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ABSTRACT 

Congruence of arbitrary square matrices over an arbitrary field is treated here by 
elementary classical methods, and likewise for conjunctivity of arbitrary square 
matrices over an arbitrary field with involution. Uniqueness results are emphasized, 
since they are largely neglected in the literature. In particular, it is shown that a 
matrix S is congruent [conjunctive] to So@& with S, nonsingular, and that if Si here 
is of maximal size among all nonsingular matrices R, for which R,@R, is congruent 
[conjunctive] to S, then the congruence [conjunctivity] class of S determines that of 
S,. Partially canonical forms (most of them already known) are derived, to the extent 
that they do not depend on the field. Nearly canonical forms are derived for 

“neutral” matrices (those congruent or conjunctive with block matrices 0 N 

[ 1 M 0 
with the two zero blocks being square). For a neutral matrix S over a field F, the 
F-congruence [F-conjunctivity] class of S is determined by the F-equivalence class of 
the Pencil S + tS’ [S + tS*] and, if the Pencil is nonsingular, by the F [t]-equivalence 
class of s+ tS’ [s+ ts*1. 

1. INTRODUCTION 

Matrices S and T over a field F are called congruent ouer F provided 
there is a nonsingular matrix C over F such that C’SC= T. (Here, and 
throughout, prime denotes transpose.) The problem of determining, for given 
F, S, T, when S and T are congruent over F has not been solved in any 
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satisfactory sense, except for certain very special cases. (See [q in this 
connection; there the language of “equivalence of bilinear forms” is used 

instead of the language of “congruence of matrices.“) In this paper we shall 

limit our treatment to the results that can be derived by elementary means 
for the general case. Some of these results were derived independently in [7, 

pp. 45-491, [5] by very different methods. Our methods are elementary 
classical methods of linear algebra, though our treatment for pencils is a 
somewhat unusual variant of classical treatments, which was used in [9] and 

[3], and independently in [4]. (The treatment in [5] depends on applying the 
Krull-Remak-Schmidt theorem to “Kronecker modules”; our approach is 

completely different.) We give special stress to uniqueness results, since 
these are largely ignored in the literature. 

The settings are those of [2]: a pair (F,E) of fields F and E is admissible 

provided it is complic or simplic, it is complic provided F is a proper 

separable quadratic extension of E, and it is simplic provided F= E. 

Associated with each admissible (F, E) is an involutory F-automorphism 
(called “(F,E)-conjugation”) ~I+Z, whose fixed field is E and_ which has 

order 2 if (F, E) is complic, order 1 if (F, E) is simplic. We let A denote the 

entrywise conjugate of the matrix A, and as usual we denote p by A *. 
We shall say matrices S and T over F are (F,E)-congruent (or, more 

briefly, *- congruent when F is understood from context) provided C* SC = T 

for some nonsingular matrix C over F. (Thus, in the usual complex case, 

where F is the complex field and E is the real field, “*-congruence” is the 
same as “conjunctivity” or “hermitian congruence”, though it is sometimes 
called merely “congruence.“) Clearly “*-congruence” is the same as “con- 

gruence” in the simplic cases. 
In this paper (F, E) will always be an admissible pair, unrestricted except 

as occasionally specified. The F-automorphism, (F, E)-conjugation, will often 

be denoted by * (since (Y= IX* as a 1 X 1 matrix), and the pair (F,*) 

determines the pair (F, E) as well as vice versa. Usually F, E, and * will be 

considered as understood (and fixed except as otherwise specified), and all 

matrices will be over F except as otherwise specified, but we shall often 
mention * explicitly (as in “*-congruence”) as a reminder that the complic 

cases are allowed. 
To each matrix S (over F) corresponds the (F, E)-bilinear f&m x* Sy [or, 

more precisely, the function (x, y)++~* Sy, where x and y are column vectors 
over F], which we shall usually call a *-bilinear form. This correspondence is 

well known to be one-one, and in fact the (i. i) entry of S is just e: S$ when 

e1,e2,... and fpfi> . . . are the standard ordered bases involved. Under this 

correspondence, *-congruence of a square (say n X n) matrix S corresponds 
to a change of basis (or also to a nonsingular linear map) in the space, say ?r, 
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of all n X 1 matrices: 

corresponds to 

in the *-bilinear form x*Sy (which ~x*C*Scy in either process). In this 
context we shall often regard S as a linear map ( y~Sy) of Y into its *-dual 
space ?r*. [Here ?r* is the space of all mappings f of ?r into F such that 
f( (YX + By) = $(x) + pf( y) for all (Y, p E F and all x, y E V.] The action of ?r* 
on ?r is such that Sy ( E v*) acts on x ( E Ir) to produce x* Sy ( E F). 

