Small subsets of groups

I.V. Protasov

Dept. Cybernetics, Kyiv University, Volodimirska 64, 01033 Kyiv, Ukraine

ABSTRACT

Given an infinite group G and an infinite cardinal $\kappa \leq |G|$, we say that a subset A of G is κ-large (κ-small) if there exists $F \in [G]^{<\kappa}$ such that $G = FA$ ($G \setminus FA$ is κ-large for each $F \in [G]^{<\kappa}$). The subject of the paper is the family S_κ of all κ-small subsets. We describe the left ideal of the right topological semigroup βG determined by S_κ. We study interrelations between κ-small and other (P_κ-small and κ-thin) subsets of groups, and prove that G can be generated by some 2-thin subsets. We partition G in countable many subsets which are κ-small for each $\kappa \geq \omega$. We show that $[G]^{<\kappa}$ is dual to S_κ provided that either κ is regular and $\kappa = |G|$, or G is Abelian and κ is a limit cardinal, or G is a divisible Abelian group.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G be an infinite group, κ be an infinite cardinal such that $\kappa \leq |G|$. A subset A of G is called:

- κ-large if there exists $F \in [G]^{<\kappa}$ such that $G = FA$;
- κ-small if $G \setminus FA$ is κ-large for every $F \in [G]^{<\kappa}$;
- κ-thick if, for every $F \in [G]^{<\kappa}$, there exists $a \in A$ such that $Fa \subseteq A$;
- piecewise κ-large if there exists $F \in [G]^{<\kappa}$ such that FA is κ-thick;
- κ-extralarge if $A \cap L$ is κ-large for every κ-large subset L of G.

To be more precise, we should add to each of above types the adjective “left” because each of them has the “right” counterpart, for example, a subset A is right κ-large if $G = AF$ for some $F \in [G]^{<\kappa}$. But in this paper we deal with only left-sided variants, so we omit the adjective left.

The ω-large and piecewise ω-large subsets are known in topological dynamic as syndedec and piecewise syndedec subsets. A lot of their usages can be find in [8]. The names large and small subsets for ω-large and ω-small subsets were suggested in [1]. Every infinite group G can be partitioned in $|G|$ ω-thick subsets. This statement was proved in [10] to show that every infinite totally bounded topological group can be partitioned in $|G|$ dense subset. For generalization of this statement see [2,14].
We note that all above types of subsets are not of the specific group nature, but can be defined (see [12,13] or Section 2 below) for some general structures, namely the balleans, which are the counterparts of the uniform topological spaces.

The subject of this paper is the family S_k of all κ-small subsets of a group G. In Section 2, using the ballean approach, we show that S_k is a translation invariant ideal in the Boolean algebra of all subsets of G and, for a subset A of G, the following statements are equivalent: A is κ-small, A is not piecewise κ-large, $G \setminus A$ is κ-extralarge.

Let G be an infinite group, κ, κ' be infinite cardinals such that $\kappa < \kappa' \leq |G|$. It follows directly from corresponding definitions that every κ-large subset of G is κ'-large and every κ'-thick subset is κ-thick. In contrast, the families S_k and S_{ω_1}, could be incomparable (Theorems 3.1 and 4.2).

For every discrete group G, the Stone–Čech compactification βG has a natural structure of compact right topological semigroup. We identify βG with the set of all ultrafilters on G. In Section 3, we consider the set

$$\hat{S}_k = \{ p \in \beta G : G \setminus A \in p \text{ for all } A \in S_k \},$$

which is a closed left ideal of semigroup βG. We show that \hat{S}_ω is the minimal closed ideal of βG but, for $\kappa > \omega$, \hat{S}_k needs not to be a right ideal.

Given a group G and a cardinal $\kappa \leq |G|$, we say that a subset A of G is

- P_κ-small if there exists an injective κ-sequence $(x_\alpha)_{\alpha < \kappa}$ such that the subsets $\{x_\alpha A : \alpha < \kappa\}$ are pairwise disjoint;
- κ-thin if $|gA \cap A| < \kappa$ for every element $g \in G$, $g \neq e$, where e is the identity of G.

For Abelian groups, P_ω-small subsets were introduced by I. Prodanov [11]. C. Chou [3] applied 3-thin subsets to show that every infinite amenable group G admits $2^{2^{[G]}}$ distinct left invariant Banach measures. ω-thin subsets are widely used also in β-theory. For example, let G be an infinite group and A be a ω-thin subset of G such that $|A| = |G|$. Then the principal left ideals $\{\beta Gp : p \in A, \ p \in \beta G \setminus G\}$ are pairwise disjoint. This implies van Douwen Theorem [8, Theorem 6.53] stating that the semigroup βG has $2^{2^{[G]}}$ pairwise disjoint closed left ideals. For modifications of P_ω-small subsets see [4], for κ-thin subsets, where κ is a natural number, see [9].

In Section 4, we study interrelations between κ-small, P_κ-small and κ-thin subsets of a group. By [12, Theorem 13.1], every infinite group G can be generated by some ω-small subset. We strengthen this statement showing that G can be generated by some 2-thin subset.

