Spaces of holomorphic functions in regular domains

M. Valdivia

Departamento de Análisis Matemático, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Valencia, Spain

Received 5 October 2007
Available online 22 May 2008
Submitted by B. Cascales
Dedicated to Professor Isaac Namioka on the occasion of his 80th birthday

Abstract

Let \(\Omega \) be a regular domain in the complex plane \(\mathbb{C} \), \(\Omega \neq \mathbb{C} \). Let \(G_b(\Omega) \) be the linear space over \(\mathbb{C} \) of the holomorphic functions \(f \) in \(\Omega \) such that \(f^{(n)} \) is bounded in \(\Omega \) and is continuously extendible to the closure \(\overline{\Omega} \) of \(\Omega \), \(n = 0, 1, 2, \ldots \). We endow \(G_b(\Omega) \), in a natural manner, with a structure of Fréchet space and we obtain dense subspaces \(F \) of \(G_b(\Omega) \), with good topological linear properties, also satisfying that each function \(f \) of \(F \), distinct from zero, does not extend holomorphically outside \(\Omega \).

\(\Omega \) is a regular domain in \(\mathbb{C} \), that is, a domain which coincides with the interior of its closure. We assume that \(\Omega \) is distinct from \(\mathbb{C} \). We write \(G_b(\Omega) \) to denote the linear space over \(\mathbb{C} \) of the holomorphic functions in \(\Omega \) such that \(f^{(n)} \) is bounded in \(\Omega \) and extends by continuity to its closure, \(n = 0, 1, 2, \ldots \). Given \(m \) in \(\mathbb{N} \) and \(f \) in \(G_b(\Omega) \), we put

\[
q_m(f) := \sup \left\{ \sum_{j=0}^{m} |f^{(j)}(z)| : z \in \Omega \right\}.
\]

1. Introduction and notation

We write \(\mathbb{N} \) for the set of positive integers. By \(\omega \) we denote the linear space \(\mathbb{C}^\mathbb{N} \) of the complex sequences provided with the topology of pointwise convergence. We have that \(\omega \) is a Fréchet space whose topological dual \(\varphi \) is identified with the space given by the elements \((b_j) \) of \(\mathbb{C}^\mathbb{N} \) whose terms are all zero from a certain subindex on, and the duality \(\langle \omega, \varphi \rangle \) being given by

\[
\langle (a_j), (b_j) \rangle := \sum_{j=1}^{\infty} a_j b_j, \quad (a_j) \in \omega, \quad (b_j) \in \varphi.
\]

Let \(\Omega \) be a regular domain in \(\mathbb{C} \), that is, a domain which coincides with the interior of its closure. We assume that \(\Omega \) is distinct from \(\mathbb{C} \). We write \(G_b(\Omega) \) to denote the linear space over \(\mathbb{C} \) of the holomorphic functions in \(\Omega \) such that \(f^{(n)} \) is bounded in \(\Omega \) and extends by continuity to its closure, \(n = 0, 1, 2, \ldots \). Given \(m \) in \(\mathbb{N} \) and \(f \) in \(G_b(\Omega) \), we put

\[
q_m(f) := \sup \left\{ \sum_{j=0}^{m} |f^{(j)}(z)| : z \in \Omega \right\}.
\]

1 E-mail address: jesus.ferrer@uv.es.

\(0022-247X/S – see front matter © 2008 Elsevier Inc. All rights reserved.

Then

\[q_1, q_2, \ldots, q_m, \ldots \]

is a fundamental system of norms in \(G_b(\Omega) \) which provides this space with a structure of Fréchet space. In what follows, we assume \(G_b(\Omega) \) endowed with this structure. If \(z_0 \) is any point in the boundary \(\partial \Omega \) of \(\Omega \), we set

\[f^{(n)}(z_0) := \lim_{z \to z_0, z \in \Omega} f^{(n)}(z), \quad n = 0, 1, 2, \ldots \]

We say that an element \(f \) of \(G_b(\Omega) \) extends holomorphically outside \(\Omega \) whenever there is a domain \(\Omega_1 \) in \(\mathbb{C} \) such that \(\Omega_1 \supset \Omega, \Omega_1 \neq \Omega \), and a holomorphic function \(g \) in \(\Omega_1 \) whose restriction to \(\Omega \) coincides with \(f \).

We say that a point \(z_0 \) of \(\partial \Omega \) is \(C^\infty \)-regular for \(G_b(\Omega) \), or simply \(C^\infty \)-regular when no confusion occurs, if, given an arbitrary sequence \((a_j)_{j=0}^\infty\) of complex numbers, there is an element \(f \) of \(G_b(\Omega) \) such that

\[f^{(j)}(z_0) = a_j, \quad j = 0, 1, 2, \ldots \]

We shall need later the following result found in [2]:

(a) There exists a dense subset \(\{z_j: j \in \mathbb{N}\} \) in \(\partial \Omega \) such that, for any of its arbitrary subsets \(\{u_j: j \in \mathbb{N}\} \) and any infinite-dimensional triangular matrix of complex numbers

\[
\begin{array}{cccccccc}
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,n} & a_{1,n+1} & \cdots \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,n} & a_{2,n+1} & \cdots \\
a_{3,2} & a_{3,3} & \cdots & a_{3,n} & a_{3,n+1} & \cdots \\
a_{4,3} & \cdots & a_{4,n} & a_{4,n+1} & \cdots \\
& \cdots & \cdots & \cdots & \cdots & \cdots \\
a_{n+1,n} & a_{n+1,n+1} & \cdots \\
& \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{array}
\]

there is an element \(f \) of \(G_b(\Omega) \) such that

\[f^{(j)}(u_1) = a_{1,j}, \quad j = 0, 1, 2, 3, \ldots, n, n+1, \ldots \]

\[f^{(j)}(u_2) = a_{2,j}, \quad j = 1, 2, 3, \ldots, n, n+1, \ldots \]

\[f^{(j)}(u_3) = a_{3,j}, \quad j = 1, 2, 3, \ldots, n, n+1, \ldots \]

\[f^{(j)}(u_4) = a_{4,j}, \quad j = 2, 3, \ldots, n, n+1, \ldots \]

\[\vdots \]

\[f^{(j)}(u_{n+1}) = a_{n+1,j}, \quad j = n, n+1, \ldots \]

\[\vdots \]

It is an immediate consequence of the previously cited result that all points in the set \(\{z_j: j \in \mathbb{N}\} \) are \(C^\infty \)-regular. We may thus assert the following:

(b) There exists in \(\partial \Omega \) a dense subset of \(C^\infty \)-regular points.

