Refined Lower Bounds on the 2-Class Number of the Hilbert 2-Class Field of Imaginary Quadratic Number Fields with Elementary 2-Class Group of Rank 3

Elliot Benjamin
Associate Professor of Mathematics, Unity College, Unity, Maine 04988-9502

and

Charles J. Parry
Professor of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0123

Communicated by Alan C. Woods

Received January 1, 1997; revised August 18, 1997, February 26, 1998, September 23, 1998

Let \(\mathbb{C}_k \) be an imaginary quadratic number field with \(\mathbb{C}_k \), the 2-Sylow subgroup of its ideal class group, isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \). By the use of various versions of the Kuroda class number formula, we improve significantly upon our previous lower bound for \(|\mathbb{C}_k^{1,2}| \), the 2-class number of the Hilbert 2-class field of \(k \).

1. INTRODUCTION

Throughout this paper we let \(k \) denote an imaginary quadratic number field and \(\mathbb{C}_k \), the 2-Sylow subgroup of its ideal class group, i.e., the 2-Sylow subgroup of the ideal class group, \(\mathbb{C}_k \), (in the wide sense) of \(k \). We assume that \(\mathbb{C}_k \) is isomorphic to \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) (elementary of rank 3) and that at most one prime \(q \equiv 3 \mod 4 \) divides \(d_k \), the discriminant of \(k \). We let \(\mathbb{k}_1 \) denote the Hilbert 2-class field of \(k \), i.e., the maximal unramified (including the infinite primes) abelian field extension of \(k \) which has degree a power of 2. In our previous work (cf. [1, 2]) we have shown that \(|\mathbb{C}_{\mathbb{k}_1}^{1,2}| \geq 8 \). By the use of various versions of the Kuroda class number formula, we shall prove that \(|\mathbb{C}_{\mathbb{k}_1}^{1,2}| \geq 64 \).
We first fix some notation; we make use of genus theory and Rédei and Reichardt conditions [10, 15, 20] to determine congruence relations and the values of Legendre symbols of the primes dividing \(d_k\).

\[k = \mathbb{Q}(\sqrt{-p_1 p_2 p_3 q_1}), \quad p_1 \equiv p_2 \equiv 1 \mod 4, \quad p_3 \equiv 1 \mod 4 \text{ or } p_3 = 2, \]
\[q_1 \equiv 3 \mod 4 \text{ or } [(q_1 = 1 \text{ or } q_1 = 2) \text{ and } p_3 \equiv 1 \mod 4], \]
where \(p_1, p_2, p_3, q_1\) are distinct primes.

\[k_0 = \mathbb{Q}(\sqrt{p_1 p_2 p_3}), \]
\[k_1 = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \sqrt{p_3}, \sqrt{-q_1}). \]

\[E = \text{Group of units in } k_1, \]
\[E^+ = \text{Group of units in } k_1^+. \]

\[K_i = k_0(\sqrt{p_i}), \quad i = 1, 2, 3, \] are the three quartic subfields.

of \(k_1^+\) which contain \(k_0\).

\[E_{K_i} = \text{Group of units in } K_i, \]
\[h(K_i) = 2\text{-Class number of } K_i, \]
\[k^{(i)}, \quad 0 \leq i \leq 14, \] are the 15 quadratic subfields of \(k_1\).

\[k^{(0)} = k_0 \text{ and } k^{(1)}, ..., k^{(14)} \text{ are real.} \]
\[e_i = \text{Group of units of } k^{(i)}, \]
\[h_i = 2\text{-Class number of } k^{(i)}. \]
\[\text{and } h^*(K_i) = h(Q(\sqrt{p_j p_k})), \quad \{i, j, k\} = \{1, 2, 3\}, = 2\text{-class number of } Q(\sqrt{p_j p_k}). \]

We always assume (unless specified otherwise) that \(C_{k_1^2} \cong \langle 2, 2, 2 \rangle \) \((\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})\) and that at most one prime \(q \equiv 3 \mod 4\) divides \(d_k\); we let \(\{i, j, k\} = \{1, 2, 3\}\). We make use of the following two Kuroda class number formulas (cf. [14, 18]), utilizing the fact that \(k_1\) is the genus field of \(k\):

\[
(1) \quad |C_{k_1^2}| = 2^{-16} \cdot |E : \prod_{i=0}^{14} e_i| \cdot \prod_{i=0}^{14} h_i,
\]
\[
(2) \quad h(K_i) = \frac{1}{2} q(K_i) \cdot h_{i_0}^{(i)} \cdot h_{i_2}^{(i)}, \quad \text{where } q(K_i) = |E_{K_i} : e_0 e_1^{(i)} e_2^{(i)}|; \quad e_{i_0}^{(i)} \text{ (resp., } h_{i_0}^{(i)} \text{) is the unit group (resp., 2-class number) of } Q(\sqrt{p_i}), \text{ and } e_{i_2}^{(i)} \text{ (resp., } h_{i_2}^{(i)} \text{) is the unit group (resp., 2-class number) of } Q(\sqrt{p_j p_k}), \quad \{i, j, k\} = \{1, 2, 3\}.
\]