In Section 5, we prove that every infinite group G can be partitioned in ω subsets which are κ-small for each κ such that $\omega \leq \kappa \leq |G|$. Given a family \mathcal{F} of subsets of a group G, we put

$$\mathcal{F}^* = \{ X \subset G : X^{-1}A \neq G \text{ for every } A \in \mathcal{F} \}.$$

In [16], W. Serediński asked if there exists (in ZFC) a family \mathcal{F} of subsets of \mathbb{R} such that $\mathcal{F}^* = \{\text{countable subsets of } \mathbb{R}\}$. In [17], S. Solecki answered this question in the affirmative proving that, for every infinite Abelian group G and every infinite regular cardinal κ with $\kappa \leq |G|$, there exists a translation invariant ideal I of subsets of G such that $I^* = |G|^{<\kappa}$. This was done as a byproduct of some complicated construction and I has some complementary properties.

In Section 6, we prove that $|G|^{<\kappa} = S_k^*$ provided that either κ is regular and $\kappa \leq |G|$, or G is Abelian and κ is a limit cardinal, or G is a divisible Abelian group. On the other hand, we show that, for every infinite group of regular cardinality, there is not a family \mathcal{F} of subsets of G such that $S_k = \mathcal{F}^*$.

2. Ballean context

A ball structure is a triple $B = (X, P, B)$, where X, P are non-empty sets and, for every $x \in X$ and $\alpha \in P$, $B(x, \alpha)$ is a function from $X \times P$ to $\mathcal{P}(X)$. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$ and $\alpha \in P$. The set X is called the support of B and P is called the set of radii.

Given any $x \in X$ and $A \subset X$, $\alpha \in P$, we put

$$B^*(x, \alpha) = \{ y \in X : x \in B(y, \alpha) \} \quad \text{and} \quad B(A, \alpha) = \bigcup_{\alpha \in A} B(a, \alpha).$$

A ball structure B is called:

- lower symmetric if for every $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$,

$$B^*(x, \alpha') \subset B^*(x, \alpha) \quad \text{and} \quad B^*(x, \beta') \subset B^*(x, \beta);$$

- upper symmetric if, for any $\alpha, \beta \in P$, there exist $\alpha', \beta' \in P$ such that, for every $x \in X$,

$$B(x, \alpha) \subset B^*(x, \alpha') \quad \text{and} \quad B(x, \beta) \subset B^*(x, \beta').$$
• **lower multiplicative** if, for any \(\alpha, \beta \in P \), there exists \(y \in P \) such that, for every \(x \in X \),

\[
B(B(x, y), y) \subseteq B(x, \alpha) \cap B(x, \beta);
\]

• **upper multiplicative** if, for any \(\alpha, \beta \in P \), there exists \(y \in P \) such that, for every \(x \in X \),

\[
B(B(x, \alpha), \beta) \subseteq B(x, y).
\]

Let \(\mathcal{B} = (X, P, B) \) be a lower symmetric and lower multiplicative ball structure. Then the family

\[
\left\{ \bigcup_{\alpha \in P} B(x, \alpha) \times B(x, \alpha) : \alpha \in P \right\}
\]

is a base of entourages for some (uniquely determined) uniformity on \(X \). On the other hand, if \(\mathcal{U} \subseteq X \times X \) is a uniformity on \(X \), then the ball structure \((X, \mathcal{U}, B)\) is lower symmetric and lower multiplicative, where \(B(x, U) = \{ y \in X : (x, y) \in U \} \). Thus, the lower symmetric and lower multiplicative ball structures can be identified with uniform topological spaces.

We say that a ball structure \(\mathcal{B} \) is a **balllean** if \(\mathcal{B} \) is upper symmetric and upper multiplicative. A structure on \(X \), equivalent to a balllean, can be also be defined in terminology of entourages. In this case it is called a coarse structure [15]. In this paper we follow the terminology from [13]. We note also that the concept of balllean is originated in asymptotic topology (see [5,7]).

Let \(B_1 = (X_1, P_1, B_1), B_2 = (X_2, P_2, B_2) \) be balleans. We say that a mapping \(f : X_1 \to X_2 \) is a \(\preceq \)-mapping if, for every \(x \in X_1 \),

\[
f(B_1(x, \alpha)) \subseteq B_2(f(x), \beta).
\]

A bijection \(f : X_1 \to X_2 \) is called an asymorphism if \(f \) and \(f^{-1} \) are \(\preceq \)-mappings.

Let \(\mathcal{B} = (X, P, B) \) be a balllean. We say that a subset \(A \) of \(X \) is

• **large** if there exists \(\alpha \in P \) such that \(X = B(A, \alpha) \);
• **small** if \(X \setminus B(A, \alpha) \) is large for every \(\alpha \in P \);
• **thick** if, for every \(\alpha \in P \), there exists \(a \in A \) such that \(B(a, \alpha) \subseteq A \);
• **piecewise large** if, there exists \(\beta \in P \) such that \(B(A, \beta) \) is thick;
• **extralarge** if \(A \cap L \) is large for every large subset \(L \) of \(X \).

We note (see [13, Chapter 9]) that large, small, thick subsets of a balllean can be considered as the counterparts of dense, nowhere dense, open subsets respectively of a uniform space.

Proposition 2.1. Let \(\mathcal{B} = (X, P, B) \) be a balllean and \(S \subseteq X \). Then the following statements are equivalent:

1. \(S \) is small;
2. \(S \) is not piecewise large;
3. \(X \setminus S \) is extralarge.

Proof. [12, Theorem 11.1]. \(\Box \)

Proposition 2.2. Let \(\mathcal{B} = (X, P, B) \) be a balllean. If the subsets \(S_1, \ldots, S_n \) of \(X \) are small, then \(S_1 \cup \cdots \cup S_n \) is small. If the subsets \(X_1, \ldots, X_n \) are extralarge, then \(X_1 \cap \cdots \cap X_n \) is extralarge.