The fundamental problem that we shall study in this article consists in determining dense subspaces inside \(G_b(\Omega) \) with good linear topological properties so that their elements, except the origin, cannot be extended holomorphically outside \(\Omega \).
2. Functions which do not extend holomorphically outside Ω

Let us consider the space $G_b(\Omega)$ as described in the previous section. We take a dense subset $\{v_j: j \in \mathbb{N}\}$ in $\partial \Omega$. For every pair of positive integers m, n, we put $B_{m,n}$ to denote the set of elements f of $G_b(\Omega)$ such that

$$|f^{(j)}(z)| \leq m^{j+1} \cdot j!, \quad j = 0, 1, 2, \ldots, z \in \Omega, \quad |z - v_n| < \frac{1}{m}.$$

It is easy to see that $B_{m,n}$ is a closed absolutely convex subset of $G_b(\Omega)$. We show that $B_{m,n}$ is not absorbent. After result (b), we may take a C^∞-regular point v in $\partial \Omega$ such that $|v - v_n| < 1/m$. We find an element g of $G_b(\Omega)$ such that

$$g^{(j)}(v) = (j!)^2, \quad j = 0, 1, 2, \ldots.$$

Assuming that $B_{m,n}$ absorbs g, we find $\lambda > 0$ such that $\lambda g \in B_{m,n}$. Then

$$|\lambda g^{(j)}(z)| \leq m^{j+1} \cdot j!, \quad j = 0, 1, 2, \ldots, z \in \Omega, \quad |z - v_n| < 1/m,$$

and so

$$\lambda(j!)^2 = \lambda g^{(j)}(v) \leq m^{j+1} \cdot j!, \quad j = 0, 1, 2, \ldots,$$

and, consequently,

$$\lambda \leq \lim_{j \to \infty} \frac{m^{j+1}}{j!} = 0,$$

which is a contradiction. Hence, $B_{m,n}$ is not a zero-neighborhood in $G_b(\Omega)$ and, since this set is absolutely convex, it has no interior points. Setting

$$B := \bigcup\{B_{m,n}: m, n \in \mathbb{N}\}$$

we have that B is a first category set in $G_b(\Omega)$.

We consider now a function f of $G_b(\Omega)$ which extends holomorphically outside Ω. We find $n \in \mathbb{N}$, $\rho > 0$ and a holomorphic function g in the disk $D(v_n, \rho) := \{z \in \mathbb{C}: |z - v_n| < \rho\}$ which coincides with f in $\Omega \cap D(v_n, \rho)$. Let

$$h := \sup\{|g(z)|: z \in D(v_n, \rho/2)\}.$$

We find $r \in \mathbb{N}$ such that $h < r$ and take $m \in \mathbb{N}$ so that

$$\frac{r + 1}{m} < \frac{\rho}{2}.$$

If we take z in Ω such that $|z - v_n| < 1/m$, then g is holomorphic in the disk $D(z, \rho - 1/m)$ and, since $\frac{2r+1}{m} < \rho - 1/m$, Cauchy’s formula applies to obtain that, for $j = 0, 1, 2, \ldots$,

$$|f^{(j)}(z)| := |g^{(j)}(z)| \leq \frac{j!}{(2r+1)^{j+1}}h \leq m^{j+1} \cdot j!$$

and so $f \in B_{m,n} \subset B$, thus the functions of $G_b(\Omega)$ that extend holomorphically outside Ω form a set of the first category. This result appears, in a more general form, in [2].

If M is the subset of $G_b(\Omega)$ formed by the functions that do not extend holomorphically outside Ω, then M is a residual set of $G_b(\Omega)$. We shall obtain later dense subspaces of $G_b(\Omega)$ which, except the origin, are contained in M, with a number of good properties both linear and topological. These properties are described in the next section.
3. Nearly-Baire spaces

The linear spaces that we use in this section are assumed to be defined over the field \(\mathbb{F} \) of the real or complex numbers. We say that a subset \(A \) of a locally convex space \(E \) is sum-absorbing whenever there is \(\lambda > 0 \) such that \(\lambda(A + A) \) is contained in \(A \). We say that \(E \) is nearly-Baire if, given a sequence \((A_j) \) of sum-absorbing balanced closed subsets which covers \(E \), there is \(j_0 \) such that \(A_{j_0} \) is a zero-neighborhood. In [4], we have proved the following result:

(c) Let \(F \) be a closed subspace of a locally convex space \(E \). If \(F \) and \(E/F \) are nearly-Baire, then \(E \) is also nearly-Baire.

A locally convex space \(E \) is said to be unordered Baire-like whenever, for any sequence \((A_j) \) of closed absolutely convex subsets covering \(E \), there is \(j \) such that \(A_j \) is a zero-neighborhood [1].

Clearly, there are unordered Baire-like locally convex spaces which are not nearly-Baire [5].

Let \(I \) be a non-empty set. For each \(i \) in \(I \), let \(E_i \) be a locally convex space. Let \(E := \prod_{i \in I} E_i \). We consider, in the usual way, \(E_i \) as a subspace of \(E \). If \(M \) is a non-empty subset of \(I \), we identify \(\prod_{i \in M} E_i \), in the usual fashion, with a subspace of \(E \).

Proposition 1. Let \(I \) be a non-empty finite set. For each \(i \in I \), let \(E_i \) be a locally convex space. Let \(A \) be a closed sum-absorbing subset of \(E := \prod_{i \in I} E_i \). If \(A \cap E_i \) is a zero-neighborhood in \(E_i \), \(i \in I \), then \(A \) is a zero-neighborhood in \(E \).