We shall also adapt the notion of “reciprocal polynomials” (the proper- 
ties of which are well summarized in [8, Sec. 11) to apply to the complic 
cases as well as the simplic cases. Namely&t (F, E) be admissible and let 
p(t) E F[t] with p(O)#O. Denote as usual p(f) by j?(t). Then we denote by 

l;(t) the *- reciprocal polynomial of p(t): fi(t)=p(O)-‘tdji(t-‘), where d is the 
degree of p(t) Fence, also of jT( t) and 9(t)]. A manic polynomial p(t) is 

*-self-reciprocal provided p(t) = p(t); in this case p(O)p(O)= 1. Clearly, if 
A = S*-‘S, then A*-‘= SAS - ’ and hence every invariant factor of A is 
*-self-reciprocal. A nonconstant manic *-self-reciprocal polynomial p(t) in 
F[t] will be called (F[t}-) irreducibly *-self-reciprocal provided p(t) cannot 
be factored in F[t] as a product of two nonconstant *-self-reciprocal poly- 
nomials; if p(t) E E [t] here and cannot be factored in E [ t] as such a product, 
then p(t) will be called E [t]-irreducibly (*-) self-reciprocal. Clearly, if 
K E {F, E}, each manic K [t]-irreducibly *-self-reciprocal p(t) in K[t] is 
either itself K [ t]-irreducible or else = 9(t)9( t) for some manic K [tl-irreduc- 
ible 9(t); in the latter case the factorization is unique (up to order) and the 
factors are distinct and hence are coprime. Finally (if K E { F, E}) each 
manic *-self-reciprocal polynomial p(t) in K [t] has a factorization (unique up 
to order) 

p(t)=pl(t)m”‘pz(t)“‘2’. * * pk(t)+, 

where pl(t)9pz(t)9.. . ,pk(t) are distinct manic K [t]-irreducibly *-self-recipro- 
cal in K[t]. 

In Sec. 2 we treat the *-congruence theory for nonsingular matrices over 
F to the extent that it does not depend heavily on the peculiarities of 
(F,E)-arithmetic. In Sec. 3 we treat the matrices S for which the pencil 
S+ tS* (with t an indeterminate over E) is nonsingular [as a matrix over the 
field F(t)] and “reduce” these cases to those treated in Sec. 2. Lastly, in Sec. 
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4 we treat the matrices S for which the pencil S + tS* is singular and reduce 

these cases to the previous cases. 

2. THE *-CONGRUENCE OF NONSINGULAR MATRICES 

Throughout this section and, where applicable, in later sections we shall 

use the following notation. 

NOTATION 2.1. We denote by I,,, the m x m identity matrix, by I,,, the 
lower triangular nilpotent m X m Jordan block, by G, the m X m unit 

antidiagonal matrix (whose rows are those of Zm in reverse order): 

0 

G,,,= 

1 

I, = 

0 0 
1 0 

. 1. 0 

0 1 0 

1 1 

We often write I, J, or G where the size is clear from context. The pair 
(F, E) is a fixed admissible pair of fields, arbitrary except as otherwise 

specified, and (in this section) S is always nonsingular over F. Nullspace will 
be abbreviated as mu, elementary divisor as e.d., and nontriviul invariant 

factor as nif. We often write A = S *-IS; thus (A*)‘S=SA-’ and (A*)%*= 

S*A-’ for every integer i, and hence f(A*)S= Sf(A-‘), etc., for every f(t) in 
F[t], in fact, for every f(t) in F(t) such that f(A*) exists. When F- E,EE 
{ 1, - l}, and A - EZ is nilpotent, we shall often write N = A - d; thus 
f(eZ+N’)S= Sf((eZ,+N)-I), etc., for every f(t)EF(t) with f(c)#co here, and 
hence 