Proof. [12, Theorem 11.2]. \(\Box \)

Let \(G \) be an infinite group with the identity \(e \), \(\kappa \) be an infinite cardinal with \(\kappa \leq |G| \). We consider the ball structure \((G, \mathcal{B}) = (G, [G]^{< \kappa}, B)\), where \(B(g, F) = (F \cup \{e\})g \), and note that \(B(G, \kappa) \) is a balllean. Then a subset \(A \) of \(G \) is large (small, thick, piecewise large, extralarge) in \(B(G, \kappa) \) if and only if \(A \) is \(\kappa \)-large (\(\kappa \)-small, \(\kappa \)-thick, piecewise \(\kappa \)-large, \(\kappa \)-extralarge).

Applying Propositions 2.1 and 2.2 to \(B(G, \kappa) \) we get the following statements.

Proposition 2.3. Let \(G \) be an infinite group, \(\kappa \) be an infinite cardinal such that \(\kappa \leq |G| \) and \(S \subseteq G \). Then the following statements are equivalent:

1. \(S \) is \(\kappa \)-small;
2. \(S \) is not piecewise \(\kappa \)-large;
3. \(G \setminus S \) is \(\kappa \)-extralarge.
Proposition 2.4. Let \(G \) be an infinite group, \(\kappa \) be an infinite cardinal such that \(\kappa \leq |G| \). If the subsets \(S_1, \ldots, S_n \) of \(X \) are \(\kappa \)-small, then \(S_1 \cup \cdots \cup S_n \) is \(\kappa \)-small. If the subsets \(X_1, \ldots, X_n \) are \(\kappa \)-extralarge, then \(X_1 \cap \cdots \cap X_n \) is \(\kappa \)-extralarge.

By Proposition 2.4, \(S_\kappa \) is an ideal in the Boolean algebra of all subsets of \(G \). It follows directly from definition of \(\kappa \)-small subset that the \(S_\kappa \) is left and right translation invariant, i.e. \(gS \in S_\kappa, \ 5g \in S_\kappa \) for all \(S \in S_\kappa \) and \(g \in G \).

Proposition 2.4 has also the following simple combinatorial application. Let \(G = A_1 \cup \cdots \cup A_n \) be a partition of \(G \). Since \(G \) is not \(\kappa \)-small, at least one cell \(A_i \) of the partition is piecewise \(\kappa \)-large. Hence, there exists \(F \in [G]^\kappa \) such that, for every \(H \in [G]^{<\kappa}, \ aH \subseteq FA_i \) for some \(a \in A_i \).

Remark 2.1. Let \(G \) be a finitely generated group and let \(S \) be a finite system of generators of \(G \) such that \(S = S^{-1} \) and \(e \notin S \). The Cayley graph \(\text{Cay}(G, S) \) is a graph with the set of vertices \(G \) and the set of edges \(\{(x, y): \ x, y \in G \text{ and } xy^{-1} \in S\} \). If we take another system \(S' \) of generators of \(G \), the graphs \(\text{Cay}(G, S) \) and \(\text{Cay}(G, S') \) need not to be isomorphic. But the graphs \(\text{Cay}(G, S) \) and \(\text{Cay}(G, S') \) provided with the path metrics are asymorphic as balleans, and this is a departure point of the asymptotic geometry of groups [7]. In fact, the metric ballean \(\text{Cay}(G, S) \) is isomorphic to the ballean \(B(G, \omega) \). Thus, the ballean \(B(G, \omega) \) plays the part of the Cayley graph in the case of non-finitely generated group \(G \).

3. Connection with ultrafilters

Given a discrete space \(X \), the Stone–Čech extension \(\beta X \) of \(X \) can be identified with the set of all ultrafilters on \(X \). The topology of \(\beta X \) can be defined by stating that the sets of the form \(\bar{A} = \{p \in \beta X: \ A \in p\} \), where \(A \) is a subset of \(X \), are a base for the open sets. We shall use the universal property of \(\beta X \) stating that every mapping \(f: X \rightarrow Y \), where \(Y \) is a compact Hausdorff space, can be extended to the continuous mapping \(f^\beta: \beta X \rightarrow Y \).

Now let \(G \) be a discrete group. Using the universal property of the space \(\beta G \), we can extend the group multiplication from \(G \) to \(\beta G \) in two steps. Given \(g \in G \), the continuous mapping \(x \mapsto gx: G \rightarrow \beta G \) extends to the continuous mapping \(q \mapsto gq: \beta G \rightarrow \beta G \). Then, for each \(q \in \beta G \), we extend the mapping \(g \mapsto gq \) defined from \(G \) into \(\beta G \) to the continuous mapping \(p \mapsto pq: \beta G \rightarrow \beta G \).

The product \(pq \) of the ultrafilters \(p, q \) can also be defined by the rule: given a subset \(A \subseteq G \),

\[
A \in pq \iff \{g \in G: \ g^{-1}A \in q\} \in p.
\]

For the structure of compact right topological semigroup \(\beta G \) and its combinatorial applications see [8]. We note that \(\mathcal{S}_\kappa \) is a closed left ideal of \(\beta G \).

Proposition 3.1. Given \(p \in \beta G \), \(p \in \mathcal{S}_\kappa \) if and only if every member of \(p \) is a piecewise \(\kappa \)-large subset of \(G \).

Proof. Apply the equivalence (i) \(\iff \) (ii) from Proposition 2.3.