Proof. If \(I \) has only one element there is nothing to be shown. Proceeding recurrently, let us assume that the property holds when the cardinal of \(I \) is \(n \). We take now \(I \) having \(n + 1 \) elements, \(i_1, i_2, \ldots, i_{n+1} \). It follows that

\[
B = A \cap \prod_{i \in I \setminus \{i_{n+1}\}} E_i
\]

is a closed sum-absorbing subset of \(\prod_{i \in I \setminus \{i_{n+1}\}} E_i \) which meets \(E_i \) in a zero-neighborhood when \(i \) is in \(I \setminus \{i_{n+1}\} \). Then, after the induction hypothesis, \(B \) is a zero-neighborhood in

\[
G := \prod_{i \in I \setminus \{i_{n+1}\}} E_i.
\]

We then have that \(A \) is a closed sum-absorbing subset of \(E = G \times E_{i_{n+1}} \) such that \(A \cap G \) is a zero-neighborhood in \(G \) and \(A \cap E_{i_{n+1}} \) is a zero-neighborhood in \(E_{i_{n+1}} \). We now find \(\lambda > 0 \) such that \(\lambda(A + A) \subset A \). Then, in \(G \times E_{i_{n+1}} \), we have that

\[
\lambda(A \cap G) \times \lambda(A \cap E_{i_{n+1}}) = \lambda(A \cap G) + \lambda(A \cap E_{i_{n+1}}) \subset \lambda(A + A) \subset A.
\]

Thus, \(A \) is a zero-neighborhood in \(E \). \(\square \)

Proposition 2. Let \(E_i \) be a nearly-Baire space, \(i \in I \), \(I \neq \emptyset \). Let \((A_j) \) be a sequence of closed balanced sum-absorbing subsets of \(E := \prod_{i \in I} E_i \) such that it covers \(E \) and so that, for each \(j \), all the sets homothetics to \(A_j \) with ratio a positive integer are also contained in the sequence \((A_j) \). If \(A \) denotes the subfamily of \(\{A_j: j \in \mathbb{N}\} \) formed by those \(A_j \) which intersect every \(E_i \) in a zero-neighborhood, then \(A \) covers \(E \).

Proof. Let us assume that the property is not true. If \(B := \{A_j: j \in \mathbb{N}\} \setminus A \), we have that \(B \) is not empty. We show that \(B \) does not cover \(E \). Let \(r_1 \) be the first positive integer such that \(A_{r_1} \in B \), we take \(i_1 \) in \(I \) such that \(A_{r_1} \cap E_{i_1} \) is not a zero-neighborhood in \(E_{i_1} \). Let \(B_1 \) be the subfamily of \(B \) formed by those elements whose intersection with \(E_{i_1} \) is not a zero-neighborhood in \(E_{i_1} \). Proceeding by recurrence, let us suppose that, for a positive integer \(q \), we have found the subfamily \(B_s \) of \(B \), \(s = 1, 2, \ldots, q \). If

\[
B \setminus \bigcup \{B_s: s = 1, 2, \ldots, q \}
\]
is not empty, then we find the smallest positive integer \(r_q+1 \) for which \(A_{r_q+1} \) is in (1). We choose now \(i_q+1 \) in \(I \) such that \(A_{i_q+1} \cap E_{i_q+1} \) is not a zero-neighborhood in \(E_{i_q+1} \). We put \(\mathcal{B}_{i_q+1} \) to denote the subfamily of (1) formed by all those elements whose intersection with \(E_{i_q+1} \) are not zero-neighborhoods in \(E_{i_q+1} \). This concludes the complete induction process. If after \(p \) steps the family \(\mathcal{B} \setminus \bigcup \{ \mathcal{B}_s: s = 1, 2, \ldots, p \} \) is empty, then we set \(M := \{1, 2, \ldots, p\} \). If, for no \(p \in \mathbb{N} \), the family \(\mathcal{B} \setminus \bigcup \{ \mathcal{B}_s: s = 1, 2, \ldots, p \} \) is empty, then we write \(M := \mathbb{N} \). It is then clear that

\[
\mathcal{B} := \bigcup \{ \mathcal{B}_s: s \in M \}.
\]

We fix \(s \) in \(M \). We put

\[
S := \{ j \in \mathbb{N}: A_j \in \mathcal{B}_s \}.
\]

Since \(A_j \cap E_{i_j} \) is not a zero-neighborhood in \(E_{i_j} \), \(j \in S \), and since \(E_{i_j} \) is nearly-Baire, it follows that \(\{ A_j: j \in S \} \) does not cover \(E_{i_j} \). Besides, if \(A_j \) is in \(\mathcal{B}_s \), then all homothetics of \(A_j \), with ratio a positive integer, are in \(\mathcal{B}_s \) and so there is a linear subspace \(L_s \) of dimension one in \(E_{i_j} \) such that, if \(O \) denotes the origin of \(E \), we have that

\[
A_j \cap L_s = \{ O \}, \quad j \in S.
\]

It is immediate that, if \(s_1, s_2 \) are in \(M \), \(s_1 \neq s_2 \), then \(i_{s_1} \) is distinct from \(i_{s_2} \). Hence,

\[
L := \prod \{ L_s: s \in M \}
\]

is a Fréchet subspace of \(E \). Let us assume now that \(\mathcal{B} \) covers \(E \). Then \(E \) covers \(L \) and there is \(j_0 \in \mathbb{N} \) such that \(A_{j_0} \in \mathcal{B} \) and \(A_{j_0} \cap L \) has interior points in \(L \) and, since \(A_{j_0} \cap L \) is sum-absorbing, it easily follows that \(A_{j_0} \cap L \) is a zero-neighborhood in \(L \). So, there is \(s \) in \(M \) such that \(A_{j_0} \in \mathcal{B}_s \), and thus \(A_{j_0} \cap L_s = \{ O \} \), which is a contradiction.

