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. Introduction 

ollowing paper [1] , the problem of existence of a fixed point
or contraction type mappings in partially ordered metric 
paces has been considered a lot (see, e.g., [2–22] and the 
elated references therein). Some fixed point theorems were 
roved in these papers and they are usually applied in dis- 
ussing the existence and uniqueness of solution to matrix equa- 
ions, periodic boundary value problems and nonlinear integral 
quations. 
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Recently, Roldán et al. [17] introduced the notion of coin- 
idence point between mappings in any number of variables 
nd extended several special notions of, so called, coupled, 
ripled, quadrupled and multidimensional fixed/coincidence 
oints appeared in the literature see, for example, [3] , [8] ,

14] , [15] , respectively. Results in [17] also extend some fixed
oints ones in the framework of partially ordered complete 
etric spaces. In order to guarantee the existence of coinci- 

ence point the authors of [17] constructed some Cauchy se- 
uences using the properties of mixed monotone mappings 
nd contractive conditions. The idea was used in a lot of pa-
er (see, e.g., [16] , [18] , [19] ). To prove that more than one
equences are simultaneously Cauchy’s, seems not so easy. It 
s also known that the fixed point problems for isotone map-
ings are easier than that of mixed monotone mappings. Wang 

21] obtained some multidimensional fixed point theorems for 
sotone mappings and extended some of the results in coupled, 
ripled, quadrupled and multidimensional fixed/coincidence 
oints for mixed monotone and non-decreasing mappings in 
duction and hosting by Elsevier B.V. This is an open access article 
nc-nd/4.0/ ). 
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partially ordered complete metric spaces. She also gave a
simple and unified approach to coupled, tripled, quadrupled
and multidimensional fixed point theorems for mixed mono-
tone mappings. 

Motivated and inspired by the above results, we obtain some
new fixed point theorems for G -isotone mappings and investi-
gate the equivalence between unidimensional and multidimen-
sional fixed point theorems. 

2. Preliminaries 

Let n ∈ N , X be a non-empty set and X 

n be the Cartesian
product of n copies of X . For brevity, g(x ) , (x 1 , x 2 , . . . , x n ) ,

(y 1 , y 2 , . . . , y n ) , (z 1 , z 2 , . . . , z n ) , (v 1 , v 2 , . . . , v n ) and (x 

1 
0 , x 

2 
0 , . . . ,

x 

n 
0 ) will be denoted by gx , X , Y , Z , V and X 0 , respectively. 

Let { A , B } be a partition of the set �n = { 1 , 2 , . . . , n } ,
that is, A ∪ B = �n and A ∩ B = ∅ , �A,B = { σ : �n → �n :
σ (A ) ⊆ A and σ (B) ⊆ B} and �

′ 
A,B = { σ : �n → �n : σ (A ) ⊆

B and σ (B) ⊆ A } . Let σ1 , σ2 , . . . , σn be n mappings from �n into
itself. If ( X , 
) is a partially ordered space, y, v ∈ X and i ∈ �n ,
we use the next notation from [17] : 

y 
i v ⇔ 

{
y 
 v, if i ∈ A, 

y � v, if i ∈ B. 
(1)

If elements x , y of a partially ordered set ( X , 
) are comparable
(i.e. x 
 y or y 
 x holds) we will write x ≈ y . The product space
X 

n is endowed with the following natural partial order: for Y , V
∈ X 

n 

 
n V ⇐⇒ y i 
i v i , i ∈ �n . (2)

The mapping ρn : X 

n × X 

n → [0 , + ∞ ) , given by: 

ρn (X , Y ) = max 
1 ≤i≤n 

d (x i , y i ) , (3)

defines a metric on X 

n . We denote � the set of all continuous
and strictly increasing functions ϕ: [0, ∞ ) → [0, ∞ ), and � the
set of all functions ψ : [0, ∞ ) → [0, ∞ ), such that lim t → r ψ( t ) >
0 for every r > 0 and ψ(t) = 0 ⇐⇒ t = 0 . 

Definition 2.1 ( [11] ) . A triple ( X , d , 
) is called an ordered met-
ric space if ( X , d ) is a metric space and ( X , 
) is a partially or-
dered set. 