We also make use of a generalization of the Kuroda class number formula for \(V_4\) extensions, i.e., normal extensions \(L/F\) with \(F\) a number field and \(\text{Gal}(L/F) \cong \langle 2, 2 \rangle\) (cf. [18]).
(3) \(h(L) = \) the 2-class number of \(L = 2^{d-x-2-v} \cdot q(L/F) \cdot (h(L_1) \cdot h(L_2) \cdot h(L_3)/\eta^2) \), where
\[
d = \text{the number of infinite places ramified in } L/F;
v = 1 \text{ if } L = F(\sqrt{\epsilon}, \sqrt{\eta}) \text{ with units } \epsilon, \eta \in E_F, \text{ and};
v = 0 \text{ otherwise};\EF \text{ is the group of unbits of } F;\x \text{ is the } \mathbb{Z} - \text{rank of } E_F;\h \text{ is the 2-class number of } F;\h(L_i), i = 1, 2, 3, \text{ is the 2-class number of the intermediate field } L_i;\q(L/F) = q(L) \text{ is the unit index of } L/F, \text{ i.e., } q(L) = [E_L : E_{L_1} \cdot E_{L_2} \cdot E_{L_3}] \text{ where } E_L \text{ is the group of units of } L, i = 1, 2, 3.

In our case, by letting \(F = k_0, L = k_1^+, \) and \(L_i = K_i, i = 1, 2, 3, \) formula (3)

implies the following formula:
\[
q(k_1^+) \geq 8h_0^2/h(K_1)^1 \cdot h(K_2)^1 \cdot h(K_3)^1.
\]

2. MAIN RESULTS

We begin with our previous lower bound on \(|C_{k_1,2}|\), given our above assumptions on \(k \) (cf. [1]).

Lemma 1. \(|C_{k_1,2}| \geq 8. \)

In order to extend this lower bound on \(|C_{k_1,2}|\), we make use of all four above versions of the Kuroda class number formula.

Lemma 2. Let \(\prod_{i=0}^{14} h_i = 2^m \) and \(|C_{k_1,2}| = 2^m, \ m \in \mathbb{N}, \ n \in \mathbb{N}. \) Then \(\prod E : \prod_{i=0}^{14} e_i = 2^{16 + 2^m - n}. \)

Proof. We apply formula (1) to \(k_1 = k_{\text{gen}} \) where \(\text{Gal}(k_1/Q) \cong (2, 2, 2, 2);\)
\[
|C_{k_1,2}| = 2^m = 2^{-16} \cdot \prod_{i=0}^{14} e_i \cdot \prod_{i=0}^{14} h_i = \prod_{i=0}^{14} e_i \cdot 2^{2^m - 16}
\]
and our result immediately follows.

Remark. The only assumption upon \(k \) necessary for Lemma 2 is that \(k \) is an imaginary quadratic number field with \(C_{k,2} \cong (2, 2, 2, 2). \)

Lemma 3. Let \(|C_{k_1,2}| = 2^m \) (note \(m \geq 3 \) by [1]). Then \(\prod E : \prod_{i=0}^{14} e_i \) \(\leq 2^m - 1. \)

Proof. Since at most one prime \(q \equiv 3 \mod 4 \) divides \(d_k, \) we see from genus theory that \(\prod_{i=0}^{14} h_i \geq 2^{17}. \) From formula 1 we therefore have \(2^m \geq 2 \cdot \prod E : \prod_{i=0}^{14} e_i \) and our result immediately follows.
We now make use of the fact that \(k_1 \) is a CM field, i.e., a totally complex quadratic extension of a totally real number field, in order to reduce \(E/\prod_{i=0}^{14} e_i \) to \(E^+/\prod_{i=0}^{6} e_i \) where \(\prod_{i=0}^{6} e_i \) is the composition of the unit groups of the 7 real quadratic subfields of \(k_1^+ \).

Lemma 4. \(E/\prod_{i=0}^{14} e_i \cong E^+/\prod_{i=0}^{6} e_i \).