If \(A_j \) is in \(\mathcal{A} \), then \(m A_j \) is also in \(\mathcal{A} \). Thus, there is a countable set \(P \) and a family \(\{ F_p: p \in P \} \) of subspaces of \(E \) such that

\[
F := \bigcup \{ F_p: p \in P \} = \bigcup \{ A_j: A_j \in \mathcal{A} \}.
\]

Similarly, there is a countable set \(Q \) and a family \(\{ G_q: q \in Q \} \) of subspaces of \(E \) such that

\[
G := \bigcup \{ G_q: q \in Q \} = \bigcup \{ A_j: A_j \in \mathcal{B} \}.
\]

We take \(x, y \in E \) such that

\[
x \notin F, \quad y \notin G.
\]

The vectors \(x, y \) define a one-dimensional real linear manifold \(H \). Clearly, \(H \) is not contained in \(F_p \), nor in \(G_q \), \(p \in P \), \(q \in Q \). Consequently, \(H \cap F_p \) is either the empty set or has only one element. Analogously, \(H \cap G_q \) is either empty or is a singleton. On the other hand, \(H \) coincides with

\[
\left(\bigcup \{ H \cap F_p: p \in P \} \right) \cup \left(\{ H \cap G_q: q \in Q \} \right)
\]

which is a countable set, thus achieving a contradiction. \(\square \)

Theorem 1. If \(E_i \) is a nearly-Baire space, \(i \in I \), \(I \neq \emptyset \), then \(E := \prod_{i \in I} E_i \) is nearly-Baire.

Proof. Let \(\{ A_j \} \) be a sequence of balanced sum-absorbing closed subsets of \(E \) such that they cover \(E \). We want to prove that some element of the former sequence is a zero-neighborhood in \(E \) and so we may assume that the homothetics of every \(A_j \), with ratio a positive integer, also belong to \(\{ A_j \} \). After the previous proposition, we may also assume that \(A_j \cap E_i \) is a zero-neighborhood in \(E_i \), \(i \in I \), \(j \in \mathbb{N} \).

If \(I \) is finite, we choose any \(j_0 \) in \(\mathbb{N} \). Then \(A_{j_0} \cap E_i \) is a zero-neighborhood in \(E_i \), \(i \in I \), and, after Proposition 1, \(A_{j_0} \) is a zero-neighborhood in \(E \).

Let us assume now that \(I \) is an infinite set. For each \(j \in \mathbb{N} \), we assume that the set

\[
I_j := \{ i \in I: A_j \nsubseteq E_i \}
\]
is infinite. We take an element \(i_{1,1} \) of \(I_1 \). Proceeding recurrently, let us assume that, for an integer \(r \geq 2 \), we have already found \(i_{s,t} \in I_s \), for \(s, t \in \mathbb{N} \), \(2 \leq s + t \leq r \). We then find elements

\[
i_{1,r} \in I_1, \quad i_{2,r-1} \in I_2, \quad \ldots, \quad i_{r,1} \in I_r,
\]

which are pairwise distinct and distinct from \(i_{s,t} \), for \(2 \leq s + t \leq r \). This concludes the complete induction process.

Given an arbitrary element \((j, m)\) in \(\mathbb{N} \times \mathbb{N} \), we may find, since \(A_j \) is sum-absorbing, a one-dimensional subspace \(L_{j,m} \) of \(E_{j,m} \) such that \(A_j \not\supset L_{j,m} \). We write

\[
L := \prod_{(j,m) \in \mathbb{N} \times \mathbb{N}} L_{j,m}.
\]

We have that \(L \) is a Fréchet subspace of \(E \). Since \((A_j)\) covers \(L \), there is \(j_0 \) in \(\mathbb{N} \) such that \(A_{j_0} \cap L \) has interior points in \(L \) and, having in mind that \(A_{j_0} \) is sum-absorbing, \(A_{j_0} \cap L \) is a zero-neighborhood in \(L \). Thus, \(A_{j_0} \) contains all the subspaces \(L_{j,m} \), \((j, m) \in \mathbb{N} \times \mathbb{N} \), except for a finite number, which contradicts that

\[
A_{j_0} \not\supset L_{j_0,m}, \quad m \in \mathbb{N}.
\]

Therefore, we may assert that there is \(j_1 \in \mathbb{N} \) such that \(I_{j_1} \) is finite. After Proposition 1,

\[
A_{j_1} \cap \prod_{i \in I_{j_1}} E_i
\]

is a zero-neighborhood in \(\prod_{i \in I_{j_1}} E_i \). On the other hand, \(A_{j_1} \supset E_i, \quad i \in I \setminus I_{j_1} \) and, since \(A_{j_1} \) is sum-absorbing, it follows that

\[
A_{j_1} \supset \prod_{i \in I \setminus I_{j_1}} E_i.
\]

It now can be easily seen that \(A_{j_1} \) is a zero-neighborhood in \(E \). \(\square \)

For the proof of the coming proposition we shall make use of the following result which can be found in [3, p. 24].

(d) Let \(E \) be a locally convex space such that, if \((E_j)\) is an arbitrary sequence of linear subspaces of \(E \) covering \(E \), there is \(p \) in \(\mathbb{N} \) for which \(E_p \) is dense in \(E \). Then, if \(F \) is a hyperplane in \(E \) and \((F_j)\) is any sequence of linear subspaces of \(F \) which cover \(F \), there is \(q \) in \(\mathbb{N} \) such that \(F_q \) is dense in \(F \).

Theorem 2. Let \(E \) be a nearly-Baire space. If \(F \) is a subspace of \(E \) of countable codimension, then \(F \) is nearly-Baire.

Proof. Let us first assume that the codimension of \(F \) in \(E \) is countably infinite. Let \(\{x_j: j \in \mathbb{N}\} \) be a cobasis of \(F \) in \(E \). We denote by \(F_j \) the linear span of \(F \cup \{x_1, x_2, \ldots, x_j\} \), \(j \in \mathbb{N} \). We now show that there is \(r \) such that \(F_r \) is nearly-Baire. Assuming this not so, for each \(m \in \mathbb{N} \) we find in \(F_m \) a sequence \((A_{m,j})\) of closed subsets of \(F_m \) which are balanced sum-absorbing covering \(F_m \) and such that they are not zero-neighborhoods in this space. We put \(B_{m,j} \) for the closure of \(A_{m,j} \) in \(E \). Thus, \(B_{m,j} \) is a closed subset of \(E \) which is balanced and sum-absorbing. On the other hand,

\[
E = \bigcup \{B_{m,j}: m, j \in \mathbb{N}\}
\]

and so there exist \(p, q \in \mathbb{N} \) such that \(B_{p,q} \) is a zero-neighborhood in \(E \), and therefore \(A_{p,q} = E_p \cap B_{p,q} \) is a zero-neighborhood in \(E_p \), obtaining a contradiction.