Definition 2.2 ( [17] ) . Let g : X → X be a mapping. If ( X ,
d , 
) is an ordered metric space, then X is said to have the
sequential g -monotone property if it satisfies the following
properties: 

(i) If (x m 

) m ∈ N is a non-decreasing sequence and lim m →∞ 

x m 

= x, then gx m 


 gx for all m ∈ N . 
(ii) If (y m 

) m ∈ N is a non-increasing sequence and lim m →∞ 

y m 

=
y, then gy m 

� gy for all m ∈ N . 

If g is the identity mapping, then X is said to have the sequential
monotone property (see [17] ) and ( X , d , 
) is said to be regular
(see [22] ). 

Definition 2.3 ( [16] ) . Let F : X 

n → X and g : X → X be two map-
pings. A point (x 1 , x 2 , . . . , x n ) ∈ X 

n is a Y-coincidence point of
F and g if 

F (x σi (1) , x σi (2) , . . . , x σi (n ) ) = gx i 
for i ∈ �n . If g is the identity mapping on X , then
(x 1 , x 2 , . . . , x n ) ∈ X 

n is called a Y-fixed point of the
mapping F . 

Definition 2.4 ( [19] ) . Let ( X , d , 
) be an ordered metric space.
The mappings F : X 

n → X and g : X → X are said to be
O-compatible if, for all sequences { x 

1 
m 

} m ≥0 , { x 

2 
m 

} m ≥0 , . . . ,

{ x 

n 
m 

} m ≥0 ⊂ X such that { gx 

1 
m 

} m ≥0 , { gx 

2 
m 

} m ≥0 , . . . , { gx 

n 
m 

} m ≥0 are
monotone and the following limit exists: for all i , 

lim 

m →∞ 

F (x 

σi (1) 
m 

, x 

σi (2) 
m 

, . . . , x 

σi (n ) 
m 

) = lim 

m →∞ 

gx 

i 
m 

∈ X , 

we have 

lim 

m →∞ 

d (gF (x 

σi (1) 
m 

, x 

σi (2) 
m 

, . . . , x 

σi (n ) 
m 

) , 

F (gx 

σi (1) 
m 

, gx 

σi (2) 
m 

, . . . , gx 

σi (n ) 
m 

)) = 0 

for all i . 

Definition 2.5 ( [17] ) . Let ( X , 
) be a partially ordered space,
and F : X 

n → X and g : X → X be two mappings. It is
said that F has the mixed g -monotone property if F is g -
monotone nondecreasing in arguments with indices in A and
g -monotone nonincreasing in arguments with indices in B , i.e.,
for all x 1 , x 2 , . . . , x n , y, z ∈ X and each i ∈ { 1 , . . . , n } , 
gy 
 gz ⇒ F (x 1 , . . . , x i−1 , y, x i+1 , . . . , x n ) 


i F (x 1 , . . . , x i−1 , z, x i+1 , . . . , x n ) . 

Definition 2.6 ( [20] ) . Let ( X 

n , 
) be a partially ordered set, and
T and G self-mappings of X 

n . It is said that T is a G -isotone
mapping if, for any Y 1 , Y 2 ∈ X 

n 

G (Y 1 ) 
n G (Y 2 ) ⇒ T (Y 1 ) 
n T (Y 2 ) . 

Definition 2.7 ( [20] ) . An element Y ∈ X 

n is called a coincidence
point of the mappings T : X 

n → X 

n and G : X 

n → X 

n if T (Y ) =
G (Y ) . Furthermore, if T (Y ) = G (Y ) = Y , then is said that Y
is a common fixed point of T and G . 

Remark 2.8. Note that if G = I X n in Definitions 2.6 and 2.7 ,
then T is an isotone mapping and Y is a fixed point of T
(see [21] ). 

Definition 2.9. C a family functions f : [0, ∞ ) 2 → R is called
C -class if it is continuous and satisfies following axioms: 

(1) f ( s , t ) ≤ s ; 
(2) f (s, t) = s implies that either s = 0 or t = 0 ; 

for all s , t ∈ [0, ∞ ). 