For every group \(G \), the semigroup \(\beta G \) has the minimal ideal \(K(\beta G) \) and its closure \(M(\beta G) \) is the minimal closed ideal [8, Section 4.4].

Proposition 3.2. For every infinite group \(G \), \(M(\beta G) = \mathcal{S}_\omega \).

Proof. Apply Proposition 3.1 and Corollary 4.41 from [8].

Theorem 3.1. Let \(G \) be an infinite group of regular cardinality \(\kappa, \ k > \omega \). Then the following statements hold:

(i) \(\mathcal{S}_\kappa \setminus \mathcal{S}_\omega \neq \emptyset \);
(ii) \(\mathcal{S}_\omega \setminus \mathcal{S}_\kappa \neq \emptyset \);
(iii) \(\mathcal{S}_\kappa \) is not right ideal of \(\beta G \).

Proof. (i) We enumerate \([G]^{<\omega} = \{G_\alpha: \ \alpha < \kappa\} \) and choose inductively an increasing family \(\{G_\alpha: \ \alpha < \kappa\} \) of subgroups of \(G \) and a \(\kappa \)-sequence \((x_\alpha)_{\alpha < \kappa} \) in \(G \) such that, for each \(\alpha < \kappa \),
(1) \(|G_0| < |G|\) and \(G = \bigcup_{\alpha < \kappa} G_\alpha\);
(2) \(\{G_{\alpha+1} : \alpha \} \) is infinite;
(3) \(\{\bigcup_{\gamma < \alpha} G_\alpha F_\gamma X_\gamma \cap G_\alpha F_\alpha x_\alpha = \emptyset\);
(4) \((G_{\alpha+1}) \setminus \bigcup_{\gamma < \alpha} G_\alpha F_\gamma X_\gamma \neq \emptyset\) for each \(x \in \bigcup_{\gamma < \alpha} G_\alpha F_\gamma X_\gamma\).

We put \(X = \bigcup_{\alpha < \kappa} F_\alpha x_\alpha\). Since \(F_\alpha x_\alpha \subseteq X\) for each \(\alpha < \kappa\), \(X\) is \(\omega\)-thick so \(X\) is piecewise \(\omega\)-large and \(X\) is not \(\omega\)-small.

To show that \(X\) is \(\kappa\)-small, we assume the contrary and choose \(Y \in [G]^{<\kappa}\) such that \(XY\) is \(\kappa\)-thick. Since \(\kappa\) is regular, by (1), there exists \(\alpha < \kappa\) such that \(Y \subseteq G_\alpha\) so \(G_\alpha X\) is \(\kappa\)-thick. We pick \(x \in X\) such that \(G_\alpha x \subseteq G_\alpha X\). If \(x \in \bigcup_{\gamma < \alpha} G_\alpha F_\gamma X_\gamma\), by (3), \(G_{\alpha+1} x \subseteq \bigcup_{\gamma < \alpha} G_\alpha F_\gamma X_\gamma\) contradicting (4). Thus, \(x \in K_\alpha x_\alpha\) for some \(\lambda > \alpha\). By (3), \(G_{\alpha+1} x \subseteq G_\alpha K_\lambda x_\lambda\) contradicting (2).

(ii) We pick \(x \in \mathcal{S}_\kappa \setminus \mathcal{S}_\omega\). Since \(X\) is piecewise \(\omega\)-large, by Propositions 2.4, 3.1 and Theorem 3.11 from [8], there exists \(p \in \mathcal{S}_\kappa\) such that \(x \in p\). On the other hand, \(p \notin \mathcal{S}_\kappa\). Thus, \(\mathcal{S}_\omega \setminus \mathcal{S}_\kappa \neq \emptyset\).

(iii) Apply (i) and Proposition 3.2. \(\square\)

4. \(P_\kappa\)-small and \(k\text{-thin}\) subsets

Theorem 4.1. Let \(G\) be an infinite Abelian group and let \(\kappa\) be a limit cardinal such that \(\kappa \leq |G|\). Then every \(P_\kappa\)-small subsets of \(G\) is \(\kappa\)-small.

Proof. We suppose the contrary and fix a \(P_\kappa\)-small subset \(A\) which is not \(\kappa\)-small. Then there exists \(K \in [G]^{<\kappa}\) such that \(G \setminus (K + A)\) is not \(\kappa\)-large. For each \(F \in [G]^{<\kappa}\), we pick \(x_F \in G\) such that \(x_F \notin F + (G \setminus (K + A))\) so \(x_F \in K + A\). Since \(\kappa\) is a limit cardinal and \(A\) is \(P_\kappa\)-small, we can choose \(F^\prime \in [G]^{<\kappa}\) such that \(|F^\prime| > |K|\) and \((F^\prime - F) \cap (A) = \emptyset\). Since \(x_{F^\prime} - y \in K + A\) and \(|F^\prime| > |K|\), there exists \(y \in \kappa\) such that \(|x_{F^\prime} - y \cap (g + A)| > 1\). We pick distinct elements \(y, z \in F^\prime\) such that \(x_{F^\prime} - y \in g + A\) and \(x_{F^\prime} - z \in g + A\). Then \(z - y \in A - A\) contradicting \((F^\prime - F^\prime) \cap (A - A) = \emptyset\). \(\square\)

Theorem 4.2. Let \(G\) be an uncountable Abelian group and let \(\kappa\) be a cardinal such that \(\omega < \kappa \leq |G|\). Then the following statements hold:

(i) \(\mathcal{S}_\omega \setminus \mathcal{S}_\kappa \neq \emptyset\);
(ii) \(\mathcal{S}_\kappa \setminus \mathcal{S}_\omega \neq \emptyset\).