g(N’)S=Sg( -N(I+eN)-I), etc., 

for every g(t) in F(t) with g(0) # co. Also N” = 0 implies that g(N)N”-’ = 
g(O)N”-’ for every such g(t) in F(t). The column space of the identity 

matrix (usually n X n in this context) will be denoted by Y, and its *-dual 
space by ?r*, and often S will be regarded as a linear map of ?r into ?r*, so 
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that A(=S*-‘S) and N(=A-&I) will thenbemapsof ‘?‘into?r.If ‘?L is 
a subspace of Y here, its annihilator in ?r* will be denoted by ‘?L”, and S % 
will be a subspace of ?r*, whose annihilator in ?r will be denoted by (S %)‘. 

Observe in Notation 2.1 that C-‘AC=(C*SC)*-‘(C*SC), so the *-con- 
gruence class of S determines the similarity class of A. Some cases where the 
reverse determination holds are given in Theorem 2.11 (d) below (some of 
the simplic cases of which are given in [7, Theorem 5, p. 481). 

Our first two decomposition results (Lemma 2.2 and Theorem 2.3) are 
standard. 

LEMMA 2.2. Let S be nonsingular nXn over F, and suppose the 

minimum polynomial of A= S*-‘S is p(t)q(t), where p(t) and q(t) are 

coprime in F[t] and each is m&c *-self-reciprocal. (1) Then S is *-con- 

gruent to a direct sum P @ Q, where P*- ‘P and p- ‘Q have respective 

minimum polynomials p(t) and q(t). (2) Also the *-congruence classes of P 

and Q are determined from p(t),q(t), and the *-congraence class of S as 

follows: the n X n matrix P%30 is *-congruent to q(A)*Sq(A), and O@Q is 

*-congruent to p(A)*Sp(A). 

Proof. The proof of (1) is routine: the two subspaces nspp(A) [which 
= q(A)V] and nspq(A) [which =p(A)v are complementary in Ir (see [6, 
Vol. 1, p. 1791); using bases for them (in that order) as the columns of an 
n X n matrix C makes C* SC = P EB Q with the required properties. To prove 
(2), let C*SC= T and C-‘AC=B in (1). Then T=P@Q and B= T*-IT= 

P*-‘P@Q*-‘Q and 

C*q(A)*Sq(A)C= [ C-‘q(A)C]*(C*SC)[ C-‘q(A)C] 

= q(R)*Tq(B) 

=q(P*-‘P)*Pq(P*-‘P)@O, 

which is indeed * -congruent to P G30. [Here we have used the fact that 
q(Q*-lQ)=O and that q(P*-‘P) is nonsingular.] In much the same manner 
one sees that p(A)*Sp(A) is *-congruent to O@Q. Also, if R is any matrix 
*-congruent to S, say D* RD = S, then 

which is * -congruent to q(A)* Sq(A) and hence to P@O. [A similar result 
holds for p(t), O&3 Q, and R.] n 

A routine induction applied to Lemma 2.2 yields the following. 
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THEOREM 2.3. Let S be n X n nonsingular over F, and let p(t) be the 

minimum polynomial of A = S*-‘S with factorization p(t) = 

pl( t)m(‘) * - - pk( t)+), where the polynomials pi(t) are manic *-self-reciprocal 

and pairwise coprime in F[t]. Then S is *-congruent to S,@ * *. CBS,, with 

S: - ‘Si having minimum polynomial pj( t)“‘(‘) for each i. Abo the *-con- 

graence classes of S,,..., S, are determined from [the polynomials pi(t)“(‘) 

and] that of S by the fact that for each i the n X n matrix S,@O is 
*-congruent to 9j(A)* Sq,(A), where si(t) E F[t] is defined by pi( t)“(‘)9J t) = 

P(t)* 

Theorem 2.3 reduces the study of *-congruence of nonsingular matrices S 
to the case where the minimum polynomial of S* - ‘S is a power of an 
F[t]-irreducibly *-self-reciprocal polynomial. We treat the latter case in the 
following theorem. (Much of the simplic case of this result appeared in [7, 
Lemma 6, p. 491.) 

THEOREM 2.4. Let S be non-singular over F, A = S* - ‘S have minimum 

polynomial 9(t)“, and 9(t) be manic F[t]-irreducibly *-self-reciprocal in 

F[t]. Then S is * -congruent to S,@ * . * @S, with the nifs (see Notation 2.1) 
of the matrices Ai = Sj * - ‘Si being pozoers of 9(t) as follows. 

