
Predicting initiation and progression of chronic
kidney disease: Developing renal risk scores
MW Taal1 and BM Brenner2

1Department of Renal Medicine, Derby Hospitals NHS Foundation Trust and Centre for Integrated Systems in Biology and Medicine,
University of Nottingham, Derby City General Hospital, Derby, UK and 2Department of Medicine, Renal Division, Brigham and Women’s
Hospital and Harvard Medical School, Boston, Massachusetts, USA

Epidemiological studies have raised awareness of the

problem of undiagnosed chronic kidney disease (CKD) and

suggest that early identification and treatment will reduce

the global burden of patients requiring dialysis. This has

highlighted the twin problems of how to identify subjects for

screening and target intervention to those with CKD most

likely to progress to end-stage renal disease. Prospective

studies have identified risk factors for CKD in the general

population as well as risk factors for progression in patients

with established CKD. Risk factors may thus be divided into

initiating factors and perpetuating factors, with some overlap

between the groups. In this paper, we review current data

regarding CKD risk factors and illustrate how each may

impact upon the mechanisms underlying CKD progression to

accelerate loss of renal function. We propose that these risk

factors should be used as a basis for developing a renal risk

score, analogous to the Framingham risk score for ischemic

heart disease, which will allow accurate determination of

renal risk in the general population and among CKD patients.
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THE NEED TO DEFINE RISK IN CHRONIC KIDNEY DISEASE

The past decade has seen a growing awareness of the problem
of undiagnosed chronic kidney disease (CKD) and the
implications for provision of renal replacement therapy
(RRT). Substantial success has been achieved in promoting
improved screening for and treatment of CKD to improve
outcomes and reduce demand for RRT. These important
aims have highlighted the twin problems of how to identify
subjects for screening and target intervention to those with
CKD most likely to result in end-stage renal disease (ESRD).
Cost-effectiveness studies indicate that screening whole
populations is not a viable1 and a means of identifying
high-risk individuals for targeted screening is therefore
required.

The US National Kidney Foundation’s Kidney Disease
Outcomes Quality Initiative (K/DOQI) has proposed a
classification system for CKD that stratifies patients accord-
ing to the level of kidney function to facilitate the
development of appropriate management plans.2 The K/
DOQI classification is now widely accepted and has proved
valuable in particular in identifying the prevalence of
different stages of CKD in epidemiological studies.3 It has
been noted, however, that the K/DOQI classification provides
little information on the future risk of decline in renal
function.4 Previous studies have identified a wide range of
rates of decline in glomerular filtration rate (GFR) among
patients with CKD and up to 15% may even show an increase
over time.5 Thus, within CKD stage 3, for example, there are
some patients who will require renal replacement therapy
within a variable period, whereas others never progress to
ESRD. Clearly, these two scenarios require very different
management plans necessitating accurate assessment of the
risk of CKD progression.

RISK FACTORS AND MECHANISMS OF CKD PROGRESSION

It has been appreciated for several decades that once GFR has
decreased to below a critical level, CKD tends to progress
relentlessly toward ESRD. This observation suggests that loss
of a critical number of nephrons provokes a vicious cycle of
further nephron loss. Detailed studies have elucidated a
number of inter-related mechanisms that together contribute
to CKD progression including glomerular hemodynamic
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responses to nephron loss (raised glomerular capillary
hydraulic pressure and single nephron GFR), proteinuria,
and proinflammatory responses. A generally good prognosis
after unilateral nephrectomy6 attests to the fact that a single
pathogenic factor may be insufficient to initiate progressive
CKD, but the ‘multi-hit’ hypothesis proposes that multiple
factors interact to overcome renal reserve and provoke
progressive nephron loss.7 Epidemiological studies have
identified several variables that are predictive of CKD
outcomes and may therefore be regarded as risk factors for
CKD progression.8 Figure 1 shows how risk factors may
interact with pathophysiological mechanisms to accelerate
CKD progression. It is clear that risk factors may be divided
into initiating factors (Table 1) that play a role in starting the
cycle of nephron loss and perpetuating factors (Table 2) that
drive the process onwards.

A RENAL RISK SCORE

We propose that risk factors for CKD progression should be
incorporated into a multi-variable scoring system that would
predict an individual’s future risk of ESRD. This would allow
targeted population screening for CKD, identification of
patients at high risk for CKD progression for more intensive
intervention, and risk stratification in clinical trails. Such a
system would be similar to the Framingham Risk Score9 that
has been instrumental in defining cardiovascular risk to guide
therapy in patients at risk for ischemic heart disease. Detailed
discussion of the statistical methods available for developing
such a score is beyond the scope of this paper, but at least two
studies have demonstrated the potential benefit of such an
approach. Investigators from the Reduction of Endpoints in
NIDDM with the Angiotensin II Receptor Antagonist
Losartan (RENAAL) study have reported that a risk score

based on urine albumin to creatinine ratio, serum creatinine,
serum albumin, and hemoglobin improved the risk predic-
tion for progression of nephropathy to ESRD from 50% for
albuminuria alone to greater than 80% for the risk score.10

Dimitrov et al.11 have shown that an alternative method of
utilizing decision tree Bayesian modeling can be used to
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Figure 1 | Schema showing the interaction of risk factors for CKD progression with pathophysiological mechanisms that contribute to
a vicious cycle of progressive nephron loss. Ang II – angiotensin II; FSGS – focal and segmental glomerulosclerosis; PGC – glomerular capillary
hydraulic pressure; SNGFR – single nephron glomerular filtration rate; TIF – tubulointerstitial fibrosis.