Proof. (i) We fix some countable subgroup \(H\) of \(G\), decompose \(G\) in cosets by \(H\) and choose some system \(A\) of representatives. Clearly, the subsets \(\{g + A : g \in H\}\) are pairwise disjoint so \(A\) is \(P_\omega\)-small. By Theorem 4.1, \(A\) is \(\omega\)-small. Since \(G = H + A\) and \(\kappa > \omega\), \(A\) is \(\kappa\)-large so \(A \notin \mathcal{S}_\kappa\). Thus, \(A \in \mathcal{S}_\omega \setminus \mathcal{S}_\kappa\).

(ii) We fix a subset \(A\) from (i). Since \(A\) is piecewise \(\kappa\)-large, by Propositions 2.4, 3.1 and Theorem 3.11 from [6], there exists \(p \in \mathcal{S}_\kappa\) such that \(A \in p\). On the other hand, \(p \notin \mathcal{S}_\kappa\). Thus, \(\mathcal{S}_\omega \setminus \mathcal{S}_\kappa \neq \emptyset\). \(\square\)

Theorem 4.3. For every infinite group \(G\) of regular cardinality \(\kappa\), there exists a \(\kappa\)-small subset \(X\) of \(G\) which is not \(P_\kappa\)-small.

Proof. We consider two cases: \(\kappa = \omega\) and \(\kappa > \omega\).

Case \(\kappa = \omega\). We enumerate \(G = \{G_n : n < \omega\}\), put \(K_n = \{g_0, \ldots, g_n\}\) and fix a sequence \((y_n)_{n<\omega}\) in \(G\) such that every element \(g \in G\) appears in \((y_n)_{n<\omega}\) infinitely many often. We put \(F_n = [e, y_n]\), where \(e\) is the identity of \(G\), and choose inductively a sequence \((x_n)_{n<\omega}\) in \(G\) and a sequence \((H_n)_{n<\omega}\) of \((K_n)_{n<\omega}\) such that, for each \(n < \omega\),

(1) \(\bigcup_{\gamma < n} H_n F_\gamma X_\gamma \cap H_n F_n x_\gamma = \emptyset\);
(2) \(H_{n+1} x \setminus \bigcup_{\gamma < n} H_n F_\gamma x_\gamma \neq \emptyset\) for each \(x \in \bigcup_{\gamma < n} F_\gamma x_\gamma\);
(3) \(|H_{n+1}| > 2|H_n|\).

We put \(X = \bigcup_{\gamma < n} F_\gamma x_\gamma\). By the choice of \((y_n)_{n<\omega}\), \(gX \cap X\) is infinite for each \(g \in G\). It follows that \(X\) is not \(P_\omega\)-small.

To show that \(X\) is \(\omega\)-small, we assume the contrary and choose a finite subset \(Y\) of \(G\) such that \(YX\) is \(\omega\)-thick. Then we pick \(n\) such that \(Y \subseteq H_n\), so \(H_n Y\) is \(\omega\)-thick, and choose \(x \in X\) such that \(H_{n+1} x \subseteq H_n X\). If \(x \in \bigcup_{\gamma < n} F_\gamma x_\gamma\), by (1), \(H_{n+1} x \subseteq H_n \bigcup_{\gamma < n} F_\gamma x_\gamma\) contradicting (2). Thus, \(x \notin F_\gamma x_\gamma\) for some \(m > n\), by (1), \(H_{n+1} x \subseteq K_m x_\gamma\), contradicting (3).

Case \(\kappa > \omega\). We fix a \(\kappa\)-sequence \((y_\alpha)_{\alpha<\kappa}\) in \(G\) such that, for every \(g \in G\), the subset \(\{\alpha < \kappa : y_\alpha = g\}\) is cofinal in \(G\), and \(F_\alpha = [e, y_\alpha]\). Then we choose inductively an increasing family \(\{G_\alpha : \alpha < \kappa\}\) of subgroups of \(G\) an a \(\kappa\)-sequence \((x_\alpha)_{\alpha<\kappa}\) in \(G\), satisfying (1)-(4) from proof of Theorem 3.1.

We put \(X = \bigcup_{\alpha < \kappa} F_\alpha x_\alpha\). Since \(\kappa\) is regular, by the choice of \((y_\alpha)_{\alpha<\kappa}\), \(|gX \cap X| = \kappa\) for every \(g \in G\). Hence, \(X\) is not \(P_\kappa\)-small. To see that \(X\) is \(\kappa\)-small, it suffices to repeat the arguments proving Theorem 3.1. \(\square\)

Theorem 4.4. Let \(G\) be an infinite group, \(\kappa\) be an infinite cardinal such that \(\kappa \leq |G|\), \(A\) be a \(\kappa\)-thin subset of \(G\). Then the following statements hold:
(i) if κ is regular then A is κ-small;
(ii) if κ' is a cardinal such that $\kappa < \kappa' \leq |G|$, then A is κ'-small;
(iii) if $\kappa = \omega$ then A is κ'-small for each cardinal κ' such that $\omega \leq \kappa' \leq |G|$.

Proof. (i) We take an arbitrary $F \in [G]^{|\kappa|}$. If $|A| < |G|$, we can choose $g \in G$ such that $gFA \cap FA = \emptyset$. Then $|e, g^{-1}|(G \setminus FA) = G$ so A is κ-small.