(1) Each Ai has just one nif, but occurring (in that Ai) with multiplicity 

1 or 2. 

(2) Each 4 is nonderogatory (i.e., the multiplicity is 1 for each Ai) if 

either (F, E) is complic or 9(t) is nonlinear. 

(3) When a matrix Ai is similar to the direct sum of two copies of a 

companion matrix (i.e., when the multiplicity is 2 f&r that Ai), we can take 

the corresponding 

s.= p L 
I 

i 1 M Q 
conformably, with L and M nonsingular and P and Q singular. 

(4) When (F,E) is complic and 9(t) is linear, each S, is *-congruent to an 

upper antitriangular matrix with entries on the antidiagonal equal to each 

other, and all entries on the first super-antidiugonal nonzero and equal to 

each other, and all other entries zero (the specific f&m is given in Lemma 
2.8). 

The proofs of parts (l), (2), and (3) of Theorem 2.4 follow by routine 
induction from Lemma 2.7 below, and the proof of part (4) follows from the 
first two parts plus Lemma 2.8 below, but we need two preparatory lemmas 
first. 
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LEMMA 2.5. Zf (F, E) is complic or q(t) is nonlinear in lbeorem 2.4, 
then there are an integer h > 0 and a vector e E Y such that 

Proof. First suppose (F, E) is complic. Then there is a 0 ##E F. For any 
such 8 we have the elementary identity 

-fqx+y)*T(x+y)+(x+ey)*T(r+ey)] 

for every x and y in ?/ and every linear map T: ?r+?r*. Thus for every 
nonzero such T there is an e E ?I” such that e* Te#O. Since SA -hq(A)“-’ is 
nonzero for every integer h, we can, say, take h =0 and put T= Sq(A)“‘-1 
here. 

To prove the conclusion for the case where q(t) is nonlinear, we may 
now suppose also that (F, E) is simplic, i.e., that F= E. Then q(t) is not t - 1 
nor t + 1 but is manic irreducibly self-reciprocal, so q( l)q( - 1) #O and q(t) 
must have even degree, say 21, and q(O)= 1. (See [8, p. 327.) Let r(t)= 
[t-zq(t)]“-l. Then r(t-‘)=r(t)EF(t), and r(A)#O because q(A)m-‘#O 
[and r(A) exists because A is nonsingular] and A + Z is nonsingular [because 
q( - 1)#0 and q(A)‘” =O], so (by Notation 2.1) 

%(A) + r(A’)S’= S’Ar(A) + S’r(A-‘) 

= S’(A + Z)r(A) 

is nonzero, and hence Sr(A) is nonalternating. (An n X n matrix T is ahernat- 
ing (or alternate) provided r’ TX =0 for every n X 1 matrix X. See [l, p. 
387-3911 for more details.) Thus there is an e E Y such that e’%(A)e#O, so 
we can take h = Z(m - 1) here. n 

The next lemma is also technical in nature and treats a case [case (2) of 
the lemma] not needed for the proof of Theorem 2.4 but needed elsewhere. 

LEMMA 2.6. Let p(t) and q(t) b e in F [t] such that (at least) one of the 
following two cases holds: (1) q(t) is manic F [ t]-irreducibly *-self-reciprocal, 
or (2) p(t) E E[t] and q(t) is manic E[t]-irreducibly *-self-reciprocal in E[t]. 
Furthermore suppose that neither t nor q(t) divides p(t) and that (in 
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Notation 2.1) e E ?r and h, s, j, 1 are nonnegative integers such that q(A)“+’ = 

0, 

e*SA-hq(A)“e#O, [ p(A)Aiq(A)‘e]*S%=O, 

where % is the A-cyclic subspace of ?r generated by e. Then 1 >s. 

Proof. From hypothesis we have 

e*g(A*)‘p(A*)A*&A’e=O 

for all integers i. We shall show that consequently the following two 
equations must hold: 

O=e*Sp(A)q(A)‘%, 0= e*+(A)q(A)‘%. 