Example 2.10. The following functions f : [0, ∞ ) 2 → R are ele-
ments of C. For each s , t ∈ [0, ∞ ), 

(1) f (s, t) = ks, 0 < k < 1, f (s, t) = s ⇒ s = 0 ; 
(2) f (s, t) = s − t, f (s, t) = s ⇒ t = 0 ; 
(3) f (s, t) = 

s −t 
1+ t , f (s, t) = s ⇒ t = 0 ; 

(4) f (s, t) = 

s 
1+ t , f (s, t) = s ⇒ s = 0 or t = 0 ; 

(5) f (s, t) = log t+ a 
s 

1+ t , a > 1 , f (s, t) = s ⇒ s = 0 or t = 0 ; 
(6) f (s, t) = (s + l )( 1 

1+ t ) − l, l > 1 , f (s, t) = s ⇒ t = 0 ; 
(7) f (s, t) = s log a + t a, a > 1 , f (s, t) = s ⇒ s = 0 or t = 0 . 

Remark 2.11. Functions of C -class is a natural generaliza-
tion for Banach contraction, as that can see in above example
number (1) . 
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. Main results 

ow, we state and prove our main results. 

heorem 3.1. Let ( X , d , 
) be a complete ordered metric space,
nd let T : X → X and G : X → X be two mappings such that
 is a G-isotone mapping, T ( X ) ⊆ G ( X ) and G is continuous and
-compatible with T. Assume that there exist h ∈ C, ϕ ∈ � and ψ 

 � such that, for all y, v ∈ X with G (y ) 
 G (v ) , 

(d (T (y ) , T (v ))) ≤ h (ϕ(d (G (y ) , G (v ))) , ψ(d (G (y ) , G (v )))) . 

(4) 

Suppose that either 
(a) T is continuous or; 
(b) G ( x m 

) 
 G ( x ) for all m ∈ N when (x m 

) m ∈ N is a non-
decreasing sequence in X such that x m 

→ x; G ( x m 

) � G ( x )
for all m ∈ N when (x m 

) m ∈ N is a non-increasing sequence in
X such that x m 

→ x. 

f there exists y 0 ∈ X , such that G ( y 0 ) ≈ T ( y 0 ), then T and G have
 coincidence point. 

roof. Since T ( X ) ⊆ G ( X ), it follows that there is a y 1 ∈ X such
hat G (y 1 ) = T (y 0 ) . Recursively, we obtain that for every m ∈
 0 , there is a y m +1 ∈ X such that G (y m +1 ) = T (y m 

) . Set z 0 =
 (y 0 ) and z m +1 = G (y m +1 ) = T (y m 

) for every m ∈ N 0 . 
Since G ( y 0 ) ≈ T ( y 0 ), we assume that G ( y 0 ) 
 T ( y 0 ), that is,

 0 
 z 1 (the case G ( y 0 ) � T ( y 0 ) is treated similarly). Assume that
 m −1 
 z m 

for some m ∈ N 0 , that is, G (y m −1 ) 
 G (y m 

) . Since T
s a G -isotone mapping, we get 

 m 

= T (y m −1 ) 
 T (y m 

) = z m +1 . 

his actually means that the sequence (z m 

) m ∈ N 0 is non- 
ecreasing. If z m 0 +1 = z m 0 for some m 0 ∈ N 0 , then y m 0 is a coin-
idence point of T and G . Thus, we may assume that z m +1 � = z m 

or every m ∈ N 0 . 
By G (y m −1 ) 
 G (y m 

) and (4) , we have that 

(d (z m +1 , z m 

)) = ϕ(d (T (y m 

) , T (y m −1 ))) 

≤ h (ϕ(d (G (y m 

) , G (y m −1 ))) , ψ(d (G (y m 

) , G (y m −1 )))) 

≤ ϕ(d (z m 

, z m −1 )) , m ∈ N . (5) 

rom (5) , since ϕ is strictly increasing, we obtain 

(z m +1 , z m 

) ≤ d (z m 

, z m −1 ) , m ∈ N . 

ence, the sequence (δm 

) m ∈ N 0 given by δm 

= d (z m +1 , z m 

) is non-
ncreasing and bounded below. Therefore, there exists some δ ≥
 such that lim m →∞ 