Proof. Since \(k_1 \) is an abelian CM field that is the compositum of \(k_1^+ \) and \(\mathbb{Q}(\sqrt{-q_1}) \) which have pairwise different prime power conductors, we know that \(E/W_{k_1}: E^+ = I \) where \(W_{k_1} \) is the group of roots of unity in \(k_1 \) (cf. \([11, 16] \)). If \(W_{k_1} = \{1, -1\} \) then it follows that \(E/\prod_{i=0}^{14} e_i = E/\prod_{i=0}^{6} e_i \). We now assume that \(W_{k_1} \not\subseteq \{1, -1\} \). Since \(E/W_{k_1} \), \(E^+ = I \), we have \(E/\prod_{i=0}^{12} e_i = \mathbb{Q}_k^+ \). Since at most one prime \(q \equiv 3 \) mod 4 divides \(d_k \), we know given our original assumptions on \(k \)—that \(\mathbb{W}_{k_1} \subseteq \mathbb{Q}(\sqrt{-1}) \) or \(W_{k_1} \subseteq \mathbb{Q}(\sqrt{-3}) \). We thus have

\[
E/\prod_{i=0}^{14} e_i = W_{k_1} \cdot E^+ / \prod_{i=0}^{14} e_i / W_{k_1} \cong W_{k_1} \cdot E^+ / W_{k_1} \cdot \prod_{i=0}^{6} e_i / W_{k_1} \cong E^+ / \prod_{i=0}^{6} e_i
\]

and our result follows.

Before proving our main theorems we establish the following lemma.

Lemma 5. \(\prod_{i=1}^{3} E_{K_i} \cdot \prod_{i=0}^{6} e_i = \prod_{i=1}^{3} q(K_i) \).

Proof. We have

\[
\prod_{i=1}^{3} q(K_i) = \left| \frac{E_{K_1}}{e_0 e_1 e_2} \times \frac{E_{K_2}}{e_0 e_3 e_4} \times \frac{E_{K_3}}{e_0 e_5 e_6} \right|
\]

where without the loss of generality we specify that \(k^{(i)}, 1 \leq i \leq 6 \), have been chosen such that

\[E_{K_i} \cong e_1 e_2, \quad E_{K_i} \cong e_3 e_4, \quad \text{and} \quad E_{K_i} \cong e_5 e_6.\]

We set up the surjective homomorphism

\[f: E_{K_1} \times E_{K_2} \times E_{K_3} \to E_{K_1}E_{K_2}E_{K_3}/E_0,\]
where \(E_0 = e_0 e_1 e_2 e_3 e_4 e_5 e_6 \) is the compositum of the unit groups of the 7 real quadratic subfields of \(k^+_1 \). The map is defined as follows:

\[
f(\eta_1, \eta_2, \eta_3) = \eta_1 \eta_2 \eta_3 E_0.
\]

We proceed to show that the kernel of this map is precisely \(e_0 e_1 e_2 \times e_0 e_3 e_4 \times e_0 e_5 e_6 \), which would give us

\[
E_{K_1} \times E_{K_2} \times E_{K_3} / e_0 e_1 e_2 \times e_0 e_3 e_4 \times e_0 e_5 e_6 \cong E_{K_1} E_{K_2} E_{K_3} / E_0,
\]

and prove our lemma.

It is immediate that \(e_0 e_1 e_2 \times e_0 e_3 e_4 \times e_0 e_5 e_6 \equiv \ker(f) \). Assume that \((\eta_1, \eta_2, \eta_3) \in \ker(f)\). Then \(\eta_1 \eta_2 \eta_3 = u_{0 j} u_{1 i} u_{2} u_{3} u_{4} u_{5} u_{6} \) for some \(u_j \in e_j, \ 0 \leq j \leq 6 \). We know that \(N_{K_1/K_0}(\eta_1 \eta_2 \eta_3) = \eta_1^2 \eta_2 \eta_3, \ \eta_4 \in e_0 \), since \(K_1 \cap K_2 = K_1 \cap K_3 = K_0 \). However, \(N_{K_1/K_0}(u_{0 j} u_{1 i} u_{2} u_{3} u_{4} u_{5} u_{6}) = \pm u_{0 j}^2 u_{1 i}^2 u_{2}^2 \) since \(K_1 \cap e_i = \pm 1, 3 \leq i \leq 6 \). We thus have \(\eta_1^2 \eta_2 = \pm u_{0 j}^2 u_{1 i}^2 u_{2}^2 \) and \(\eta_2^3 = \pm w_0 u_{1 i}^2 u_{2}^2 \) for some \(w_0 \in e_0, w_0 > 0 \). Since \(\eta_1 \) is real we obtain \(\eta_1 = \pm \sqrt{w_0 u_{1 i} u_{2}} \). An analogous argument yields \(\eta_2 = \pm \sqrt{w_0 u_{1 i} u_{2}^3} \) and \(\eta_3 = \pm \sqrt{w_0 u_{1 i} u_{2}^3} \) for some \(x_0, y_0 \in e_0, x_0 > 0, y_0 > 0 \).