Table 1 | Risk factors for CKD: initiating factors

Initiating factors

Older age
Family history of CKD

Hereditary nephropathies
Family history of CKD

Ethnicity
Gender
Diabetes mellitus
Metabolic syndrome
Hyperfiltration states
k Nephron number
Blood pressure 4125/75 mmHg
Obesity
High protein intake
Anemia

High normal urinary albumin excretion
Dyslipidemia
Nephrotoxins

NSAIDS
Antibiotics/anti-virals
Radiological contrast
Light chains

Primary renal disease
Urological disorders

Obstruction
Recurrent urinary infections

Cardiovascular disease

Abbreviations: CKD, chronic kidney disease; NSAID, non-steroidal anti-inflammatory
drug.
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determine individual patient risk of ESRD based on basic
epidemiological data and simple clinical information such as
blood pressure and proteinuria.

The past 5–10 years have seen the publication of a large
number of prospective studies identifying risk factors for the
development of CKD in the general population as well as risk
factors for progression to ESRD in patients with established
CKD. In this paper, we review these data and identify the
factors that should now be investigated in further studies to
develop a renal risk score.

DEMOGRAPHIC VARIABLES
Age

Longitudinal studies of subjects without kidney disease have
observed a decline in GFR with increasing age in some
subjects implying that nephron loss may be part of normal
aging.12 Several population-based studies have found a
higher incidence of proteinuria and CKD,13,14 as well as
ESRD with increasing age.15 Similarly, the incidence of a
decline in renal function over 5 years was greater among
older patients with hypertension.16 Paradoxically advanced
age appears to be a negative predictor of ESRD among
patients with CKD. The risk of progression to ESRD was
decreased among older patients with CKD stage 3 (hazard
ratio (HR) 0.75; 95% confidence interval (CI) 0.63–0.89 for
each 10-year increase in age).17 Nevertheless, older age was
associated with a greater rate of decline in GFR.17 This
apparent contradiction is most likely explained by the
competing risks of death and ESRD in older patients. On
the other hand, one study has found that age X65 years was
associated with slower decline in renal function than age o45
years among patients with CKD stages 4 and 5.18 Thus, older
age appears to act as an initiating factor but not necessarily a
perpetuating factor.

Gender

In experimental studies, male rodents were more susceptible
to age-related glomerulosclerosis than females, an effect that
was independent of glomerular hemodynamics or hyper-
trophy and was attributable to a specific androgen effect.19

Data regarding the role of gender in determining renal risk in
humans are somewhat contradictory. Many studies suggest

that male gender is associated with worse renal outcomes.
Studies have reported a higher incidence of proteinuria and
CKD among men in the general population,13 an increased
risk of ESRD, or death associated with CKD among men in
the general population,13,15,20 a higher risk of decline in renal
function among male hypertensive patients,16 a lower risk of
ESRD among female patients with CKD stage 3,17 and a
shorter time to renal replacement therapy among male
patients with CKD stages 4 and 5.18 Data from the United
States Renal Data System show a substantially higher
incidence of ESRD among males (413/million population
in 2003) versus females (280/million population).21 Further-
more, a meta-analysis of 68 studies that included 11 345
patients with CKD found a higher rate of decline in renal
function in men.22 On the other hand, a meta-analysis of
individual patient data from 11 randomized trails evaluating
the efficacy of angiotensin-converting enzyme inhibitor
(ACEI) treatment in CKD did not show an increased risk
of doubling of serum creatinine or ESRD, or ESRD alone
among men.23 Indeed, after adjustment for baseline variables
including blood pressure and urinary protein excretion,
women evidenced a significantly higher risk of these end
points than men.23 One limitation of this and several of the
other studies quoted is that menopausal status of the women
was not documented.

Ethnicity

It is clear that African-Americans evidence a higher incidence
of CKD and are overrepresented in the dialysis population of
the US: population-based studies have found a higher
incidence of ESRD among African-Americans that is
attributable only, in part, to socio-economic and other
known risk factors;15,24–26 the risk of early renal function
decline (increase in serum creatinine of X0.4 mg/dl) was
approximately three-fold higher (odds ratio (OR) 3.15; 95%
confidence interval (CI) 1.86–5.33) among black versus white
diabetic adults, but 82% of this excess risk was attributable to
socio-economic and other known risk factors;27 the risk of
decline in renal function over 5 years among hypertensive
patients is greater in African-Americans;16 black race was
independently associated with greater rate of GFR decline in
the Modification of Diet in Renal Disease (MDRD) study.5