δm 

= δ. We shall prove that δ = 0 . Assume
hat δ > 0. Using the properties of ϕ and ψ , we have ϕ( δ) >
(0) ≥ 0 and lim m →∞ 

ψ(δm −1 ) > 0 . Using Definition 2.9 , we 
now that when h (s, t) = s, then s = 0 or t = 0 and h ( s , t ) <
 when s > 0 and t > 0. Then, by letting m → ∞ in (5) and
sing the properties of h , we have 

(δ) ≤ h (ϕ(δ) , lim 

m →∞ 

ψ(δm −1 )) = h (ϕ(δ) , lim 

r → δ
ψ(r )) < ϕ(δ) , 

hich is a contradiction. Thus, lim m →∞ 

δm 

= 0 . 
We claim that (z m 

) m ∈ N 0 is a Cauchy sequence. Indeed, if it
as false, then there would exist an ε > 0 and the subsequences
z m (l ) ) l∈ N and (z n (l ) ) l∈ N of (z m 

) m ∈ N 0 such that n ( l ) is the mini-
al in the sense that n ( l ) > m ( l ) ≥ l , d ( z m ( l ) , z n ( l ) ) > ε, and
(z m (l ) , z n (l ) −1 ) ≤ ε. 

Using the triangle inequality, we obtain 

< d (z m (l ) , z n (l ) ) ≤ d (z m (l ) , z m (l ) −1 ) + d (z m (l ) −1 , z n (l ) −1 ) 

+ d (z n (l ) −1 , z n (l ) ) 

≤ d (z m (l ) , z m (l ) −1 ) + d (z m (l ) −1 , z m (l ) ) + d (z m (l ) , z n (l ) −1 ) 

+ d (z n (l ) −1 , z n (l ) ) 

≤ 2 d (z m (l ) , z m (l ) −1 ) + ε + d (z n (l ) −1 , z n (l ) ) . 

etting l → ∞ in the above inequality, we get 

lim 

→∞ 

d (z m (l ) , z n (l ) ) = lim 

l→∞ 

d (z m (l ) −1 , z n (l ) −1 ) = ε. (6)

ince n ( l ) > m ( l ), we have z m (l ) −1 
 z n (l ) −1 , i.e., G (y m (l ) −1 ) 

 (y n (l ) −1 ) . From (4) , it follows that 

(d (z n (l ) , z m (l ) )) = ϕ(d (T (y n (l ) −1 ) , T (y m (l ) −1 )) 

≤ h (ϕ(d (G (y n (l ) −1 ) , G (y m (l ) −1 ))) , ψ(d (G (y n (l ) −1 ) , 

G (y m (l ) −1 )))) 

= h (ϕ(d (z n (l ) −1 , z m (l ) −1 )) , ψ(d (z n (l ) −1 , z m (l ) −1 ))) . 

sing the properties of ϕ and ψ , we have ϕ( ε) > 0 and
im l → ∞ 

ψ( r l ) > 0, where r l = d (z n (l ) −1 , z m (l ) −1 ) . Letting l → ∞
n the above inequality and using (6) , it follows that 

(ε) ≤ h (ϕ(ε) , lim 

l→∞ 

ψ(r l )) < ϕ(ε) , 

hich is a contradiction. Hence, the sequence (z m 

) m ∈ N 0 is 
auchy’s in the metric space ( X , d ). Since ( X , d ) is a complete
etric space, then there exists z ∈ X such that lim m →∞ 

z m 

= z,
hat is, 

lim 

 →∞ 

T (y m 

) = lim 

m →∞ 

G (y m 

) = z. (7) 

s G is continuous, we have 

lim 

 →∞ 

G (G (y m 

)) = G (z ) . (8) 

y the O-compatibility of T and G , we have 

lim 

 →∞ 

d (G (G (y m +1 )) , T (G (y m 

))) 

= lim 

m →∞ 

d (G (T (y m 

)) , T (G (y m 

))) = 0 . (9) 

ow suppose that T is continuous. It follows from (7) - (9) that z
s a coincidence point of T and G . 

