id}\left(T_{A}\right)<\infty$. Then, for any module X, the following equality holds:

$$
\operatorname{dim} X=\sum_{i, j \geqq 0}(-1)^{i+j} \operatorname{dim} F_{i} F_{j}(X) \quad\left(F_{0}=F\right)
$$

that is, $\quad K_{0}(A) \cong K_{0}(B) \quad$ by the correspondence: $\operatorname{dim} X \mapsto \sum_{i \geqq 0}(-1)^{i}$ $\operatorname{dim} F_{i}(X)$. Here, $K_{0}(A)$ and $K_{0}(B)$ stand for the Grothendieck groups of A and B, respectively.

Proof. Let $\quad \cdots \rightarrow{ }^{g_{2}} P_{2} \rightarrow{ }^{g_{1}} P_{1} \rightarrow{ }^{g_{0}} P_{0} \rightarrow X \rightarrow 0 \quad$ be a projective
resolution of X. Put $X_{k}=\operatorname{Cok} g_{k}(k \geqq 0)$. Then, by the previous proposition, we have

$$
\begin{align*}
0 & \rightarrow F F_{1}(X) \rightarrow \operatorname{Cok} d_{X_{1}} \rightarrow \operatorname{Ker} d_{X} \\
& \rightarrow F_{1} F_{1}(X) \rightarrow F_{1} F\left(X_{1}\right) \rightarrow \operatorname{Cok} d_{X} \rightarrow F_{2} F_{1}(X) \\
& \rightarrow F_{2} F\left(X_{1}\right) \rightarrow F_{1} F(X) \rightarrow F_{3} F_{1}(X) \\
& \rightarrow F_{3} F\left(X_{1}\right) \rightarrow F_{2} F(X) \rightarrow \cdots \tag{0}
\end{align*}
$$

and, for any $i \geqq 1$,

$$
\operatorname{Ker} d_{X_{i}}=0, \quad F F_{1}\left(X_{i}\right) \cong \operatorname{Cok} d_{X_{i+1}}
$$

and

$$
\begin{align*}
0 & \rightarrow F_{1} F_{1}\left(X_{i}\right) \rightarrow F_{1} F\left(X_{i+1}\right) \rightarrow \operatorname{Cok} d_{X_{i}} \rightarrow F_{2} F_{1}\left(X_{i}\right) \\
& \rightarrow F_{2} F\left(X_{i+1}\right) \rightarrow F_{1} F\left(X_{i}\right) \rightarrow F_{3} F_{1}\left(X_{i}\right) \rightarrow F_{3} F\left(X_{i+1}\right) \\
& \rightarrow F_{2} F\left(X_{i}\right) \rightarrow \cdots . \tag{i}
\end{align*}
$$

Here it should be noted that $F_{1}\left(X_{i}\right) \cong F_{i+1}(X)$ for any $i \geqq 1$.
By our assumption, we can consider the sums

$$
M_{i}=\sum_{k \geqq 1}(-1)^{k+i} \operatorname{dim} F_{k} F_{i}(X) \quad \text { for } \quad i \geqq 0
$$

and

$$
N_{j}=\sum_{k \geqq 1}(-1)^{k} \operatorname{dim} F_{k} F\left(X_{j}\right) \quad \text { for } \quad j \geqq 1
$$

Then we have

$$
\begin{aligned}
& M_{0}+M_{1}-\operatorname{dim} F F_{1}(X) \\
& =\operatorname{dim} \operatorname{Ker} d_{X}-\operatorname{dim} \operatorname{Cok} d_{X}-\operatorname{dim} \operatorname{Cok} d_{X_{1}}-N_{1} \\
& \quad M_{2}=\operatorname{dim} \operatorname{Cok} d_{X_{1}}+N_{1}+N_{2}
\end{aligned}
$$

and

$$
M_{i+1}+(-1)^{i} \operatorname{dim} F F_{i}(X)=(-1)^{i+1}\left(N_{i}+N_{i+1}\right)
$$

from (E_{0}), $\left(\mathrm{E}_{1}\right)$, and $\left(\mathrm{E}_{i}\right)(i \geqq 2)$, respectively.
For a large number k, the terms M_{k}, N_{k}, and $\operatorname{dim} F F_{k}(X)$ are all zero (for M_{k} and $\operatorname{dim} F F_{k}(X)$ this is obvious and for N_{k} it is proved as follows: We have the isomorphism $F_{i} F\left(X_{k}\right) \cong F_{i+1}\left(X_{k}^{*}\right)$ and we may assume
$F_{1}\left(X_{k}\right) \cong F_{k+1}(X)=0$; therefore, by definition, $X_{k}^{*} \cong F\left(X_{k+1}\right)$ and $F_{i+1}\left(X_{k}^{*}\right) \cong F_{i+1} F\left(X_{k+1}\right) \cong F_{i+2}\left(X_{k+2}^{*}\right)$. Thus we have the isomorphisms

$$
F_{i} F\left(X_{k}\right) \cong F_{i+1} F\left(X_{k+1}\right) \cong \cdots \cong F_{i+r} F\left(X_{k+r}\right) \cong F_{i+r+1}\left(X_{k+r}^{*}\right)=0
$$

for some $r \geqq k-(i+1))$. Hence, we get the equalities

$$
\begin{aligned}
\left(\sum_{i \geqq 0} M_{i}\right)+\left(\sum_{i \geqq 1}(-1)^{i} \operatorname{dim} F F_{i}(X)\right) & =\operatorname{dim} \operatorname{Ker} d_{X}-\operatorname{dim} \operatorname{Cok} d_{X} \\
& =\operatorname{dim} X-\operatorname{dim} F^{2}(X)
\end{aligned}
$$

and

$$
\operatorname{dim} X=\sum_{i, j \geqq 0}(-1)^{i+j} \operatorname{dim} F_{i} F_{j}(X) .
$$

This completes the proof.

References

1. M. Auslander and I. Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69-74.
2. D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
3. H. Tachikawa, "Quasi-Frobenius Rings and Generalizations," Lecture Notes in Math. Vol. 351, Springer-Verlag, New York/Berlin, 1973.