Now let $|A| = |G|$. We pick an arbitrary $g \in G \setminus F$. Since A is κ-thin, $|gA \cap xA| < \kappa$ for each $x \in F$. Since κ is regular, $|gA \cap FA| < \kappa$. It follows that $|FA \setminus Fg^{-1}(G \setminus FA)| < \kappa$. We put $K = FA \setminus Fg^{-1}(G \setminus FA)$, choose any $x \in G \setminus FA$ and note that $G = (|e| \cup Fg^{-1} \cup Kx^{-1})(G \setminus FA)$, so $G \setminus FA$ is κ-large and A is κ-small.

(ii) We may suppose (see proof of (i)) that $|A| = |G|$. Given any $F \in [G]^{<\kappa}$, we pick an arbitrary $g \in G \setminus F$. Since A is κ-thin, $|gA \cap xA| < \kappa$ for each $x \in F$. Since $|F| < \kappa'$ and $\kappa < \kappa'$, $|gA \cap FA| < \kappa'$ and above arguments proving (i) conclude the proof of (ii).

(iii) Apply (i) and (ii). □

Theorem 4.5. Every group G can be generated by some 2-thin subset X of G.

Proof. We put $G_0 = \{e\}$, fix an arbitrary $x_0 \neq e$ and construct inductively a system of subgroups $\{G_\alpha: \alpha < \kappa\}$ and a κ-sequence $(x_\alpha)_{\alpha < \kappa}$ in G such that $G = \bigcup_{\alpha < \kappa} G_\alpha$, $G_\alpha = \bigcup_{\beta < \alpha} x_\beta$ for a limit ordinal α, $x_\alpha \notin G_\alpha$ and $G_{\alpha+1}$ is a subgroup generated by $G_\alpha \cup \{x_\alpha\}$. We put $X = \{x_\alpha: \alpha < \kappa\}$ and note that X generates G.

To show that X is 2-thin, we suppose the contrary: $|gX \cap X| > 2$ for some $g \in G$, $g \neq e$. Then there exist distinct $\alpha, \beta < \kappa$ such that, for $x_\alpha' = gx_\alpha$, $x_\beta' = gx_\beta$, either $\alpha < \alpha'$ and $\beta < \beta'$ or $\alpha > \alpha'$ and $\beta > \beta'$. In the first case, $x_\alpha'x_\beta'^{-1} \notin G_{\alpha'} \setminus G_{\alpha'+1}$ and $x_\beta'x_\alpha'^{-1} \notin G_{\beta'} \setminus G_{\beta'+1}$, which implies $\alpha' = \beta'$ and so $\alpha = \beta$, contradicting $\alpha \neq \beta$. The second case is analogous. □

Corollary 4.1. Every infinite group G can be generated by a subset which is κ-small for each κ such that $\omega \leq \kappa \leq |G|$.

Proof. We use Theorem 4.5 to take a 2-thin subset X generating G. Then X is ω-thin and we can apply Theorem 4.4(iii). □

5. Partition in κ-small subsets

Let G be an infinite group with the identity e. A filtration of G is a family $\{G_\alpha: \alpha < |G|\}$ of subgroups of G such that

1. $G_0 = \{e\}$ and $G = \bigcup\{G_\alpha: \alpha < |G|\}$;
2. $G_\alpha \subset G_\beta$ for all $\alpha < \beta < |G|$;
3. $\bigcup\{G_\alpha: \alpha < \beta\} = G_\beta$ for every limit ordinal β;
4. $|G_\alpha| < |G|$ for every $\alpha < |G|$.

Using a minimal well-ordering of G it is easy to construct a filtration of G provided that G is not finitely generated. In particular, every uncountable group G admits a filtration.

For each $\alpha < |G|$, we decompose $G_{\alpha+1} \setminus G_\alpha$ in right cosets by G_α and fix some system X_α of representatives so $G_{\alpha+1} \setminus G_\alpha = G_\alpha X_\alpha$. Take an arbitrary element $g \in G \setminus \{e\}$ and choose the smallest subgroup G_α with $g \in G_\alpha$. By (3), $\alpha = \alpha_1 + 1$ for some ordinal $\alpha_1 < |G|$. Hence, $g \in G_{\alpha_1+1} \setminus G_{\alpha_1}$, and there exist $g_1 \in G_{\alpha_1}$, $x_\alpha_1 \in X_{\alpha_1}$ such that $g = g_1x_\alpha_1$. If $g_1 \neq e$, we choose the ordinal α_2 and the elements $g_2 \in G_{\alpha_2+1} \setminus G_{\alpha_2}$ and $x_\alpha_2 \in X_{\alpha_2}$ such that $g_1 = g_2x_\alpha_2$. Since the set of ordinals $< |G|$ is well-ordered, after finite member $s(g)$ of steps we get the representation

$$g = x_{\alpha_1}x_{\alpha_1+1} \ldots x_{\alpha_2}x_{\alpha_2}, \quad x_{\alpha_i} \in X_{\alpha_i},$$