Now suppose that condition (b) holds. Since (z m 

) m ∈ N 0 is 
 non-decreasing sequence and z m 

→ z ( m → ∞ ), then
 ( G ( y m 

)) 
 G ( z ) for every m ∈ N 0 . From (4) , we obtain 

(d (T (G (y m 

)) , T (z ))) 

≤ h (ϕ(d (G (G (y m 

)) , G (z ))) , ψ(d (G (G (y m 

)) , G (z )))) 

≤ ϕ(d (G (G (y m 

)) , G (z ))) (10) 

or m ∈ N 0 . From (10) , since ϕ is strictly increasing, we have 

(T (G (y m 

)) , T (z )) ≤ d (G (G (y m 

)) , G (z )) , m ∈ N 0 . (11)



Some fixed point theorems for G -isotone mappings in partially ordered metric spaces 413 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

alent to Theorems 3.1 and 3.3 . 
Letting m → ∞ in (11) , we obtain 

lim 

m →∞ 

T (G (y m 

)) = T (z ) . (12)

From (8), (9) and (12) , we have that z is also a coincidence point
of T and G in this case. �

Corollary 3.2. Under hypothesis of Theorem 3.1 , if y ∈ X is a
coincidence point of T and G , then G ( y ) also is a coincidence point
of T and G. 

Proof. Suppose that G (y ) = T (y ) . Then we can choose y m 

=
y for all m ≥ 0 as in the previous proof. We have just prove
that G ( y m 

) → z as m → ∞ and z is a coincidence point of T
and G . In this case, G (y m 

) = G (y ) → G (y ) as m → ∞ and so
G ( y ) also is a coincidence point of T and G . This completes the
proof. �

Theorem 3.3. In addition to the hypotheses of Theorem 3.1 , sup-
pose that for all coincidence points y, v ∈ X of mappings T and
G , there exists u ∈ X such that G ( u ) is comparable to G ( y ) and
G (v ) . Then T and G have a unique coincidence point z such that
G (z ) = z . 

Proof. Put u 1 = u and define the sequence (G (u m 

)) m ∈ N by:
G (u m +1 ) = T (u m 

) for m ∈ N . We may assume that G ( y ) 
 G ( u 1 )
(the case G ( y ) � G ( u 1 ) is treated similarly). Since T is a G -isotone
mapping, we have G (y ) = T (y ) 
 T (u 1 ) = G (u 2 ) . By induction
we obtain G ( y ) 
 G ( u m 

), for every m ∈ N . From (4) , we have
that 

ϕ(d (G (u m +1 ) , G (y ))) = ϕ(d (T (u m 

) , T (y ))) 

≤ h (ϕ(d (G (u m 

) , G (y ))) , ψ(d (G (u m 

) , G (y )))) 

≤ ϕ(d (G (u m 

) , G (y ))) (13)

for m ∈ N . Then, since ϕ is strictly increasing, we have 

d (G (u m +1 ) , G (y )) ≤ d (G (u m 

) , G (y )) , m ∈ N , 

that is, the sequence (βm 

) m ∈ N defined by βm 

= d (G (u m 

) , G (y ))
is non-increasing. Hence, there exists β ≥ 0 such that
lim m →∞ 

βm 

= β. We prove that β = 0 . Suppose, conversely, that
β > 0. Using the properties of ϕ and ψ , we have ϕ( β) > 0 and
lim βm → β ψ(βm 

) > 0 . Letting m → ∞ in (13) , we get 

ϕ(β) ≤ h (ϕ(β) , lim 

m →∞ 

ψ(βm 

)) ≤ h (ϕ(β) , lim 

βm → β
ψ(βm 

)) < ϕ(β) , 

which is a contradiction. Thus β = 0 , that is, 

lim 

m →∞ 

d (G (u m 

) , G (y )) = 0 . (14)

Similarly, we find that 

lim 

m →∞ 

d (G (u m 

) , G (v )) = 0 . (15)

From (14) and (15) , we obtain 

G (y ) = G (v ) . (16)

By Corollary 3.2 , we find that z := G ( y ) is a coincidence point
of the mappings T and G . Using (16) with v = z, we obtain 

z = G (y ) = G (z ) . (17)
To prove the uniqueness, assume that z ′ is another coincidence
point of mappings T and G . Then by (17) we get z ′ = G (z ′ ) =
G (z ) = z, as claimed. �

Remark 3.4. Note that if there exists u ∈ X such that T ( u ) is
comparable to T ( y ) and T (v ) , then Theorem 3.3 still holds.
Indeed, using a similar argument to the proof Theorem 3.3 ,
we only have to check that G ( y ) 
 G ( u m 

) for m ≥ 2. We as-
sume that T ( y ) 
 T ( u 1 ) (the case T ( y ) � T ( u 1 ) is treated sim-
ilarly). Since y is a coincidence point of T and G , we have
G (y ) = T (y ) 
 T (u 1 ) = G (u 2 ) . By the G -isotone property of T ,
we have G (y ) = T (y ) 
 T (u 2 ) = G (u 3 ) . So, G ( y ) 
 G ( u m 

) for
m ≥ 2 by induction, as claimed. 

Theorem 3.5. Let ( X , d , 
) be a complete ordered metric space,
and let T : X 

n → X 

n and G = (g, g, . . . , g) : X 

n → X 

n be two
mappings such that T is a G-isotone mapping, T ( X 

n ) ⊆ G ( X 

n ) and
G is continuous and O-compatible with T. Assume that there exist
h ∈ C, ϕ ∈ � and ψ ∈ � such that, for all Y , V ∈ X 

n with G ( Y )

n G ( V ), 

ϕ(ρn (T (Y ) , T (V ))) ≤ h (ϕ(ρn (G (Y ) , G (V ))) , 

ψ(ρn (G (Y ) , G (V )))) 

where ρn is defined by (3) . Suppose that either 

(a) T is continuous or; 
(b) X has the sequential g-monotone property. 

If there exists Y 0 ∈ X 

n , such that G ( Y 0 ) ≈ T ( Y 0 ), then T and G
have a coincidence point. Furthermore, suppose that for all coin-
cidence points Y , V ∈ X 

n of mappings T and G , there exists U ∈
X 

n such that G ( U ) is comparable to G ( Y ) and G ( V ) . Then T and
G have a unique coincidence point Z such that G (Z) = Z. 

Proof. Since ( X , d , 
) is a complete ordered metric space,
so is ( X 

n , ρn , 
n ). Now we shall prove that condition (b) of
Theorem 3.1 holds with respect to ( X 

n , ρn , 
n ). Suppose that
(Z m 

) m ∈ N 0 is a non-decreasing sequence in X 

n such that Z m 

→ Z
( m → ∞ ). That is, Z m 


n Z m +1 for all m ∈ N 0 and z i m 

→ z i (m →
∞ ) for all i ∈ �n . Thus, (z i m 

) m ∈ N 0 is a non-decreasing sequence
when i ∈ A and (z i m 

) m ∈ N 0 is a non-increasing sequence when
i ∈ B . If i ∈ A , as X has the sequential g -monotone property,
then we have gz i m 


 gz i for all m ∈ N 0 . Similarly, if i ∈ B , then
we deduce that gz i m 

� gz i for all m ∈ N 0 . Since G = (g, g, . . . , g) ,

then G ( Z m 

) 
n G ( Z ) for every m ∈ N 0 . The other case is treated
similarly. 

By our assumptions, all conditions of Theorem 3.1 and
Theorem 3.3 hold with respect to ( X 

n , ρn , 
n ). Using
Theorem 3.1 , T and G have a coincidence point. Moreover, it
follows from Theorem 3.3 that T and G have a unique coinci-
dence point Z ∈ X 

n such that G (Z) = Z. �

Remark 3.6. The metric ρn in Theorem 3.5 can be replaced by
some other metrics on X 

n , for example, by the next one: 

ρn (Y , V ) = 

1 
n 

[
d (y 1 , v 1 ) + d (y 2 , v 2 ) + · · · + d (y n , v n ) 

]
, (18)

and the result will be also true. As the proof of Theorem 3.5,
Theorem 3.5 is a consequence of Theorems 3.1 and 3.3 .
Note also that taking n = 1 in Theorem 3.5 , we can obtain
Theorems 3.1 and 3.3 immediately. So, Theorem 3.5 is equiv-
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Taking h (s, t) = s − t and g = I X in Theorem 3.5 , we obtain
he following result. 