To finish the proof, it suffices then to see it for the case of \(F \) being a hyperplane of \(E \). We consider a sequence \((A_j)\) of closed subsets of \(F \) which are balanced sum-absorbing and covering \(F \) and such that the homothetics of each \(A_j \) are also contained in the sequence \((A_j)\). We write \(L_j \) for the linear span of \(A_j, j \in \mathbb{N} \). We define

\[
P := \{j \in \mathbb{N}: L_j \text{ is dense in } F\}, \quad Q := \{j \in \mathbb{N}: L_j \text{ is not dense in } F\}.
\]

On the other hand, let \((M_j)\) be a sequence of subspaces of \(E \) covering \(E \). If \(\overline{M_j} \) stands for the closure of \(M_j \), then \(\overline{M_j} \) is closed balanced sum-absorbing and, besides, \((\overline{M_j})\) covers \(E \). Consequently, there is \(r \in \mathbb{N} \) such that \(\overline{M_j} \) is a
zero-neighborhood in E, that is, M_r is dense in E. Applying result (d), we obtain that $\{L_j: j \in Q\}$ does not cover F. Using a similar argument to the one used in the proof of the previous proposition we have that $\{L_j: j \in P\}$ covers F. Hence, we may take the sequence (A_j) in such a way that L_j be dense in F, $j \in \mathbb{N}$. We put B_j for the closure of A_j in $E, j \in \mathbb{N}$. We choose z in $E \setminus F$ and we write G for the absolutely convex hull of $\{z\}$. Then the family

$$\{B_j + mG: j, m \in \mathbb{N}\}$$

covers E and is formed by closed subsets of E which are also balanced and sum-absorbing. Thus, there are $r, s \in \mathbb{N}$ so that $B_r + sG$ is a zero-neighborhood in E. Let T denote the linear span of B_r in E. Let us first assume that z is not in T. Then

$$(B_r + sG) \cap T = B_r \cap T$$

and so this set is a zero-neighborhood in T, now, since B_r is closed in E, T is a closed hyperplane of E. If T coincides with F, then $B_r \cap F = A_r$ is a zero-neighborhood in F. If $T \neq F$, then $T \cap F$ is a closed hyperplane of F that contains A_r, which contradicts that L_r is dense in F. Let us assume now that z is in T. We find a positive integer b such that $G \subset bB_r$. Since B_r is balanced and sum-absorbing in E, there is $\lambda > 0$ such that $\lambda(B_r + B_r) \subset bB_r$ and

$$B_r + sG \subset B_r + bsB_r \subset bs(B_r + B_r) \subset \frac{1}{\lambda}bsB_r.$$

Hence, B_r is a zero-neighborhood in E and thus $A_r = F \cap B_r$ is a zero-neighborhood in F. \square

4. Subspaces of ω

By $e_r, r \in \mathbb{N}$, we represent the element of ω such that all of its terms are zero except for the one occupying the rth place, whose value is one. The following is a slight modification of [5, Lemma 1]:

(e) There exists an uncountable subset M of ω with the following properties:
1. If (a_n) belongs to M, then each a_n is a real number greater than zero, $n \in \mathbb{N}$, and (a_n) increases and diverges to ∞.
2. If (a_n) and (b_n) are distinct elements of M, then, either $\lim_n a_n = \infty$, or $\lim_n a_n = 0$.
3. For a given positive integer m, if $(a_n^{(h)})$, $h = 1, 2, \ldots, m$, are elements of M pairwise different, then, for any integers $0 < n_1 < n_2 < \cdots < n_m$, the determinant

$$\begin{vmatrix}
a_{n_1}^{(1)} & a_{n_2}^{(1)} & \cdots & a_{n_m}^{(1)} \\
a_{n_1}^{(2)} & a_{n_2}^{(2)} & \cdots & a_{n_m}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n_1}^{(m)} & a_{n_2}^{(m)} & \cdots & a_{n_m}^{(m)} \\
\end{vmatrix}$$

is not zero.

The set M appearing before has the property that, if L is any closed hyperplane of ω, then $L \cap M$ is a finite set. In fact, there are m non-zero complex numbers $\alpha_1, \alpha_2, \ldots, \alpha_m$ and integers $0 < r_1 < r_2 < \cdots < r_m$ such that all the homothetics of

$$\alpha_1 e_{r_1} + \alpha_2 e_{r_2} + \cdots + \alpha_m e_{r_m}$$

form the subspace of φ orthogonal to L. Suppose L contains m distinct element of M, $(a_n^{(s)})$, $s = 1, 2, \ldots, m$. Then

$$\langle (a_n^{(s)}), \alpha_1 e_{r_1} + \alpha_2 e_{r_2} + \cdots + \alpha_m e_{r_m} \rangle = \alpha_1 a_{r_1}^{(s)} + \alpha_2 a_{r_2}^{(s)} + \cdots + \alpha_m a_{r_m}^{(s)} = 0$$

and we achieve a contradiction noticing that the determinant
\[\begin{bmatrix}
 a^{(1)}_1 & a^{(1)}_2 & \cdots & a^{(1)}_m \\
 a^{(2)}_1 & a^{(2)}_2 & \cdots & a^{(2)}_m \\
 \vdots & \vdots & \ddots & \vdots \\
 a^{(m)}_1 & a^{(m)}_2 & \cdots & a^{(m)}_m
\end{bmatrix}\]

is distinct from zero.