We note that this representation is unique and put

$$\gamma_1(g) = \alpha_1, \quad \gamma_2(g) = \alpha_2, \quad \ldots, \quad \gamma_{s(g)}(g) = \alpha_{s(g)}, \quad \Gamma(g) = \{\gamma_1(g), \ldots, \gamma_{s(g)}(g)\}$$

and, for every natural number n, put

$$D_n = \{g \in G: \ s(g) = n\}.$$

Theorem 5.1. Every infinite group G can be partitioned in ω subsets which are κ-small for every cardinal κ such that $\omega \leq \kappa \leq \text{cf}|G|$, where $\text{cf}|G|$ is cofinality of $|G|$.
Proof. If \(G \) is countable, the statement is trivial because every singleton is \(\kappa \)-small. We suppose that \(G \) is uncountable, use above filtration \(\{G\alpha : \alpha < |G|\} \) of \(G \) and note \(G \setminus \{\varepsilon\} = \bigcup_{n=1}^{\infty} D_n. \) We fix a natural number \(n \) and show that \(D_n \) is \(\kappa \)-small. Take an arbitrary \(F \in [G]\)}\(^\kappa\)\(^*\). Since \(\kappa \leq \text{cf} |G| \), there exists \(\beta < |G| \) such that \(F \subseteq G_\beta \) so \(FD_n \subseteq G_\beta D_n. \) Now it suffices to prove that \(G \setminus G_\beta D_n \) is \(\omega \)-large. We choose the elements \(a_1, a_2, \ldots, a_{n+1} \) in \(G \) such that
\[
a_1 \in G_{\beta+1} \setminus G_\beta, \quad a_2 \in G_{\beta+2} \setminus G_{\beta+1}, \ldots, \quad a_{n+1} \in G_{\beta+n+1} \setminus G_{\beta+n}.
\]
We take an arbitrary element \(g \in G_\beta D_n \) and put \(g = g_0 \). If \(\beta + n \in \Gamma(g) \), we put \(\epsilon_0 = 0 \), otherwise \(\epsilon_0 = 1 \). Note that \(\beta + n \in \Gamma(a_{n+1}^0 g_0) \) and put \(g_1 = a_{n+1}^0 g_0 \). If \(\beta + n - 1 \in \Gamma(g_1) \), we put \(\epsilon_1 = 0 \), otherwise \(\epsilon_1 = 1 \). Note that \(\{\beta + n - 1, \beta + n\} \in \Gamma(a_{n+1}^1 g_1) \) and put \(g_2 = a_0^1 g_1 \). After \(n + 1 \) steps we get
\[
\{\beta, \beta + 1, \ldots, \beta + n\} \subseteq \Gamma(a_1^{n+1} a_2^{n+1} \ldots a_{n+1}^{n+1} g).
\]
If follows that \(a_1^{n+1} a_2^{n+1} \ldots a_{n+1}^{n+1} g \notin G_\beta D_n \) and put \(A = \{a_1, a_2, \ldots, a_{n+1}\}, \: K = A^n. \) We have shown that \(G_\beta D_n \subseteq K^{-1}(G \setminus G_\beta D_n). \) Hence, \(G \subseteq K^{-1}(G \setminus G_\beta D_n). \) This shows that \(G \setminus G_\beta D_n \) is \(\omega \)-large. \(\square \)

6. Duality

Theorem 6.1. Let \(G \) be an infinite group of regular cardinality \(\kappa \). Then \(S_\kappa^* = [G]\)}\(^\kappa\)\(^*\).

Proof. If \(X \in [G]\)}\(^\kappa\)\(^*\) then, clearly, \(X \subseteq S_\kappa^* \). Let \(|X| = \kappa \). To show that \(X \notin S_\kappa^* \), we enumerate \(G = \{g_\alpha : \alpha < \kappa\} \) and, for each \(\alpha < \kappa \), put \(K_\alpha = \{g_\gamma : \gamma < \alpha\} \). Then we choose inductively a \(\kappa \)-sequence \((x_\alpha)_{\alpha < \kappa} \) in \(X \) and a \(\kappa \)-sequence \((y_\alpha)_{\alpha < \kappa} \) in \(G \) such that the following conditions are satisfied for each \(\alpha < \kappa \):
\[
\begin{align*}
(1) & \quad K_\alpha \{x_\gamma g_\gamma : \gamma < \alpha\} \cap K_\alpha x_\alpha g_\alpha = \emptyset; \\
(2) & \quad y_\alpha \{x_\gamma g_\gamma : \gamma < \alpha\} \cap K_\alpha \{x_\gamma g_\gamma : \gamma < \kappa\} = \emptyset.
\end{align*}
\]
At the \(\alpha \)th step we choose \(x_\alpha \) to satisfy (1) and, for each \(\lambda < \alpha \),
\[
y_\lambda \{x_\gamma g_\gamma : \gamma < \lambda\} \cap K_\lambda x_\lambda g_\lambda = \emptyset.
\]
Then we choose \(y_\alpha \) such that
\[
y_\alpha \{x_\gamma g_\gamma : \gamma < \alpha\} \cap K_\alpha \{x_\gamma g_\gamma : \gamma < \kappa\} = \emptyset.
\]
We put \(A = \{x_\alpha g_\alpha : \alpha < \kappa\}. \) Since \(\{x_\alpha : \alpha < \kappa\} \subseteq X \), we have \(G = X^{-1}A. \) Now we show that \(A \) is \(\kappa \)-small. Let \(K \in [G]\)}\(^\kappa\)\(^*\). Since \(\kappa \) is regular, there is \(\alpha < \kappa \) such that \(K \subseteq K_\alpha \). So \(g_\alpha \notin K. \) By (1), \(g_\alpha x_\alpha g_\alpha \notin KA \) for each \(\gamma > \alpha \), so
\[
\{x_\gamma g_\gamma : \gamma > \alpha\} \subseteq g_\alpha^{-1}(G \setminus KA).
\]
By (2), \(\{x_\gamma g_\gamma : \gamma < \alpha\} \subseteq y_{\alpha+1}^{-1}(G \setminus KS) \) and \(A \) is \(\kappa \)-small. \(\square \)