orollary 3.7 ( [21] ) . Let ( X , 
) be a partially ordered set and
uppose that there is a metric d on X such that ( X , d ) is a complete
etric space. Let T : X 

n → X 

n be an isotone mapping for which
here exist ϕ ∈ � and ψ ∈ � such that, for all Y , V ∈ X 

n with
 
n V , 

(ρn (T (Y ) , T (V ))) ≤ ϕ(ρn (Y , V )) − ψ(ρn (Y , V )) , 

here ρn is defined by (18) . Suppose that either 

(a) T is continuous or; 
(b) ( X , d , 
) is regular. 

If there exists Y 0 ∈ X 

n , such that Y 0 ≈ T ( Y 0 ), then T has a
xed point. Furthermore, suppose that for all fixed points Y , V ∈
 

n of T , there exists U ∈ X 

n such that U is comparable to Y and
. Then T has a unique a fixed point. 

orollary 3.8. Let ( X , d , 
) be a complete ordered metric space.
et ϒ = (σ1 , . . . , σn ) be a n-tuple of self-mappings of �n such 

hat σ i is a permutation for all i ∈ �n , σ i ∈ �A , B if i ∈ A and
i ∈ �

′ 
A,B if i ∈ B. Let F : X 

n → X and g : X → X be two mappings
uch that F has the mixed g-monotone property on X , F ( X 

n ) ⊆
 ( X ), g is continuous and O-compatible with F. Assume that there
xists ϕ ∈ � and ψ ∈ � such that 

(d (F (x 1 , x 2 , . . . , x n ) , F (y 1 , y 2 , . . . , y n ))) 

≤ ϕ( max 
1 ≤i≤n 

d (gx i , gy i ) ) − ψ ( max 
1 ≤i≤n 

d (gx i , gy i ) ) (19) 

or which gx i 
i gy i for all i ∈ �n . Suppose that either F is contin-
ous or X has the sequential g-monotone property. If there exist 
 

1 
0 , x 

2 
0 , . . . , x 

n 
0 ∈ X such that: 

x 

i 
0 
i F (x 

σi (1) 

0 , x 

σi (2) 

0 , . . . , x 

σi (n ) 
0 ) (20) 

or all i ∈ �n , then F and g have, at least, one Y -coincidence point.
Furthermore, assume that for all pairs of Y -coincidence points 

x 1 , x 2 , . . . , x n ) , (y 1 , y 2 , . . . , y n ) ∈ X 

n of F and g there exists
u 1 , u 2 , . . . , u n ) ∈ X 

n such that (gu 1 , gu 2 , . . . , gu n ) is comparable,
t the same time, to (gx 1 , gx 2 , . . . , gx n ) and to (gy 1 , gy 2 , . . . , gy n ) .
hen F and g have a unique Y -coincidence point (z 1 , z 2 , . . . , z n ) ∈
 

n such that gz i = z i for i ∈ �n . 

roof. Consider the mappings T : X 

n → X 

n and G : X 

n → X 

n 

efined by 

 (Y ) = (F (y σ1 (1) , y σ1 (2) , . . . , y σ1 (n ) ) , . . . , 

F (y σi (1) , y σi (2) , . . . , y σi (n ) ) , . . . , 

F (y σn (1) , y σn (2) , . . . , y σn (n ) )) (21) 

nd 

 (Y ) = (gy 1 , gy 2 , . . . , gy n ) (22) 

or Y ∈ X 

n . Note that T and G are O-compatible with respect
o ( X 

n , ρn , 
n ). Indeed, suppose that { Y m 

} m ≥ 0 ⊂ X 

n such that
 G ( Y m 

)} m ≥ 0 is monotone and the following limit exists: 

lim 

 →∞ 

T (Y m 

) = lim 

m →∞ 

G (Y m 

) ∈ X 

n . 