Let us now consider the family \(\{B_i : i \in I\}\) of all the subsets of \(\omega\) satisfying that, for each \(i \in I\):

1. \(B_i\) contains \(M\).
2. If \((a_n) \in B_i\), then \(a_n\) is real and greater than zero, \(n \in \mathbb{N}\), and \((a_n)\) increases and diverges to \(\infty\).
3. If \((a_n)\) and \((b_n)\) are distinct elements of \(B_i\), we have

\[
\lim_{n \to \infty} \frac{a_n}{b_n} = \infty \quad \text{or} \quad \lim_{n \to \infty} \frac{a_n}{b_n} = 0.
\]

If \(i_1, i_2 \in I\), we put \(i_1 \leq i_2\) whenever \(B_{i_1}\) is contained in \(B_{i_2}\). Thus, \(\{B_i : i \in I, \leq\}\) is an inductive ordered family. Let \(B\) be a maximal element of this family. Let \(X\) be the subset of \(\omega\) formed by those sequences that take only a finite number of different values. For an arbitrary element \((b_n)\) of \(B\), we set

\[E_{(b_n)} := \{(a_n b_n) : (a_n) \in X\}.
\]

Clearly, \(E_{(b_n)}\) is a linear subspace of \(\omega\). We shall write \(E\) to denote the linear span in \(\omega\) of

\[\{E_{(b_n)} : (b_n) \in B\}\.
\]

If \((c_n)\) is a non-zero element of \(E\), there exist \((b_n^{(j)})\) in \(B\), \(j = 1, 2, \ldots, r\), pairwise distinct, and \((c_n^{(j)})\) in \(E_{(b_n^{(j)})}\), \(j = 1, 2, \ldots, r\), such that

\[c_n = \sum_{j=1}^{r} (c_n^{(j)}) = \left(\sum_{j=1}^{r} c_n^{(j)}\right).
\]

Then, if any of the elements \((c_n^{(j)}), j = 1, 2, \ldots, r\), has an infinite amount of non-zero terms, it follows that the set

\[P := \{n \in \mathbb{N} : c_n \neq 0\}
\]

is infinite, and it also happens that

\[\lim_{n \in P, n \to \infty} |c_n| = \infty.
\]

For \((m, n), (p, q) \in \mathbb{N} \times \mathbb{N}\), we define \((m, n) < (p, q)\) if, either \(m < p\), or \(m = p\) and \(n < q\).

The proof of the next theorem requires the following result [5, Proposition 8]:

(f) Let \(A\) be a closed absolutely convex subset of \(\omega\) such that it is not a neighborhood of the origin and whose linear span \(F\) is dense in \(\omega\). Given \(r \in \mathbb{N}\), there is \(q \in \mathbb{N}\) and a non-zero element \(a_{r+1} \epsilon_{r+1} + a_{r+2} \epsilon_{r+2} + \cdots + a_{r+q} \epsilon_{r+q}\) in the polar \(A^o\) of \(A\) in \(\varphi\).

The following result will also be needed [5, Corollary 2]:

(g) Let \(S\) be a barrelled subspace of \(\omega\). If \(A\) is a closed subset of \(S\) which is balanced sum-absorbing and absorbing, then \(A\) is a zero-neighborhood.

Proposition 3. Let \((E_j)\) be a sequence of subspaces of \(E\) which covers \(E\). Then, there is \(j_0 \in \mathbb{N}\) such that \(E_{j_0}\) is dense in \(E\).
Proof. Assuming the property is not true, then, for each \(j \in \mathbb{N} \), there is a closed hyperplane \(H_j \) of \(\omega \) containing \(E_j \), but not containing \(E \). It follows that \(H_j \cap M \) is finite, \(M \) is not countable and is contained in \(E \), therefore \(\bigcup \{ H_j : j \in \mathbb{N} \} \) does not contain \(E \), which is a contradiction. \(\square \)

Proposition 4. Let \(E \) be a countable family of subspaces of \(E \) which covers \(E \). Let \(F \) be the subfamily of \(E \) formed by those elements which are dense in \(E \). Then \(F \) covers \(E \).

Proof. Let us assume that the property does not hold. After the former proposition, \(E \setminus F \) does not cover \(E \). Using a similar argument to the one in the proof of Proposition 2 a contradiction is achieved. \(\square \)

Theorem 3. \(E \) is a nearly-Baire space.

Proof. Let \((A_j) \) be a sequence of closed subsets of \(E \) which are balanced sum-absorbing and cover \(E \). Let \(L_j \) be the linear span of \(A_j \), \(j \in \mathbb{N} \). After the former proposition, we may assume that \((A_j) \) is taken in such a way that \(L_j \) is dense in \(E \), \(j \in \mathbb{N} \). Now, let us assume that \(L_j \) is not barrelled for each \(j \in \mathbb{N} \). We find in \(L_j \) a closed absolutely convex absorbing subset \(V_j \) which is not a zero-neighborhood. We put \(W_j \) for the closure of \(V_j \) in \(E \). We write the family

\[\{ rW_j : r, j \in \mathbb{N} \} \]

as the sequence \((U_j) \). In \(\mathbb{N} \times \mathbb{N} \) we consider the order relation \(\leq \) before introduced. After result (f), we obtain positive integers \(1 < p_1^{(1)} \leq q_1^{(1)} \) and complex numbers \(a_{p_1^{(1)}}, a_{p_1^{(1)}+1}, \ldots, a_{q_1^{(1)}} \) such that

\[a_{p_1^{(1)}} e_{p_1^{(1)}} + a_{p_1^{(1)}+1} e_{p_1^{(1)}+1} + \cdots + a_{q_1^{(1)}} e_{q_1^{(1)}} \in U_1, \quad a_{q_1^{(1)}} \neq 0. \]

Clearly, we may take \(a_{q_1^{(1)}} \) to be real and positive. Proceeding by recurrence, we assume that, for \((l, k) \in \mathbb{N} \times \mathbb{N} \), we have found the positive integers \(p_k^{(l)} \leq q_k^{(l)} \). Let \((m, j) \) be the element of \((\mathbb{N} \times \mathbb{N}, \leq) \) which goes right after \((l, k) \). We apply result (f) and so obtain integers \(p_j^{(m)} \leq q_j^{(m)} \) and complex numbers \(a_{p_j^{(m)}}, a_{p_j^{(m)}+1}, \ldots, a_{q_j^{(m)}} \) so that \(d_k^{(l)} < p_j^{(m)} \) and

\[a_{p_j^{(m)}} e_{p_j^{(m)}} + a_{p_j^{(m)}+1} e_{p_j^{(m)}+1} + \cdots + a_{q_j^{(m)}} e_{q_j^{(m)}} \in U_m, \quad a_{q_j^{(m)}} > 0. \]