Interestingly, the prevalence of estimated GFR (eGFR)
50–59 ml/min/1.73 m2 was lower in African-American versus
Caucasian subjects (adjusted OR 0.42; 95% CI 0.40–0.46)
among patients 445 years enrolled into the Geographical
and Racial Differences in Stroke Cohort Study (REGARDS),
whereas the prevalence of eGFR 10–19 ml/min/1.73 m2 was
higher among African-Americans (adjusted OR 1.73; 95% CI
1.02–2.94), suggesting that in this population African-
American race acted as a risk factor for progression but not
initiation of CKD.28 CKD and ESRD have also been found to
be more common among other ethnic groups, including
Asians,29,30 Hispanics31 Native Americans,32 Mexican Amer-
icans,33 and Australian Aboriginals.34 The mechanisms
underlying these associations remain to be elucidated, but

Table 2 | Risk factors for CKD: perpetuating factors

Perpetuating factors

African-American race
k Nephron number
Proteinuria
SBP 4130 mmHg
High dietary protein intake
Obesity
Anemia
Dyslipidemia
Smoking
Nephrotoxins
Cardiovascular disease

Abbreviations: CKD, chronic kidney disease; SBP, systolic blood pressure.

1696 Kidney International (2006) 70, 1694–1705

r e v i e w MW Taal and BM Brenner: Developing renal risk scores in CKD



possible explanations include increased prevalence of diabetes
mellitus, lower nephron endowment, increased susceptibility
to salt-sensitive hypertension, and other genetic factors,
as well as environmental, lifestyle, and socio-economic
differences.

HEREDITARY FACTORS

Hereditary renal diseases resulting from a single gene defect
including autosomal-dominant polycystic kidney disease,
Alport’s disease, and Fabry’s disease account for a relatively
small yet clinically significant proportion of all patients with
CKD. Moreover, there is substantial evidence that genetic
factors account for familial clustering of other forms of CKD
with multi-factorial etiology. Among 25 883 incident ESRD
patients, 22.8% reported a family history of ESRD35 and
screening of the relatives of ESRD patients revealed evidence
of CKD in 49.3%.36 In another case–control study including
689 patients with ESRD and 361 controls, having one first-
degree relative with CKD increased the risk of ESRD by 1.3
(95% CI 0.7–2.6) and having two such relatives increased it by
10.4 (95% CI 2.7–40.2) after controlling for multiple known
risk factors including diabetes and hypertension.37 Similarly a
case–control study of 103 white American patients with ESRD
reported a 3.5-fold increase (95% CI 1.5–8.4) in risk of ESRD
with the presence of either a first-, second-, or third-degree
relative with ESRD.38 Other studies suggest that genetic
factors also increase susceptibility to early manifestations of
CKD. In one study of 169 families with one type II diabetic
proband, the diabetic siblings of probands with micro-
albuminuria had a significantly increased risk of also having
microalbuminuria after adjustment for confounding risk
factors (OR 3.94; 95% CI 1.93–9.01) than the diabetic siblings
of probands without microalbuminuria.39 Furthermore, the
non-diabetic siblings of diabetic probands with micro-
albuminuria evidenced significantly higher urinary albumin
excretion rates (within the normal range) than the non-
diabetic siblings of normo-albuminuric diabetic probands.

DIABETES MELLITUS

Diabetic nephropathy is rapidly becoming the single most
common cause of ESRD worldwide and diabetes was
associated with a substantially increased risk of ESRD or
death associated with CKD (relative hazard 7.5; CI 4.8–11.7)
in one population-based study of 23 534 subjects20 as well as
an increased risk of moderate chronic renal impairment
(estimated creatinine clearance o50 ml/min) in another
study of 1428 subjects with estimated creatinine clearance
470 ml/min at baseline.40 In patients with diabetes, poor
glycemic control is a risk factor for the development of
nephropathy and randomized trials among patients with type
I41 and type II42 diabetes have confirmed that tight glycemic
control reduces the risk of developing diabetic nephropathy.
The pathogenesis of diabetic nephropathy is complex
and involves multiple mechanisms, including glomerular
hemodynamic factors (see below),43,44 advanced glycation
end-product formation, generation of reactive oxygen species

as well as upregulation of profibrotic growth factors such as
transforming growth factor-b and connective tissue growth
factor.45

HYPERFILTRATION STATES

Experimental studies have shown that glomerular hemo-
dynamic responses to nephron loss46 and chronic hyper-
glycemia43 (raised glomerular capillary hydraulic pressure
and increased single nephron GFR) are critical factors in
establishing the vicious cycle of nephron loss characteristic
of CKD. In addition, any factor that further increases
glomerular hypertension and hyperfiltration may be expected
to compound the effects of nephron loss and accelerate
progression (Figure 1).

Decreased nephron number

Nephron endowment. A substantial body of evidence
exists to support the hypothesis that low nephron endow-
ment predisposes individuals to CKD by provoking an
increase in single nephron GFR, and therefore, a reduction in
renal reserve.47 In human autopsy studies, low birth weight is
directly associated with reduced nephron number48,49 and
birth weight may therefore serve as a marker of nephron
endowment. Low birth weight is also a risk factor for later life
hypertension and diabetes mellitus, both of which further
increase the risk of CKD.50 Several studies have found a link
between low birth weight and CKD. Investigation of 422
subjects born very preterm (gestational age o32 weeks), at
age 19 years, revealed a significant positive correlation
between birth weight (expressed as standard deviation from
normal for gestational age) and estimated GFR as well as a
negative correlation between birth weight and the logarithm
of urine albumin to creatinine ratio.51 Renal function was
normal in all subjects. Furthermore, low birth weight was
associated with an increased risk of albuminuria in Pima
Indians with type II diabetes52 as well as Australian
Aboriginals,53 and ESRD was significantly associated with
low birth weight in a case–control study of patients in the
Southeastern US.54 Interestingly, a recent autopsy study
reported significant associations between mean arterial
pressure and glomerular number (r¼�0.46; P¼ 0.005),
mean arterial pressure and birth weight (r¼�0.42; P¼ 0.04)
as well as glomerular number and birth weight (r¼ 0.57;
P¼ 0.002) among Caucasian but not African-American
patients in the Southeastern US.55