We now let \(e = e_0 e_1 e_2 \times e_0 e_3 e_4 \times e_0 e_5 e_6 \) and assume that \((\eta_1, \eta_2, \eta_3) \notin e \). We claim that at least two of \((\eta_1, 1, 1), (1, \eta_2, 1), (1, 1, \eta_3)\) are not in \(e \). To see this assume that (without loss of generality) \((\eta_1, 1, 1) \in e \) and \((1, \eta_2, 1) \in e \), which implies that \((1, 1, \eta_3) \notin e \). We thus have \(\eta_3 = \sqrt{\epsilon_0 t_0 u_{1 i} u_{2}} \) for some \(t_0 \in e_0 \) where \(\epsilon_0 \) is the fundamental unit of \(e_0 \). Consequently \(u_{0 j} u_{1 i} u_{2} u_{3} u_{4} u_{5} u_{6} = \eta_1 \eta_2 \eta_3 = \sqrt{\epsilon_0 t_0 u_{1 i} u_{2}} \) for some \(\epsilon_0 \in e_0 \), \(0 \leq i \leq 6 \). This yields \(\epsilon_0 = \epsilon_0^2 t_0^2 \), \(t_0 \in e_0 \), \(0 = 0, 2, 5, 6 \), and therefore \(\sqrt{\epsilon_0} = \pm t_0 t_4 \). However, this contradicts \((1, 1, \eta_3) \notin e \), our claim is therefore established.

We now make use of our claim and assume (again without loss of generality) that \((\eta_1, 1, 1) \notin e \) and \((1, 1, \eta_3) \notin e \). Then as above, we have \(\eta_3 = \sqrt{\epsilon_0 t_0 u_{1 i} u_{2}} \) and \(\eta_2 = \sqrt{\epsilon_0 x_0 u_{3} u_{4}} \) for some \(\epsilon_0, x_0 \in e_0 \). Thus \(\sqrt{\epsilon_0} \in K_1 \) and therefore \(K_1 = K_0(\sqrt{\epsilon_0}) \). Similarly, \(\sqrt{\epsilon_0} \in K_2 \) and \(K_2 = K_0(\sqrt{\epsilon_0}) \), which implies that \(K_0 = K_3 \), a contradiction. We therefore conclude that \((\eta_1, \eta_2, \eta_3) \in e \) and our lemma is proved.

Theorem 1. \(|C_{k_1,2}| \geq 32 \).

We apply formulas (1), (2), and (3*) to the following two cases:

Case 1. \(\prod_{i=1}^{3} q(K_i) = 1 \). From formula (3*), Lemma 4, and Lemma 5 we see that

\[
\begin{align*}
E : \prod_{i=0}^{14} e_i & = E^* : \prod_{i=0}^{6} e_i = q(k_1^+) \geq \frac{8h_0^2}{h(K_1) h(K_2) h(K_3)}.
\end{align*}
\]
From formula (2) we know that

\[h(K_i) = \frac{1}{2}q(K_i) \cdot h_k \cdot h(Q(\sqrt{p_i}) \cdot h(Q(\sqrt{p_j}))), \{i, j, k\} = \{1, 2, 3\}. \]

We recall that we have defined for \(K_i \), \(h(Q(\sqrt{p_j} \cdot p_k)) = h(K_i) \) (see the Introduction). From genus theory we see that \(\prod_{i=1}^{3} h^{*}(K_i) \geq 8 \); if \(\prod_{i=1}^{3} h^{*}(K_i) \geq 128 \) then \(\prod_{i=0}^{14} h_i \geq 2^{21} \) and formula (1) implies that \(|C_{h_i, 2}| \geq 32 \). We therefore assume that \(8 \leq \prod_{i=1}^{3} h^{*}(K_i) \leq 64 \). In a similar way we see that \(h_k \geq 4 \), and that if \(h_k \geq 64 \) then \(|C_{h_k, 2}| \geq 32 \); we therefore assume that \(4 \leq h_k \leq 32 \). We let \(\prod_{i=1}^{3} h^{*}(K_i) = 2^n \), \(3 \leq n \leq 6 \), and \(h_k = 2^m \), \(2 \leq m \leq 5 \). From repeated application of formulas (2) and (3*) we find that \(\prod_{i=1}^{3} h^{*}(K_{ij}) = 2^q \), \(1 \leq q \leq 8 \) and \(|E : \prod_{i=0}^{14} E_{ij} | \geq 2^{9 - m - n} \). We now apply formula (1) to conclude that \(|C_{h_i, 2}| \geq 32 \).