Lemma 6.1. Let \(G \) be an infinite group, \(\kappa \) be an infinite cardinal such that \(\kappa \leq |G| \) and \(X \) be a subset of \(G \) such that \(|X| = \kappa \). Then there exists a \(P_\kappa \)-small subset \(A \) of \(G \) such that \(G = X^{-1}A. \)

Proof. First we suppose that \(\kappa = |G| \) and fix some enumeration \(\{g_\alpha : \alpha < \kappa\} \) of \(G. \) We construct inductively a \(\kappa \)-sequence \((x_\alpha)_{\alpha < \kappa} \) in \(X \) and a \(\kappa \)-sequence \((y_\alpha)_{\alpha < \kappa} \) in \(G \) such that, for each \(\alpha < \kappa \) and each \(A_\alpha = \{x_\gamma g_\gamma : \gamma < \alpha\} \), the subsets \(\{y_\gamma A_\gamma : \gamma < \alpha\} \) are pairwise disjoint. To this end, at \(\alpha \)th step, we put \(B_\alpha = \bigcup_{\gamma < \alpha} A_\gamma \) and choose \(x_\alpha \) so that
\[
\{y_\gamma : \gamma < \alpha\} x_\alpha g_\alpha \cap \{y_\gamma : \gamma < \alpha\} B_\alpha = \emptyset.
\]
Then we put \(A_\alpha = B_\alpha \cup \{x_\alpha g_\alpha\} \) and pick \(y_\alpha \) so that
\[
y_\alpha A_\alpha \cap y_\alpha A_\alpha = \emptyset
\]
for every \(\gamma < \alpha \). After \(\kappa \)-steps, we put \(A = \{x_\alpha g_\alpha : \alpha < \kappa\}. \) Since \(x_\alpha \in X \) for each \(\alpha < \kappa \), we have \(X^{-1}A. \) By construction of \(A \), the subset \(\{y_\alpha A_\alpha : \alpha < \kappa\} \) are pairwise disjoint, so \(A \) is \(P_\kappa \)-small.

In general case, we denote by \(Y \) the subgroup of \(G \) generated by \(X. \) Since \(|X| = |Y| = \kappa \), we can choose a subset \(B \) of \(Y \) and a \(\kappa \)-sequence \((y_\alpha)_{\alpha < \kappa} \) in \(Y \) such that \(Y = X^{-1}B \) and the subsets \(\{y_\alpha B : \alpha < \kappa\} \) are pairwise disjoint. We decompose \(G \) in right cosets by \(Y \) and fix some system \(Z \) of representatives, so \(G = YZ. \) Then \(G = X^{-1}(BZ) \) and the subsets \(\{y_\alpha BZ : \alpha < \kappa\} \) are pairwise disjoint. Put \(A = BZ. \) Then \(G = X^{-1}A \) and \(A \) is \(P_\kappa \)-small. \(\square \)

Theorem 6.2. Let \(G \) be an infinite Abelian group and \(\kappa \) be a limit cardinal such that \(\kappa \leq |G| \). Then \([G]\)}\(^\kappa\)\(^*\) = \(S_\kappa^* \).
Proof. Apply Lemma 6.1 and Theorem 4.1. □

Remark 6.1. In view of Corollary 3.1 from [17] and Theorem 6.2, for every infinite Abelian group \(G \) and every infinite cardinal \(\kappa \) such that \(\kappa \leq |G| \), there exists a translation invariant ideal \(I \) of subsets of \(G \) such that \(|G|^{-\kappa} = I^* \). I do not know whether Theorem 6.2 is true for every non-limit cardinal. The ideal \(I \) constructed by Solecki contains a piecewise \(\kappa \)-large subset.

Theorem 6.3. Let \(G \) be a divisible Abelian group and \(\kappa \) be an infinite cardinal such that \(\kappa \leq |G| \). Then \(S_\kappa = |G|^{-\kappa} \).

Proof. In view of Theorem 6.2, we may suppose that \(X \) is \(\kappa \)-regular. Let \(X \) be a subset of \(G \) such that \(|X| = \kappa \). We assume the contrary: \(\kappa < \kappa \). But in contrast to Remark 6.2, \(\kappa \) is regular. Then \(\kappa \) is not \(\kappa \)-large. Then \(\kappa \neq |G| \).

Let \(G \) be a divisible Abelian group and \(\kappa \) be an infinite cardinal such that \(\kappa \leq |G| \). Then \(S_\kappa = |G|^{-\kappa} \).

Proof. In view of Theorem 6.2, we may suppose that \(X \) is \(\kappa \)-small subset of \(G \) such that \(|X| < \kappa \), and \(Y \) is \(\kappa \)-large. Then \(\kappa \neq |G| \).

Remark 6.2. Let \(G \) be an infinite Abelian group and \(\kappa \) be an infinite cardinal such that \(\kappa \leq |G| \). Then \(S_\kappa = |G|^{-\kappa} \).

Proof. In view of Theorem 6.2, we may suppose that \(X \) is \(\kappa \)-small subset of \(G \) such that \(|X| < \kappa \), and \(Y \) is \(\kappa \)-large. Then \(\kappa \neq |G| \).

References