Acquired nephron deficit. Experimental models of ac-
quired nephron loss have shown that severe nephron loss
(5/6 nephrectomy) alone can initiate a cycle of progressive
injury in the remaining glomeruli mediated largely through
glomerular hypertension and hyperfiltration.46 Similarly,
among 14 humans subjected to partial resection of a single
kidney, two developed ESRD and nine developed proteinuria,
the extent of which was inversely correlated with the amount
of renal tissue remaining.56 Lesser degrees of acquired
nephron loss may not be sufficient alone to cause CKD,6

but may predispose individuals to other forms of CKD as
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evidenced by the observation that uninephrectomy exa-
cerbates renal injury in experimental57 and human diabetic
nephropathy.58 In most forms of human CKD, focal nephron
loss initially occurs as a result of primary renal disease, multi-
system disorders that involve the kidney, or exposure to
nephrotoxins, but we and others have proposed that
hemodynamic adaptations in remaining glomeruli contribute
to further nephron loss. Several epidemiological studies attest
that patients with reduced GFR are at increased risk for a
further decline in renal function. At least one study has found
an increased risk of developing CKD associated with an eGFR
o90 ml/min/1.73 m2 in participants without evidence of
CKD at baseline (OR 3.01; CI 1.98–4.58 versus eGFR
X120 ml/min/1.73 m2).14 Among patients known to have
CKD, several longitudinal studies have reported an increased
risk of ESRD with decreased eGFR: 3047 patients with CKD
stage 3 evidenced an HR of 2.5 (95% CI 1.89–3.31) for each
10 ml/min/1.73 m2 decrease in eGFR;17 among 131 patients
with CKD (mean eGFR 31715 ml/min/1.73 m2), each 1 ml/
min/1.73 m2 increase in eGFR was associated with an HR of
0.914 (95% CI 0.864–0.968) for ESRD;59 among 920 CKD
stage 4 and 5 patients, an eGFR of 13.7–16.6 ml/min/1.73 m2

was associated with a relative risk (RR) for ESRD of 1.5 (95%
CI 1.21–1.91) versus eGFR 418.5 ml/min/1.73 m2.18 Further-
more, higher serum creatinine was an independent risk factor
for the development of albuminuria or renal impairment
among patients with type II diabetes without CKD at
baseline30 and elevated serum creatinine as an independent
predictor of progression to ESRD among patients with type II
diabetes mellitus and nephropathy in the RENAAL study
(HR¼ 3.59; 95% CI 2.90–4.45).10 On the other hand, detailed
analysis of data from the MDRD study confirmed a wide
range of rates of GFR decline among CKD patients, but
found no association between the level of GFR at baseline
and subsequent rate of decline.5

Blood pressure

Hypertension has long been recognized as a consequence of
renal impairment and an important factor in the progression
of CKD. Within the model of CKD progression described in
Figure 1, it is easy to appreciate that elevated systemic blood
pressure transmitted to the glomerulus would contribute to
glomerular hypertension and thus accelerate glomerular
damage. Hypertension was predictive of ESRD risk in several
large population-based studies13,14,20,60 and raised systolic
blood pressure was an independent risk factor for develop-
ment of albuminuria or renal impairment among patients
with type II diabetes.30 Furthermore, several studies have
found a close association between the magnitude of increased
risk and the level of blood pressure such that even modest
elevations in blood pressure, below the threshold for a
diagnosis of hypertension, are associated with increased risk
of ESRD.13,20,61 Among patients with CKD in the MDRD
study, higher baseline mean arterial pressure independently
predicted a greater rate of GFR decline.5 These observations
have prompted a call for blood pressure to be viewed as a

continuous rather than a dichotomous risk factor for CKD
with less emphasis on traditional definitions of ‘hypertension’
and ‘normotension’.62 At least three large prospective
randomized trials have sought to investigate the potential
renoprotective benefit of ‘intensive’ versus ‘standard’ blood
pressure lowering. In the MDRD study, the primary analysis
found no significant difference between the rate of change in
GFR during a mean of 2.2 years follow-up between patients
randomized to achieve a mean arterial pressure of
o92 mmHg (equivalent to o125/75 mmHg) or o98 mmHg
if X61 years, versus o107 mmHg (equivalent to 140/
90 mmHg) or o113 mmHg if X61 years, but secondary
analysis did show significant benefit associated with the low
blood pressure target among patients with higher levels of
baseline proteinuria.63 Lower achieved blood pressure was
also closely associated with a slower rate of GFR decline, an
effect that was also more marked among patients with greater
baseline proteinuria.64 Moreover, long-term follow-up (mean
6.6 years) of patients from the MDRD study reported a
significant reduction in the risk of ESRD (adjusted HR 0.68;
95% CI 0.57–0.82) or a combined end point of ESRD or
death (adjusted HR 0.77; 95% CI 0.65–0.91) among patients
randomized to ‘low’ blood pressure targets even though
treatment and blood pressure data were not available beyond
the 2.2 years of the original trial.65 In the African-American
Study of Kidney Disease and Hypertension (AASK), no
significant difference in the rate of GFR decline was observed
between patients randomized to a mean arterial pressure
goals of p92 versus 102–107 mmHg. It should be noted,
however, that patients in AASK generally had low levels of
baseline proteinuria (mean urine protein 0.38–0.63 g/day).66