We take now a positive integer \(d_{q_j^{(m)}} \) and define \(d_n := d_{q_j^{(m)}} \), \(n = 1, 2, \ldots, q_1^{(1)} \). Proceeding by recurrence, we assume that, for \((l, k) \in \mathbb{N} \times \mathbb{N} \), we already have the integer \(d_{q_j^{(m)}} \). Let \((m, j) \) be the element of \((\mathbb{N} \times \mathbb{N}, \leq) \) posterior to \((l, k) \). We find an integer \(d_{q_j^{(m)}} \) such that

\[d_{q_j^{(m)}} > d_{q_j^{(m)}}, \quad d_{q_j^{(m)}} + a_{q_j^{(m)}} > q_j^{(m)}. \]

We write \(d_n := d_{q_j^{(m)}}, n = q_k^{(l)} + 1, q_j^{(l)} + 2, \ldots, q_j^{(m)} \). This concludes the induction process. Clearly, the sequence \((d_n) \) increases monotonously to infinity.

Let us now take an arbitrary element \((b_n) \) of \(B \). Let \((\alpha_n) \) be the element of \(X \) such that

\[\alpha_{q_j^{(m)}} = 1, \quad (m, j) \in \mathbb{N} \times \mathbb{N}, \quad \alpha_n = 0, \quad n \notin \{ q_j^{(m)} : (m, j) \in \mathbb{N} \times \mathbb{N} \} \]

It follows that \((\alpha_n b_n) \) is in \(E \) and so there is \(s \in \mathbb{N} \) such that \((\alpha_n b_n) \) is in \(U_s \). Consequently, for each \(l \in \mathbb{N} \),

\[1 \geq \| (\alpha_n b_n), a_{p_j^{(s)}} e_{p_j^{(s)}} + a_{p_j^{(s)}+1} e_{p_j^{(s)}+1} + \cdots + a_{q_j^{(s)}} e_{q_j^{(s)}} \| = b_{q_j^{(s)}} a_{q_j^{(s)}}. \]

Given any positive integer \(j > q_1^{(s)} \), we find a positive integer \(r \) such that

\[q_r^{(s)} < j \leq q_{r+1}^{(s)}. \]

Then
\[
\frac{d_j}{b_j} \geq \frac{d_{q_j}^{(a)}}{b_{q_j+1}^{(a)}} = \frac{d_{q_j}^{(a)}a_{q_j}^{(a)}}{b_{q_j+1}^{(a)}a_{q_j+1}^{(a)}} \geq q_r^{(s)}.
\]

Consequently,
\[
\lim_j \frac{d_j}{b_j} = \infty
\]
which is a contradiction, since \(B\) is maximal.

Thus, there is \(j_0 \in \mathbb{N}\) such that \(L_{j_0}\) is barrelled. By applying result (g) we get that \(A_{j_0}\) is a zero-neighborhood in \(L_{j_0}\) and, since \(A_{j_0}\) is closed in \(E\), \(E_{j_0}\) coincides with \(E\) and so \(A_{j_0}\) is a zero-neighborhood in \(E\). \(\square\)

5. Nearly-Baire subspaces of \(\mathcal{G}_b(\Omega)\)

In this section, \(E\) is the subspace of \(\omega\) that we constructed in the previous section. Recall that \(E\) is a nearly-Baire subspace which is dense in \(\omega\). Let \(A\) be the mapping from \(\omega\) onto \(\omega\) given by
\[
A((a_n)) := (n!^2 a_n), \quad (a_n) \in \omega.
\]
We have that \(A\) is a topological isomorphism and so \(K := A(E)\) is a dense subspace of \(\omega\) which is also nearly-Baire.

Let us now consider the set
\[
H := \{(m, n) \in \mathbb{N} \times \mathbb{N}; m \leq n\}.
\]
Let \(\leq\) be the order relation induced in \(H\) by the ordering \(\leq\) in \(\mathbb{N} \times \mathbb{N}\) before defined. Let \((z_n)\) be a dense subset of \(\partial \Omega\) for which result (a) holds. If \(f\) belongs to \(\mathcal{G}_b(\Omega)\), then we write
\[
Tf := \left(f^{(n)}(z_m); (m, n) \in (H, \leq) \right).
\]
Thus
\[
T := \mathcal{G}_b(\Omega) \rightarrow \omega
\]
is linear and continuous so that, after result (a), \(T\) is an onto map. Consequently, \(T\) is a topological isomorphism from \(\mathcal{G}_b(\Omega)\) onto \(\omega\).

Theorem 4. There exists a dense subspace \(\mathcal{F}\) of \(\mathcal{G}_b(\Omega)\) which is nearly-Baire, so that, if \(f\) is in \(\mathcal{F}\) and it is non-zero, then \(f\) does not extend holomorphically outside \(\Omega\).

Proof. We put \(K := T^{-1}(K)\). Then \(K\) is dense in \(\mathcal{G}_b(\Omega)\), \(T^{-1}(0)\) is a Fréchet subspace of \(\mathcal{G}_b(\Omega)\) and \(K\) is isomorphic to \(K/T^{-1}(0)\). Applying result (c) we obtain that \(K\) is nearly-Baire. Let \(f\) be an element of \(K\) which extends holomorphically outside \(\Omega\). We find \(r \in \mathbb{N}\) and \(\rho > 0\) such that in the disk \(D(z_r, \rho)\) there exists a holomorphic function \(g\) which coincides with \(f\) in \(\Omega \cap D(z_r, \rho)\). If there is an integer \(n_0\), \(n_0 \geq r\), such that
\[
f^{(n)}(z_r) = g^{(n)}(z_r) = 0, \quad n \geq n_0,
\]
then \(f\) is the restriction to \(\Omega\) of a polynomial. If, on the contrary, there is an infinite amount of non-zero terms in the sequence \((f^{(n)}(z_r))_{n=n_0}^{\infty}\), then, since that sequence is a subsequence of
\[
\left(f^{(n)}(z_m); (m, n) \in (H, \leq) \right)
\]
it follows that
\[
\limsup_n \left| \frac{f^{(n)}(z_r)}{(n!)^2} \right| = \infty.
\]
Let
\[
h := \sup \{ |g(z)|; z \in D(z_r, \rho/2) \}.
\]
Applying Cauchy’s formula we obtain
\[|f^{(n)}(z_r)| = |g^{(n)}(z_r)| \leq \frac{n!}{(\rho/2)^{n+1}} h. \]

Consequently,
\[\infty = \limsup_n \frac{|f^{(n)}(z_r)|}{(n!)^2} \leq \limsup_n \frac{2^{n+1} h}{n! \rho^{n+1}} = 0, \]

which is a contradiction.