Case 2. \(\prod_{i=1}^{3} q(K_i) \geq 2 \). From Lemmas 4 and 5 and formula (1) we see that if \(\prod_{i=1}^{3} q(K_i) \geq 16 \) then \(|C_{h_i, 2}| \geq 32 \); we therefore assume that \(2 \leq \prod_{i=1}^{3} q(K_i) \leq 8 \). We make the same assumptions on \(\prod_{i=1}^{3} h^{*}(K_i) \) and \(h_k \) as in Case 1, and we again conclude that \(\prod_{i=0}^{14} h_i \geq 2^{12 + m + n} \). By Lemmas 4 and 5 we know that \(|E : \prod_{i=0}^{14} E_{ij} | = |E^{*} : \prod_{i=0}^{14} E_{ij} | = q(k_{ij}) \cdot \prod_{i=1}^{3} q(K_i) \). We thus find that through repeated application of formulas (2) and (3*) in conjunction with Lemmas 4 and 5, we are again able to conclude, as in Case 1, that \(|E : \prod_{i=0}^{14} E_{ij} | \geq 2^{9 - m - n} \) and therefore \(|C_{h_i, 2}| \geq 32 \).

In order to further extend our lower bound on \(|C_{h_i, 2}| \), we make use of the following results.

Lemma 6. \(|E : \prod_{i=0}^{14} E_{ij} | \geq 8 \).

Proof. We show that each of the fields \(Q(\sqrt{p_i}, \sqrt{p_j}) \) for \(1 \leq i < j \leq 3 \) must contain a unit that is not in a quadratic subfield.

Let \(k^{(i)} = Q(\sqrt{p_i}, \sqrt{p_j}) \). Then \(K_i = Q(\sqrt{p_i}, \sqrt{p_j}) \) is an unramified quadratic extension of \(k^{(i)} \). From formula 2 it follows that \(h(k^{(i)}) = h(K_i)/q(K_i) \). Since \(h(k^{(i)}) \leq 2h(K_i) \), this implies that \(q(K_i) \geq 2 \). We therefore are able to conclude (cf. [4, 13]) that \(|E : \prod_{i=0}^{14} E_{ij} | \geq 8 \).

Lemma 7. \(\prod_{i=0}^{14} h_i \geq 2^{18} \).

Proof. We demonstrate this result through a case by case analysis of the three Legendre symbols \((p_i/p_j) \) for \(1 \leq i < j \leq 3 \).

Case (a) \((p_1/p_2) = (p_1/p_3) = (p_2/p_3) = -1 \).

Case (b). (Without loss of generality) \((p_1/p_2) = (p_1/p_3) = -1, (p_2/p_3) = 1 \).
Case (c). (Without loss of generality) \((p_1/p_2) = (p_1/p_3) = 1, (p_2/p_3) = -1\).

Case (d). \((p_1/p_2) = (p_1/p_3) = (p_2/p_3) = 1\).

Case (a). Since \(C_{k_{2.2}} \cong (2, 2, 2)\) there are no \(d_k\)-splittings of the second kind (cf. [15, 20]) and since we are in Case (a) it follows that at least two Legendre symbols \((p_i/q), (p_j/q)\), are equal to 1.

By genus theory we see that \(h(Q(\sqrt{-p_1q})) \geq 4\) and \(h(Q(\sqrt{-p_2q})) \geq 4\). We are thus able to conclude in this case that \(\prod_{i=0}^{14} h_i \geq 2^{19}\).

Case (b). We use the same theory as Case (a) to conclude that either \((p_2/q) = 1\) or \((p_3/q) = 1\), and consequently either \(h(Q(\sqrt{-p_2q})) \geq 4\) or \(h(Q(\sqrt{-p_3q})) \geq 4\). It follows that \(\prod_{i=0}^{14} h_i \geq 2^{18}\).