To show the first equation holds, we perform * (conjugation followed by 
transposition) on the preceding equation: 

0= e*A*‘S*Ab(A)q(A)‘e 

= e*SAi-l-‘p(A)q(A)‘e 

(because A*‘S*=A*‘SA-‘= SA-‘-‘; see Notation 2.1); this holds for all 
integers i, and hence 0= e*Sp(A)q(A)‘%. 

To show the second equation holds, we let d =degreep(t) and c = 
degree q( t) and note that 

0= e*q(A*)‘jT(A*)A*iSA’e 

= e*S p(O) $(A) 4(o) ‘q(A)‘A i-i-d-cze 

[because q(t)= q(t), etc.]; this holds for all integers i, and hence 0= 
e*S@(A)q(A)‘%. 

Note that this second equation differs from the first one only in the 
replacement of p(A) by $(A). Thus (in these two equations) we can now 
replace p(A) and $(A) by g(A), where g(t) = gcd( p(t),@(t)). Namely, g(t) = 

4t)dt) + dt)P(t) f or suitable u(t) and v(t) in F[t], and u(A)% c_% and 
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u(A)% c %, so 

0= e*Sp(A)q(A)“?L 2 e*Sp(A)q(A)‘u(A)‘?L, 

0= e*S$(A)q(A)“% >e*S@(A)q(A)‘u(A)%, 

and hence (by addition) 

0= e*S[ u(A)p(A) + c(A)$(A)]q(A)% 

=e*Sg(A)q(A)“?L. 

However, g(t) = i(t) is *-self-reciprocal and is not divisible by q(t), so it is 
coprime to q(t): in case (1) because q(t) is F[ t]-irreducibly *-self-reciprocal, 
in case (2) because g(t) E E [t] and q(t) is E [t]-irreducibly *-self-reciprocal. 
Thus g(A) is nonsingular because q(A)“+‘=01 and hence g(A)% = %, so 

for every integer i > 0. Thus 1 >s (othervvise a contradiction would occur for 
i = s - 1). n 

LEMMA 2.7. Under the Theorem 2.4 hypotheses, S is *-congruent to 
T CI3 R, where T*-‘T is nonderogatory with nif= q(t)“’ in each of the 
following three cases: (i) where (F,E) is complic, (ii) where (F,E) is simplic 
and q(t) is nonlinear, and (iii) where (F,E) is simplic and q(t) is linear 
(hence q(t) = t - E with E E { 1, - l}) and Sq(A)“-’ is nonalternating. On the 
other hand, in the case (iv) where (F, E) is simplic and q(t) is linear (= t - E) 
and Sq(A)“-’ is alternating, S is congruent to T@R, where T’-lT=~IZm+ 

(.I, @I,) and 

with P and Q singular m x m and L and M nonsingular. 

Proof. We treat cases (i), (ii), and (iii) together. In each of these cases 
there are an integer h > 0 and a vector e such that e*SA -hq(A)“-le#O [in 
cases (i) and (ii) this is by Lemma 2.5; in case (iii) this is by definition of 
nonalternating]. Let % be the A-cyclic subspace generated by e. Then 
%-&V?L)~=O by Le mma 2.6 (with s=m-1), so ?r=%CB(S%)” is an 
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S-orthogonal direct-sum decomposition of ?r, and is also S*-orthogonal 
because S*% = SA-‘% = S%. 

Finally we treat case (iv). Here q(t)=t-E with .sE{l,-1}, and F-E 
and Sq(A)“‘-‘= S(A - EZ)~- ’ is alternating. Let N= A - d. Since SN”- ’ # 
0, there are vectors e and f in Y such that e’SN”-‘f= 1. Thus f’SNmP1e = 
- 1, since SNm-’ is alternating. Let % and % be the respective N-cyclic 
subspaces of V generated by e and f. Then %!L and W are m-dimensional 
because N”=O and Nm-le#O#Nm-’ f. It suffices to show that the follow- 
ing properties hold: 

(1) W-ln=o=(%+W)n[s(%+%J)]O, 
(2) s(%+W)=s’(%+W),SW=S’W, 
(3) %n(S%)"=O=%n(S'%)o, 
(4) %n(S%)"#0,G2ij‘n(S%jo#0. 