Thus, the MDRD and AASK study results suggest a
significant interaction between blood pressure and protein-
uria as risk factors for CKD progression. In a third study,
additional blood pressure reduction with a calcium channel
blocker in patients with non-diabetic CKD on ACEI
treatment failed to produce additional renoprotection, but
the degree of additional blood pressure reduction was modest
(4.1/2.8 mmHg) and may have been insufficient to improve
outcomes in patients already receiving optimal ACEI
therapy.67 A recent longitudinal study of 217 Veterans with
CKD has confirmed that systolic blood pressure measure-
ments, and in particular home blood pressure recordings, are
independent predictors of the risk of ESRD or death or a
combined end point of both.68 Interestingly, blood pressure
was not an independent predictor of ESRD among diabetic
patients in the RENAAL study.10 This is likely due to the fact
that blood pressure was well controlled in all patients and
illustrates how risk factors may vary in importance depend-
ing on the population studied.

Obesity and metabolic syndrome

In experimental studies, obesity is associated with hyperten-
sion, proteinuria, and progressive renal disease. Micropunc-
ture studies have confirmed that obesity is another cause of
glomerular hyperfiltration and glomerular hypertension that
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can be expected to exacerbate the progression of CKD.69,70

Recent attention has focused on the observation that
adipocytes produce a variety of hormones and proinflam-
matory molecules that may also contribute to progressive
renal damage.71 In humans, severe obesity is associated with
increased renal plasma flow, glomerular hyperfiltration, and
albuminuria, abnormalities that are reversed by weight loss.72

Obesity as defined by increased body mass index (BMI) has
been associated with increased risk of developing CKD in
several large population-based studies.14,73 Furthermore, one
study has found a progressive increase in relative risk of
developing ESRD associated with increasing BMI (RR 3.57;
CI 3.05–4.18 for BMI 30.0–34.9 versus BMI 18.5–24.9 kg/m2)
among 320 252 subjects confirmed to have no evidence of
CKD at initial screening.74 There is evidence that obesity may
directly cause a specific form of glomerulopathy character-
ized by proteinuria and histological features of focal and
segmental glomerulosclerosis,75 but it is likely that it also acts
as a risk factor in the development of several other forms of
renal disease. Recently, interest has focused on the role of the
metabolic syndrome (insulin resistance), defined by the
presence of abdominal obesity, dyslipidemia, hypertension,
and fasting hyperglycemia, in the development of CKD. An
analysis of the Third National Health and Nutrition
Examination Survey data found a significantly increased risk
of CKD and microalbuminuria in subjects with the metabolic
syndrome as well as a progressive increase in risk associated
with the number of components of the metabolic syndrome
present.76 Furthermore, a large longitudinal study of 10 096
patients without diabetes or CKD at baseline identified
metabolic syndrome as an independent risk factor for the
development of CKD over 9 years (adjusted OR 1.43; 95% CI
1.18–1.73). Again there was a progressive increase in risk
associated with the number of traits of the metabolic
syndrome present (OR 1.13; 95% CI 0.89–1.45 for one trait
versus OR 2.45; 95% CI 1.32–4.54 for five traits).77 In another
study, patient hip–waist ratio, a marker insulin resistance, was
independently associated with impaired renal function even
in lean individuals (BMI o25 kg/m2) among a population-
based cohort of 7676 subjects.78 The effect of obesity on the
progression of established CKD is less well documented. In
one study, increased BMI was an independent risk factor for
CKD progression among 162 patients with IgA nephro-
pathy.79 On the other hand, BMI was unrelated to the risk of
ESRD among an cohort CKD stage 4 and 5 patients.18

High dietary protein intake

Protein feeding has been shown to provoke an increase in
GFR in rodents80 and humans.81 Consistent with the
hypothesis that the glomerular hemodynamic changes
associated with hyperfiltration accelerate glomerular injury,
experimental studies have reported that high protein diet
accelerates renal disease progression, whereas dietary protein
restriction attenuates it.82,83 Furthermore, dietary protein
restriction results in normalization of glomerular capillary
hydraulic pressure as well as single nephron GFR and marked