Case (c). Through genus theory and a combinatorial analysis utilizing biquadratic residue symbols and criteria for the norm of the fundamental unit of a real quadratic number field being equal to \(-1\), it follows that either \(h(Q(\sqrt{p_1p_2p_3})) \geq 8\) or \(h(Q(\sqrt{p_1p_3})) \geq 4\) or \(h(Q(\sqrt{p_1p_2})) \geq 4\) (cf. [5, 6, 12, 17] for details).

Case (d). Since there are four \(d_k\)-splittings of the second kind, where \(k_0 = Q(\sqrt{p_1p_2p_3})\), it follows that \(h(Q(\sqrt{p_1p_2})) \geq 8\) and consequently \(\prod_{i=0}^{14} h_i \geq 2^{18}\).

Remark. One must be careful when using Buell [6] to include the omitted biquadratic residue symbol requirement \((p_2p_3/p_1) = -1\) in Case (c) of Lemma 7, in order to insure that the norm of the fundamental unit of \(Q(\sqrt{p_1p_2p_3})\) is equal to \(-1\).

We can make use of Theorem 1 and Lemma 7 to strenghten Lemma 3 as follows.

Corollary 1. Let \(|C_{k_{1.2}}| = 2^m\) (note \(m \geq 5\) by Theorem 1). Then \(|E: \prod_{i=0}^{14} e_i| \leq 2^{m-2}\).

Proof. By applying Lemma 7 to formula (1) our result immediately follows.

We will now employ Lemma 6 and Lemma 7 to prove that \(|C_{k_{1.2}}| \geq 64\). We note that by applying Lemma 6 and Lemma 7 to formula (1), we have a second proof that \(|C_{k_{1.2}}| \geq 32\).

Theorem 2. \(|C_{k_{1.2}}| \geq 64\).

Proof. We prove our result through a case by case analysis of the three Legendre symbols \((p_i/p_j)\) for \(1 \leq i < j \leq 3\), as was done in the proof of Lemma 7.
Case (a) \((p_1/p_2) = (p_1/p_3) = (p_2/p_3) = -1\).

Case (b). (Without loss of generality) \((p_1/p_2) = (p_1/p_3) = -1, (p_2/p_3) = 1\).

Case (c). (without loss of generality) \((p_1/p_2) = (p_1/p_3) = 1, (p_2/p_3) = -1\).

Case (d). \((p_1/p_2) = (p_1/p_3) = (p_2/p_3) = 1\).

Case (a). We see from the proof of Lemma 7, Case (a), that \(\Pi_{i=0}^{14} h_i \geq 2^{19}\). We apply Lemma 6 to formula (1) and immediately conclude that \(|C_{k_1,2}| \geq 64\).

Case (b). If \(|E^+|\Pi_{i=0}^{14} e_i| > 16\) then by Lemma 4, Lemma 7, and formula (1) we can conclude that \(|C_{k_1,2}| \geq 64\).

Assume \(|E^+|\Pi_{i=0}^{14} e_i| < 16\); by Lemma 6 and Lemma 4 this implies that \(|E^+|\Pi_{i=0}^{14} e_i| = 8\). By genus theory applied to formula (2) we obtain \(h(K_i) = 2q(K_i)\) for \(i = 2, 3\).

From the proof of Lemma 6 and our assumption that \(|E^+|/\Pi_{i=0}^{14} e_i| = 8\), it follows that \(q(K_i) = 1\) and consequently \(h(K_i) = 2\) for \(i = 2, 3\) (cf. [4, 13]). If \(h(Q(\sqrt{p_1 p_2})) \geq 4\) then from the proof of Lemma 7, Case (b), it follows that \(\Pi_{i=0}^{14} h_i \geq 2^{19}\), and from Lemma 4 and formula (1) we conclude that \(|C_{k_1,2}| \geq 64\).

If \(h(Q(\sqrt{p_1 p_2})) = 2\) then it follows as above, that \(q(K_i) = 1\) and \(h(K_i) = 2\) for \(i = 1, 2, 3\). Since \(h(k_0) = 4\) and \(h(K_i) = 2\) for \(i = 1, 2, 3\), we know by [3] (Proposition 7), that the 2-class field tower of \(k_0\) terminates at \(k_{0,1}\), the Hilbert 2-class field of \(k_0\).

Since \(k_{0,1} = k^+_1\), by formula (3) we obtain \(1 = h(k^+_1) = 1/4 q(K_i) \cdot \frac{1}{\phi}\), which implies \(q(k^+_1) = 16\) and consequently, using Lemma 5, \(|E^+|/\Pi_{i=0}^{14} e_i| = 16\), which is a contradiction, and we therefore conclude that \(|C_{k_1,2}| \geq 64\).