Now, (2) holds because S = S’A and S ’ = SA - ’ and % and ‘?6 are 
A-invariant. Also, (4) holds because O#N”-‘eE % n (S%)" and O#N”-‘f 
E W n (S %I)‘; for example, 

= e’s( - Z- &)l-mNm-l~ 

=e’S(-1) r-mNm-‘C& =e’SNm-iq, 

which = 0 because e’SN”- ‘Nb = 0 for all i > 0 (for i > 0 because N” = 0, for 
i =0 because SN”- ’ is alternating). 

To prove (3), it suffices, since S w = S’%, to show % n (S%)'=O. To 
show % n (S G2lj‘)‘=O, it suffices to assume [Nfp(N)e]‘S% =0 for some 
integer i > 0 and some p(t) E F [t] with p(O) #O, and to show that then j must 
be > m. To show j > m here, we note that p(N( - Z - EN)-l) is nonsingular 
[because N” =0 and p(O) ZO], so 

= e’SNi’% 2 e’SNi+if 

for every integer i > 0, so indeed j must be >m. 
Finally, to prove (l), it suffices to assume x E % and y E w and 

x+yE[S(%+W)]a, and to show that then x and y must be 0. Thus 
X= Nku(N)e and y = N’o(N)f for some nonnegative integers k and Z and 
some polynomials u(t) and u(t) in F[t] with u(O)#O#u(O). It suffices to show 
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that k and 1 must both be > m here. Say k > 1; then it suffices to show 12 m. 

Suppose l<m-1; then N m- ’ -‘e E % + G2c\‘ and we get the following con- 
tradiction: 

The first term (in the last member) is 0 when k > I + 1 (because N” = 0) and 
also is 0 when k = 1, because in the latter case it is ( - l)- k~(0)e’SNm- ‘e, 
which is 0, since SN”- ’ . IS alternating. On the other hand, the second term 
= (- I)-‘v(O)f’SN”-‘e = (- l)-‘v(O)( - 1) is nonzero. This contradiction 
shows that 1 > m when k > 1. Similarly k > m when 1 > k. This completes the 
proof of Lemma 2.7. n 

REMARKS on Lemma 2.7(iii) and (iv). 

(1) Another way to see that the blocks P and Q in (iv) are singular and 
the blocks L and M are nonsingular is to use Jordan bases for % and w: 
(e,Ne,..., N”-‘e) for % and (f,..., N”- y) for ‘%. Then all four blocks are 
antitriangular (because N” = 0) and the antidiagonals of P and Q are 0 
(because SN”-’ is alternating), while all the antidiagonal entries of L and M 

are nonzero (alternating 1 and - 1) because e’SN”‘- y= 1. 
(2) When charF#2, it is known that % and w in the proof of case (iv) 

can be chosen so that the diagonal blocks P and Q are 0. 
(3) When charF#2 and E = (- l)m-l in case (iii) or (iv), then it can be 

routinely shown that SNm-’ is symmetric (and nonzero) and hence non- 
alternating [thus excluding case (iv)]. On the other hand, when E =( - 1)” 
here, then SN”-r must be alternating [thus excluding case (iii)]; likewise if 
char F = 2 and m is ,even. When char F =2 and m is odd, then SN”-’ can 
be either alternating or nonalternating. (Most of the computations relevant 
to this remark are given in the proof of [2, Theorem 3.61.) 

Part (4) of Theorem 2.4 follows from parts (1) and (2) and the following 
lemma. 

LEMMA 2.8. Let (F,E) be ccnnplic, S be n x n non-singular over F, 
A= S*-‘S be twderogatoy, a EF, and A- al be nilpotent. (i) Then G- 1, 



170 C. S. BALLANTINE AND E. L. YIP 

and (ii) there is at least one 0 E F s_uch that_8#B#&. Furt@more, (iii) if (0 
is an3 element of F such that) B#B#a8 and P=(e- LY~)-~(LT- l), then 

@=/3andSis* -congruent to EG [ Z + 0( /3l_+ _Z)] for some E E E. Likewise, (iv) 
if a#1 and 0#9 and ~=(a--l)-‘(O-(YO), then y=u and S is *-congruent 

to &G[yZ+J+BZ] for some EEE. 