attenuation of glomerular damage in the 5/6 nephrectomy
model.46 Observational studies in humans have found an
increased risk of microalbuminuria associated with higher
dietary protein intake among subjects with diabetes and
hypertension (OR 3.3; 95% CI 1.4–7.8), but not among
healthy subjects or those with isolated diabetes or hyper-
tension,84 again illustrating the interaction between risk
factors for CKD. In one prospective study, high protein
intake, particularly non-dairy animal protein, was associated
with a greater rate of decline in estimated GFR among
women with estimated GFR 80–55 ml/min/1.73 m2 but not
in those with estimated GFR 480 ml/min/1.73 m2.85 The
MDRD study was a randomized trail designed to investigate
the renoprotective potential of dietary protein restriction in
patients with CKD. Whereas the primary analysis revealed no
significant difference in the mean rate of GFR decline,63

secondary analysis revealed that an initial reduction in GFR
resulting from the functional effects of decreased protein
intake obscured a later reduction in the rate of GFR decline in
the low protein diet group.63 Analysis of outcomes according
to achieved dietary protein intake showed that a reduction in
protein intake of 0.2 g/kg/day correlated with a 1.15 ml/min/
year reduction in the rate of GFR decline, equivalent to a 29%
reduction in mean rate of GFR decline.86 Three meta-analyses
of smaller studies have all reported a significant renoprotec-
tive benefit associated with dietary protein restriction.87–89

Glycogen storage diseases

Glycogen storage diseases provide another example where
glomerular hyperfiltration is associated with the development
of albuminuria and a subsequent decline in renal function.90

BIOMARKERS
Urinary protein excretion

Abnormal excretion of urinary protein is a marker of
glomerulopathy and an index of disease severity, but recent
experimental evidence suggests that proteinuria may also
contribute to progressive renal damage in CKD.91 A large
body of evidence attests to a strong association between
proteinuria and the risk of CKD progression. Mass screening
of a general population of 107 192 participants by means of
dipstick urinalysis identified proteinuria as the most power-
ful predictor of ESRD risk over 10 years (OR 14.9; 95% CI
10.9–20.2).13 Furthermore, increased urinary albumin levels
within the normal range were independently associated with
subsequent development of albuminuria or renal impairment
in patients with type II diabetes but no albuminuria at
baseline.30 Among patients with CKD owing to a wide variety
of etiologies, baseline proteinuria has consistently predicted
renal outcomes.59,92,93 In three large prospective studies that
included patients with non-diabetic CKD (MDRD study,
Ramipril Efficacy In Nephropathy (REIN) study and AASK),
higher baseline proteinuria was strongly associated with a
more rapid decline in GFR.5,64,94,95 Similarly, among patients
with diabetic nephropathy, baseline urinary albumin to
creatinine ratio was a strong independent predictor of ESRD
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in the RENAAL study and Irbesartan in Diabetic Nephro-
pathy Trial (IDNT).10,96 Furthermore, the extent of ‘residual
proteinuria’ that persists despite optimal treatment with an
ACEI or angiotensin receptor blocker also predicts renal
prognosis: Secondary analysis of REIN study data found that
percentage reduction in proteinuria over the first 3 months as
well as the absolute level of proteinuria at 3 months were
strong independent predictors of the subsequent rate of
decline in GFR;97 in the IDNT, greater reduction in
proteinuria at 12 months was associated with a greater
reduction in the risk of ESRD (HR 0.44; 95% CI 0.40–0.49 for
each halving of baseline proteinuria);96 in AASK, change in
proteinuria from baseline to 6 months predicted subsequent
progression.95 A meta-analysis of data from 1860 patients
with non-diabetic CKD showed that during antihypertensive
treatment, the current level of proteinuria was a powerful
predictor of the combined end point of doubling of baseline
serum creatinine or onset of ESRD (RR 5.56; 95% CI
3.87–7.98 for each 1.0 g/day increase in proteinuria).98 These
data support the notion that proteinuria, like blood pressure,
should be regarded as a continuous risk factor for CKD
progression.62 Proteinuria thus appears to be a marker of
renal risk in the general population, patients with CKD prior
to treatment and CKD patients on treatment. Furthermore,
analysis of data from the RENAAL study found that baseline
albuminuria was the most important independent predictor
of ESRD risk in all ethnic groups, including White, Black,
Asian, and Hispanic. Reduction in albuminuria at 6 months
also predicted renoprotection in all ethnic groups.31

Serum albumin

Serum albumin levels are widely regarded as a marker of
nutritional status, but may also be reduced due to proteinuria
or inflammation. Analysis of data from the MDRD study
found a univariate correlation between higher baseline serum
albumin and slower subsequent rate of GFR decline, but in
the multivariate analysis, this was displaced by a similar
correlation with baseline serum transferrin levels, another
marker of protein nutrition.5 Three studies have found
associations between serum albumin and renal outcomes
among patients with type II diabetes and CKD. Among 182
patients with a mean serum creatinine of 1.5 mg/dl at
baseline, hypoalbuminemia was an independent risk factor
for ESRD.99 In a long-term follow-up of 343 patients, low
baseline serum albumin was an independent predictor of
CKD progression,100 and in the RENAAL study, low serum
albumin was an independent predictor of ESRD.10 In both of
these studies, the predictive value of hypoalbuminemia was
independent of and additional to that of proteinuria,
indicating that it is not merely acting as a marker of
albuminuria.