Case (c). If \(q(K_i) > 1\) for \(i = 1, 2, 3\), then from Lemma 7, the proof of Lemma 6, and formula (1) we conclude that \(|C_{k_1,2}| \geq 64\) (cf. [4, 13]).

We therefore assume that \(q(K_i) = 1\) for \(i = 1, 2, 3\). If \(h(k_0) = 4\) then from formula (2) we see that \(h(K_1) = 2\), and from [3, Proposition 7], the 2-class field tower of \(k_0\) terminates at \(k_{0,1}\), the Hilbert 2-class field of \(k_0\).

From [3] (Theorem 1), this implies that \((p_1/p_2)_{4} \cdot (p_1/p_3)_{4} \cdot (p_2/p_3)_{4} = -1\), where \((p_i/p_j)_{4}, 1 \leq i < j \leq 3\), is the biquadratic residue symbol. It follows that \(h(Q(\sqrt{p_1 p_2})) = (h(Q(\sqrt{p_1 p_3})) = 2\) (cf. [5, 17]). However, from the proof of Lemma 7, Case (c), we see that \(h(Q(\sqrt{p_1 p_2})) \geq 4\) or \(h(Q(\sqrt{p_1 p_3})) \geq 4\), which is a contradiction and we therefore conclude that \(|C_{k_1,2}| \geq 64\).
If \(h(k_0) \geq 8 \), we know that if \(h(Q(\sqrt{p_1 p_2})) \geq 4 \) or \(h(Q(\sqrt{p_1 p_3})) \geq 4 \) then \(\prod_{i=1}^{14} h_i \geq 2^{19} \). By Lemma 6 and formula (1) we conclude that \(|C_{k_1,2}| \geq 64 \). We therefore assume that \(h(k_0) \geq 8 \) and \(h(Q(\sqrt{p_1 p_2})) = h(Q(\sqrt{p_1 p_3})) = 2 \). By formula (2) we see that \(h(K_0) = \frac{1}{2} h(k_0) \), \(i = 1, 2, 3 \), and once again by [3] (Proposition 7), we know that the 2-class field tower of \(k_0 \) terminates at \(k_{0,1} \). It follows by genus theory that the Hilbert 2-class field of \(k_1^* \) is precisely equal to \(k_{0,1} \), and therefore since \(h(k_1^*) = \frac{1}{2} h(k_0) \), \(i = 1, 2, 3 \), we have \(h(k_1^*) = \frac{1}{2} h(k_0) \). From formula (3) we therefore obtain

\[
h(k_1^*) = \frac{1}{2} h(k_0) = \frac{1}{2} q(k_1^*) \left(\frac{1}{2} (h(k_0))^2 \right) \frac{1}{2} q(k_1^*) \cdot h(k_0) \text{ which implies that } q(k_1^*) = 16 \text{ and consequently, using Lemma 5, } [E : \prod_{i=0}^{1} e_i] = 16. \]

By Lemma 4, Lemma 7, and formula (1) we conclude that \(|C_{k_1,2}| \geq 64 \).

Case (d). From genus theory we know that \(h(k_0) \geq 8 \). We can therefore apply the same argument as in Case (c), under the assumption that \(h(k_0) \geq 8 \), to conclude that \(|C_{k_1,2}| \geq 64 \).

We thus see that in all possible cases we have \(|C_{k_1,2}| \geq 64 \) and our theorem is proved.

3. EXAMPLES

Example 1. \(Q(\sqrt{-2 \cdot 5 \cdot 29}) = Q(\sqrt{-8 \cdot 120}) \).

Since \(\prod_{i=1}^{14} h_i = 2^{24} \), Lemma 6 and formula (1) yield \(|C_{k_1,2}| \geq 2^{-16} \cdot 2^{3} \cdot 2^{24} = 2^{11} = 2048 \).

Example 2. \(Q(\sqrt{-2 \cdot 5 \cdot 17 \cdot 7}) = Q(\sqrt{-7 \cdot 760}) \).