rom (21) and (22) , we see that, for sequences { y 1 m 

} m ≥0 ,

 y 2 m 

} m ≥0 , . . . , { y n m 

} m ≥0 ⊂ X such that { gy 1 m 

} m ≥0 , { gy 2 m 

} m ≥0 , . . . ,

 gy n m 

} m ≥0 are monotone and the following limit exists: 
or all i , 

lim 

 →∞ 

F (y σi (1) 
m 

, y σi (2) 
m 

, . . . , y σi (n ) 
m 

) = lim 

m →∞ 

gy i m 

∈ X . 

ince F and g are O-compatible, we have 

lim 

m →∞ 

ρn (GT (Y m 

) , T G (Y m 

)) 

= lim 

m →∞ 

max 
1 ≤i≤n 

d (gF (y σi (1) 
m 

, y σi (2) 
m 

, . . . , y σi (n ) 
m 

) , 

 (gy σi (1) 
m 

, gy σi (2) 
m 

, . . . , gy σi (n ) 
m 

)) = 0 . 

y our assumptions, we deduce that T ( X 

n ) ⊆ G ( X 

n ) and G is
ontinuous. 

Now, we shall deduce that T is a G -isotone mapping. In-
eed, suppose that G ( X ) 
n G ( Y ), ∀ X , Y ∈ X 

n . By (2) and (22) ,
e have gx t 
 gy t when t ∈ A and gx t � gy t when t ∈ B . For

ach i ∈ A , we have σ i ∈ �A , B . So, gx σi (t) 
 gy σi (t) , ∀ t ∈ A and
x σi (t) � gy σi (t) , ∀ t ∈ B. Thus, by the mixed g -monotonicity of F ,
e have F (x σi (1) , x σi (2) , . . . , x σi (n ) ) 
 F (y σi (1) , y σi (2) , . . . , y σi (n ) ) ,

or all i ∈ A . Similarly, we have F (x σi (1) , x σi (2) , . . . , x σi (n ) ) �
 (y σi (1) , y σi (2) , . . . , y σi (n ) ) , for all i ∈ B . Thus, by (2) and (21) ,
e deduce that T is a G -isotone mapping. 

Since σ i is a permutation for all i ∈ �n , we have 

max 
 ≤t≤n 

d (gy σi (t) , gv σi (t) ) = max 
1 ≤t≤n 

d (gy t , gv t ) = ρn ( G ( Y ) , G ( V ) ) 

(23) 

or all i ∈ �n . From (19) and (23) , we have 

(ρn ( T (Y ) , T (V ) )) 

= ϕ( max 
1 ≤i≤n 

d (F (y σi (1) , y σi (2) , . . . , y σi (n ) ) , 

F (v σi (1) , v σi (2) , . . . , v σi (n ) ))) 

= max 
1 ≤i≤n 

ϕ(d (F (y σi (1) , y σi (2) , . . . , y σi (n ) ) , 

F (v σi (1) , v σi (2) , . . . , v σi (n ) ))) 

≤ max 
1 ≤i≤n 

[(ϕ − ψ)( max 
1 ≤ j≤n 

d (gx σi ( j) , gy σi ( j) ))] 

≤ ϕ(ρn ( G (Y ) , G (V ) )) − ψ(ρn ( G (Y ) , G (V ) )) (24) 

or i ∈ �n and G ( Y ) 
n G ( V ). It follows from (24) that 

(ρn (T (Y ) , T (V ))) ≤ h (ϕ(ρn (G (Y ) , G (V ))) , 

ψ(ρn (G (Y ) , G (V )))) , (25) 

or G ( Y ) 
n G ( V ), where h (s, t) = s − t. 
It follows from (20) that G ( X 0 ) 
n T ( X 0 ). If F is continuous,

hen T is continuous. 
Using Theorem 3.5 , we deduce that T and G have a coin-

idence point and Z ∈ X 

n is a unique coincidence point such
hat G (Z) = Z. That is, F and g have a Y-coincidence point and
z 1 , z 2 , . . . , z n ) ∈ X 

n is a unique Y-coincidence point of F and g
uch that gz i = z i for i ∈ �n . �

emark 3.9. As an application, we give a simple proof of
orollary 3.8 , which is similar to Theorems 14 and 20 in [19] .
he techniques are used in [23–25] . 
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