Anemia

Chronic anemia owing to inherited hemoglobinopathy is
associated with increased renal plasma flow as well as
glomerular hyperfiltration and subsequent development of

proteinuria, hypertension, and ESRD.101,102 Anemia is a
common complication of CKD, but several studies have
shown that it is also an independent predictor of renal risk. In
the RENAAL study, baseline hemoglobin was a significant
independent predictor of ESRD among diabetic patients such
that each 1 g/dl decrease in hemoglobin was associated with an
11% increase in the risk of ESRD.103 Baseline hemoglobin was
also one of four variables included in the renal risk score
developed from the RENAAL data.10 Similarly, higher
hemoglobin was independently associated with lower risk of
progression to ESRD (halving of GFR or need for dialysis) or
death among 131 patients with all forms of CKD (HR¼ 0.778;
95% CI 0.639–0.948 for each 1 g/dl increase).59 Furthermore,
time-averaged hemoglobin of o12 g/dl was associated with a
significantly increased risk of ESRD among 853 male Veterans
with CKD stages 3–5 (HR 0.74; 95% CI 0.65–0.84 for each 1 g/dl
increase in hemoglobin).104 Consistent with the hypothesis
that anemia contributes directly to CKD progression, two
small randomized studies have reported renoprotective
benefit associated with erythropoietin therapy. Among
patients with serum creatinine 2–4 mg/dl and hematocrit
o30%, erythropoietin treatment was associated with sig-
nificantly improved renal survival,105 and in non-diabetic
patients with serum creatinine 2–6 mg/dl, early treatment
(started when hemoglobin o11.6 g/dl) with erythropoietin
alpha was associated with a 60% reduction in the risk of
doubling serum creatinine, ESRD, or death versus delayed
treatment (started when hemoglobin o9.0 g/dl).106

Dyslipidemia

Lipid abnormalities are commonly associated with CKD, but
only recently has evidence emerged that dyslipidemias are a
risk factor for the development and progression of CKD.
In population-based studies, several lipid profile variables
have been associated with CKD risk: elevated low-density
lipoprotein/HDL-cholesterol ratio was associated with a
faster rate of decline in renal function in men without renal
disease at baseline;107 subjects with higher triglyceride levels
and lower HDL-cholesterol levels were at increased risk for a
rise in serum creatinine among participants with normal or
mildly elevated serum creatinine at baseline;108 increased
HDL-cholesterol levels were associated with decreased risk of
developing CKD in apparently healthy subjects;14 individuals
with elevated total cholesterol, low-HDL-cholesterol, or
elevated total to HDL-cholesterol were at increased risk of
a rise in serum creatinine to X1.5 mg/dl among healthy men
in the Physicians’ Health Study.109 Evidence is also accumu-
lating that lipid abnormalities are a risk factor for CKD
progression. In the MDRD study, lower HDL-cholesterol
levels independently predicted a more rapid decline in GFR,5

and in a smaller study of patients with CKD total cholesterol,
LDL-cholesterol and apolipoprotein B levels were all
associated with more rapid decline in GFR.110 Among 223
patients with IgA nephropathy, hypertriglyceridemia was
independently predictive of CKD progression.111 The results
of large prospective randomized trials on the effect of statin

1700 Kidney International (2006) 70, 1694–1705

r e v i e w MW Taal and BM Brenner: Developing renal risk scores in CKD



treatment in CKD are still awaited. Subgroup analysis of a
prospective randomized trial of pravastatin treatment in
patients with previous myocardial infarction found that
pravastatin slowed the rate of decline in patients with
estimated GFR o40 ml/min/1.73 m2, an effect that was more
pronounced in those with proteinuria.112 On the other hand,
a similar analysis of patients with estimated GFR 30–59.9 ml/
min/1.73 m2 in a randomized trial of gemfibrozil in men with
coronary disease showed no renoprotective benefit. One
meta-analysis of 13 small controlled trials found that lipid-
lowering therapy was associated with a significantly slower
rate of GFR decline (0.156 ml/min/month; 95% CI 0.026–0.
285 ml/min/month, P¼ 0.008) among patients with CKD.113

Serum uric acid

Hyperuricemia is a common consequence of chronic renal
failure, but may also contribute to CKD progression. In one
population-based study, baseline hyperuricemia was an
independent risk factor for subsequent increase in serum
creatinine.114 A larger study from the same population
subsequently identified hyperuricemia as an independent risk
factor for ESRD among women, but not men.115 In patients
with IgA nephropathy, hyperuricemia has emerged as a risk
factor for CKD progression in two studies.111,116 To date,
only one small randomized study has investigated the effect
of lowering serum uric acid levels on CKD progression.
Among 54 patients with CKD, patients randomized to
treatment with allopurinol evidenced stable serum creatinine
values over 12 months, whereas patients in the control group
showed an increase, but this benefit did not correlate with
uric acid levels.117 Possible mechanisms whereby hyper-
uricemia may contribute to CKD progression are glomerular
hypertension,118,119 endothelial dysfunction,120 and pro-
inflammatory effects.121

Plasma asymmetrical dimethylarginine

Elevated plasma asymmetrical dimethylarginine levels are a
marker of endothelial dysfunction in the general population
and are a risk factor for death in patients with ESRD. One
relatively small study has identified increased asymmetrical
dimethylarginine levels as an independent risk factor for
ESRD or death among 131 CKD patients (HR¼ 1.203; 95%
CI 1.07–1.35 for each 0.1 mM/l increase).59 Further studies are
required to confirm asymmetrical dimethylarginine as a risk
factor for ESRD in larger populations.