Since \((\frac{2}{5}) = (\frac{5}{2}) = -1 \), \((\frac{17}{2}) = 1 \), and \((\frac{7}{2}) \cdot (\frac{2}{2}) \cdot (\frac{17}{2}) \cdot (\frac{7}{2}) = 1 \), \((a/b) \cdot (c/d) \cdot (e/f) = 1 \), where \((a/b) \) is the biquadratic residue symbol, we know from [3] that \(h(k_1^*) = 1 \), and utilizing the techniques described in [4] and [13] we obtain that \(\prod_{i=1}^{14} q(K_i) = 1 \). Since \(\prod_{i=1}^{14} h_i = 2^{19} \), \(h_{k} = 4 \), and \(\prod_{i=1}^{14} h^*(K_i) = 8 \), we see from formula (1), formula (2), formula (3), Lemma 4, and Lemma 5, that \([E : \prod_{i=0}^{1} e_i] = 16 \) and \(|C_{k_1,2}| = 128 \).

Example 3. \(K = Q(\sqrt{-2 \cdot 5 \cdot 13 \cdot 29}) = Q(\sqrt{-15 \cdot 760}) \).

Utilizing techniques described in [4] and [13] we see that \(\sqrt{2} \in Q(\sqrt{29} , \sqrt{5 \cdot 13}) \) and \(\sqrt{2} \in Q(\sqrt{5} , \sqrt{13 \cdot 29}) \), where \(\varepsilon_0 = 521 + 12 \sqrt{5 \cdot 13} \) and \(\varepsilon_1 = 233 + 12 \sqrt{13 \cdot 29} \), and thus \(\prod_{i=1}^{14} q(K_i) = 4 \). Since \(\prod_{i=1}^{14} h^*(K_i) = 16 \) and \(h_{k} = 4 \), we see from formulas (2) and (3) that \(q(k_1^*) = 2 \cdot h(k_1^*) \). Since \(\prod_{i=1}^{14} h_i = 2^{18} \), we know from formula (1) that \(|C_{k_1,2}| = 4 \cdot [E : \prod_{i=0}^{1} e_i] \). From Lemmas 4 and 5 we therefore have
\(E: \prod_{i=0}^{\infty} e_i = 8 \cdot h(k_i^+) \) and \(|C_{k_i,2}| = 32 \cdot h(k_i^+) \). Since \(k_i^+ = \mathbb{Q}(\sqrt{5}, \sqrt{13}, \sqrt{29}) \) and \(C_{k_i,2} \cong (2, 2) \) (cf. [6, 12]) we know that \(\text{Gal}(k_i^+)/k \) is dihedral and \(\mathbb{Q}(\sqrt{13}, \sqrt{29}) \) is the fixed field of the maximal cyclic subgroup of \(\text{Gal}(k_i^+)/k \) (cf. [8]). Since \(q(\mathbb{Q}(\sqrt{13}, \sqrt{29}) = 1 \) we see from formula (2) that \(h(\mathbb{Q}(\sqrt{13}, \sqrt{29}) = 4 \). Since the 2-class group of \(\mathbb{Q}(\sqrt{13}, \sqrt{29}) \) is cyclic, we know that the 2-class field tower of \(\mathbb{Q}(\sqrt{13}, \sqrt{29}) \) terminates at its first Hilbert 2-class field. It follows that \(\text{Gal}(k_i^+)/k \) is the dihedral group of order 8; therefore \(h(\mathbb{Q}(\sqrt{5}, \sqrt{13}, \sqrt{29}) = 2 \) and we are able to conclude that \(|C_{k_i,2}| = 64 \).

Note. By utilizing the technique in Example 3 we can obtain a whole family of fields \(k \) for which \(|C_{k_i,2}| = 64 \).

Remark. We take this opportunity to mention that in the first author’s previous work on obtaining lower bounds on \(|C_{k_i,2}| \) for imaginary quadratic number fields with \(C_{k_i,2} \cong (2, 2, 2) \) (cf. [1, 2]), we have incorrectly stated that there are 10 non-isomorphic groups \(G \) of order 64 with \(G/G' \cong (2, 2, 2) \) and \(G' \cong (2, 2, 2) \), when in actuality there are 12 such groups. However, the two groups we omitted each have a maximal subgroup such that 8 ideal classes capitulate (become principal) in its corresponding unramified quadratic extension, and therefore these two groups cannot occur for \(k \) imaginary, leaving all our results intact.

ACKNOWLEDGMENTS

We thank Franz Lemmermeyer for furnishing us with the explanation that \(h(\mathbb{Q}(\sqrt{5}, \sqrt{13}, \sqrt{29}) = 2 \), which we utilized in Example 3. We thank Chip Snyder for a number of valuable communications throughout this paper.

REFERENCES

1. E. Benjamin, Lower bounds on the 2-class number of the 2-Hilbert class field of imaginary quadratic number fields with elementary 2-class group of rank 3, *Houston J. Math.* 22, No. 1 (1996), 11–37.