From this we deduce that the elements of \(K \) that extend holomorphically outside \(\omega \) form a linear subspace \(L \) of \(K \) of countable dimension, whether it be finite or infinite. We now find a dense subspace \(F \) of \(K \) which is the algebraic complement of \(L \). Since \(F \) is a subspace of \(K \) with countable codimension, Theorem 2 applies so that \(F \) is nearly-Baire. On the other hand, the non-zero elements of \(F \) do not extend holomorphically outside \(\Omega \).

6. The space \(G(\Omega) \)

Let \(\Omega \) be a regular domain in the complex plane, \(\Omega \neq \mathbb{C} \). By \(G(\Omega) \) we denote the linear space over \(\mathbb{C} \) formed by the functions \(f \) which are holomorphic in \(\Omega \) such that \(f^{(n)} \) extends continuously to \(\overline{\Omega} \), \(n = 0, 1, 2, \ldots \). For \(m \in \mathbb{N} \) and \(f \in G(\Omega) \), we define
\[p_m(f) := \sup \left\{ \sum_{j=1}^{m} |f^{(j)}(z)| : z \in \Omega, |z| \leq m \right\}. \]

Then
\[p_1, p_2, \ldots, p_m, \ldots \]
is a fundamental system of seminorms in \(G(\Omega) \) providing it with a Fréchet space structure. In what follows we shall always assume \(G(\Omega) \) endowed with this structure. If \(z_0 \) is an arbitrary point of \(\partial \Omega \) and \(f \) is in \(G(\Omega) \), we write
\[f^{(n)}(z_0) := \lim_{z \to z_0, z \in \Omega} f^{(n)}(z), \quad n = 0, 1, 2, \ldots. \]

We consider a dense subset \(\{ v_j : j \in \mathbb{N} \} \) of \(\partial \Omega \). For every pair of positive integers \(m \) and \(n \), we put \(C_{m,n} \) to denote the subset formed by the elements of \(G(\Omega) \) such that
\[|f^{(j)}(z)| \leq m^{j+1} j!, \quad j = 0, 1, 2, \ldots, z \in \Omega, |z - v_n| < 1/m. \]

It means no difficulty to see that \(C_{m,n} \) is a closed absolutely convex subset of \(G(\Omega) \). We see next that \(C_{m,n} \) is not absorbing in \(G(\Omega) \). We apply result (b) and obtain an element \(v \in \partial \Omega \), \(C^\infty \)-regular for \(G_0(\Omega) \), such that \(|v - v_n| < 1/m \). We find \(g \in G_0(\Omega) \) such that
\[g^{(j)}(v) = (j!)^2, \quad j = 0, 1, 2, \ldots. \]

It follows that \(g \) is in \(G(\Omega) \). Proceeding in a similar manner to what was done in Section 2 of this article, we obtain that \(C_{m,n} \) does not absorb \(g \) and thus \(C_{m,n} \) has no interior points in \(G(\Omega) \). If we set
\[C := \bigcup \{ C_{m,n} : m, n \in \mathbb{N} \} \]
we have that \(C \) is a set of the first category in \(G(\Omega) \).

If \(f \) is an element of \(G(\Omega) \) which extends holomorphically outside \(\Omega \), proceeding as in Section 2, we obtain that \(f \) belongs to \(C \). Hence, the subset \(M \) of \(G(\Omega) \), formed by all those functions which do not extend holomorphically outside \(\Omega \), is a residual subset. This result appears, in a more general form, in [2].

We shall obtain in the following a dense subspace \(E \) of \(G(\Omega) \) which is nearly-Baire and such that, except for the origin, is contained in \(M \).

Let \((H, \leq) \) be the ordered set as in the previous section. Let \(\{ z_n : n \in \mathbb{N} \} \) be the subset dense in \(\partial \Omega \) for which result (a) holds. If \(f \) belongs to \(G(\Omega) \), we write
\[Sf := \left(f^{(n)}(z_m) : (m, n) \in (H, \lesssim) \right). \]

Then

\[S : \mathcal{G}(\Omega) \to \omega \]

is linear continuous and, since the restriction of \(S \) to \(\mathcal{G}_b(\Omega) \) is onto, we have that \(S \) is a topological homomorphism. Proceeding now as in the proof of Theorem 4, the following result obtains.

Theorem 5. There exists a dense subspace \(\mathcal{E} \) of \(\mathcal{G}(\Omega) \) which is nearly-Baire and whose non-zero elements do not extend holomorphically outside \(\Omega \).

We finish by posing the following open question.

Problem. Does there exist in \(\mathcal{G}_b(\Omega) \) (\(\mathcal{G}(\Omega) \)) a dense subspace which is Baire and such that its non-zero elements do not extend holomorphically outside \(\Omega \)?

Note. The referee has kindly pointed out to the author about the existence of the paper [L. Bernal-González, M.C. Calderón, W. Luh, Large linear manifolds of non-continuable boundary-regular homomorphic functions, J. Math. Anal. Appl. 341 (2008) 337–345], where the space \(\mathcal{G}(\Omega) \) is studied, which the authors denote as \(A^\infty(\Omega) \). In this paper, a dense linear subspace of \(A^\infty(\Omega) \) is constructed such that each of its non-zero elements does not extend holomorphically outside \(\Omega \). This subspace does not have additional properties of Functional Analysis, besides, it needs \(\mathbb{C} \setminus \Omega \) to be connected.

References