NEPHROTOXINS
Smoking

Cigarette smoking has been identified in several large
population-based studies as an independent risk factor for
different manifestations of CKD, including proteinuria,122

increased serum creatinine,123 decreased estimated GFR (OR
1.42; 95% CI 1.06–1.91),14 and development of ESRD or
death associated with CKD (relative hazard 2.6; 95% CI
1.8–3.7).20 In the latter study, 31% of the attributable risk of
CKD was associated with smoking. Smoking has also been

shown to increase the risk of progression of CKD due
to diabetes,124,125 hypertensive nephropathy,126 glomerulo-
nephritis,127 lupus nephritis,128 IgA nephropathy,129 and
Adult Polycystic Kidney Disease.129 Possible mechanisms
whereby cigarette smoking may contribute to renal damage
include sympathetic nervous system activation, glomerular
capillary hypertension, endothelial cell injury, and direct
tubulotoxicity.130

Alcohol and recreational drugs

The role of alcohol consumption as a potential risk factor for
CKD remains unclear. One case–control study found a
significant association between ESRD and consumption of
42 alcoholic drinks per day,131 whereas another similar
study found no association (with the exception of ‘moon-
shine’).132 Population-based studies have also found that
alcohol consumption is not related to CKD risk.133,134 The
role of recreational drugs as a risk factor for CKD has not
been widely studied but one case–control study reported a
positive between heroin, cocaine, or other psychedelic drug
use and ESRD.135

Analgesics

Analgesic nephropathy is well described as a cause of CKD
and several epidemiological studies have reported links
between analgesic consumption and CKD.136–139 It has been
pointed out, however, that these studies suffered from
important limitations as well as potential biases and further
studies are required to resolve this issue.140

Lead

Overt lead toxicity results in the well-recognized entity of
lead nephropathy, characterized by chronic interstitial
nephritis and an association with gout. In addition,
epidemiological studies have reported that mild elevations
in blood lead levels are associated with moderate reductions
in GFR and/or hypertension in the general population.141

Furthermore, one prospective study has identified elevations
in blood lead levels and body lead burden within the normal
range as important risk factors for progression among
patients with CKD.142

PRIMARY RENAL DISEASE

Whereas considerable variation in the rate of GFR decline has
been observed between individuals with a common cause of
CKD, there is also evidence that some forms of CKD appear
to result in more rapid progression than others. In the
MDRD study, a diagnosis of Adult Polycystic Kidney Disease
was an independent predictor of a greater rate of GFR
decline,5 and in a cohort of patients with CKD stages 4 and 5,
diabetic nephropathy was associated with shorter time to
ESRD than other diagnoses.18

CARDIOVASCULAR DISEASE

Much attention has focused recently on the important
observation that CKD is associated with markedly increased
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cardiovascular risk143 and it is therefore not surprising that
cardiovascular disease is also associated with an increased risk
of CKD. Among hospitalized Medicare beneficiaries, the
prevalence of CKD stage 3 or worse was 60.4% for those with
heart failure and 51.7% for those with myocardial infarction.
The presence of CKD in addition to heart disease was
associated with a significantly increased risk of death and
progression to ERSD.144 These observations may, in part, be
explained by the fact that cardiovascular disease and CKD
share many risk factors, including obesity, metabolic
syndrome, hypertension, diabetes mellitus, dyslipidemia,
and smoking. In addition, cardiovascular disease may have
direct effects on the kidneys that may promote initiation and
progression of CKD, including decreased renal perfusion in
heart failure and atherosclerosis of the renal arteries. For
example, renal atherosclerosis was detected in 39% (X70%
stenosis in 7.3%) of patients undergoing elective coronary
angiography.145 The interaction between cardiovascular and
renal disease is further illustrated by the observation that
among 313 patients with CKD, a diagnosis of cardiovascular
disease was associated with an increased risk of progression
to ESRD (RR 1.58).146

FURTHER CONSIDERATIONS

It is clear from the above that a large number of prospective
studies have identified a wide range of risk factors for the
development (Table 1) and progression of CKD (Table 2) in
different populations. Whereas many studies have identified
similar risk factors, there is also considerable variation
between studies and some even appear contradictory. This
variation is probably explained by differences in the
variables included and the populations studied. In order
to develop a clinically useful renal risk score, further
prospective studies are required that investigate all of the
variables of interest in clinically relevant cohorts with
observation periods that are long enough to allow a
sufficient number of hard end points. It is hoped that such
studies will identify a relatively small number of risk factors
(the RENAAL study analysis identified only four10 and
MDRD study, six5) that together accurately predict future
risk of ESRD.

It is likely that the risk factors for the onset of CKD in the
general population will differ somewhat from those for
progression of established CKD and two separate risk scores
will probably be required. If a risk score is to be used for
targeting population screening, it should include only
demographic data and other variables that can be obtained
without specific testing. Obtaining the data required to
develop accurate renal risk scores will require considerable
effort and resources, but given the global burden of CKD
leading to ESRD, this should be regarded as an urgent
priority.
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