Proof. (i) is clear because CY is the only root of A (which is similar to 
A*-l). To s ee n , note first that there is a a_#& E F, since (F, E) is complic; (“) 
if 6 #c& we can take 0 = 6, whereas if 6 = US, we can take 8 = 6 + 1, because 
CY # 1 in the latter case. Finally, we prove (iii) [the proof of (iv) is much the 
same, so we omit it]. Thus, let e#f3 #ae and p = (0 - or?)-‘(CX - l), and let 

H=(&8)-‘(&8S*), K=(8-Q-‘(S-S*). 

Then /3=p (because ag=l), S=H+BK, H=H*, and K=K*. Also H is 
nonsingnlar because 8 #cut? Let B = H -‘K and N = B - /3Z. Then 

B=(@*-8S)-‘(S-S*)=@Z-&A)-‘(A-z), 

and (A-orZ)“=O#(A--cuZ)“-’ (because A-aZ is nXn nilpotent and non- 

derogatory), so N” = O#N”-‘. Also N*H=K-PH-HN, so N*‘H=HN’for 
all i > 0. Since HN”-‘ZO and (F,E) is complic, there is a vector e such that 
e*HN”-‘e#O (as in the proof of Lemma 2.5). Let E= e*HN”-‘e; then 
E=e*(N*)“-‘He=&, so O#eEE. Let 

n-l n-1 

r(t)=e-l 2 (e*HNn-‘-ie)ti= 2 l;ti. 
j=o j=O 

Then r(t) = r(t) E E [t]. and r(O) = 1, so there is a (unique) s(t) of degree <n 
in E [t] for which r(t) s( t) - 1 is divisible by t”. Uust divide r(t) into 1, using 
ascending powers of t, until the remainder is divisible by t”; the quotient is 
then s(t).] Then s(O) = 1, and there is a p(t) E F[t] such that p(O)= 1 and 
p(t)& t) - s(t) is divisible by t” (since every number in E can be written as 
c+C for some c in F). Let d=p(N)e; then N”-‘d=p(O)N”-‘e=N”-‘e, so 

d*HN”-ld=d*HN”-le=(Nn-ld)*He=(N”-’e)*He=e. Let s(t)=Cs,t’, 
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summed over i E { 0,. . . ,n-l}. Then for O<j<n we have 

=e*HN”-‘-fp(N)p(N)e 

= e*HNn-l-iS(N)e= f: e*Hs,N n-l--j+i e 
i=O 

i 
= E 2 ri_isi=o. 

i=O 

Thus d*NB4’HNfd=d*HN’+id=O if i+j#n-1 (and it =E if i+i=n-1), 
so the matrix of H in the N-cyclic basis (d,Nd, . * * , N”-‘d) is EG. Also the 
matrix (in this basis) of B - /?I( = N) is J, so the matrix of S = H + 0K = H(I + 

@B)issG[Z+e(pZ+J)]. n 
There is in general no simple *-congruence canonical form for S in 

Theorem 2.4, but when the *-bilinear form x*Sy is “neutral” in the sense of 
[S, p. 671, we can get a fairly canonical form (modulo interchanging compan- 
ion matrices belonging to elementary divisors of A that are *-reciprocal to 
each other). This is done in Theorem 2.11 below (and, for special cases 
obtained by imposing restrictions on the minimum polynomial of A, in 
Theorem 2.12 and Corollary 2.13). We need first to define “neutral” as we 
shall use the term. 

DEFINITION 2.9. A partitioned matrix P N 
[ 1 M Q 

will be called neutrally 

partitioned provided P = 0 and Q = 0 and both P and Q are square matrices, 
and a square matrix over F will be called (F,E)-neutral [or just neutral, 

when (F,E) is understood] provided it is (F,E)-congruent to a neutrally 
partitioned matrix. 

REMARK 2.10. (1) A matrix S is (F,E)-neutral iff the *-bilinear form 
x*Sy is neutral in the sense of [S, p. 671. (2) Each direct sum of neutral 
matrices is neutral. (3) If M and N are nonsingular, then the following 
neutrally partitioned matrices are *-congruent to each other: 

[: f]* [ ,:: :I*-‘-[ M(1_l “i-l]> [ N*(llM ;I. 
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[The *-congruency of the first two is from the fact that every nonsingular 
matrix W is * -congruent to W*-’ = (W-‘)*WW-‘.I (4) If N=C-‘MC, 

then the neutrally partitioned matrix i i is *-congruent to 
I 1 

i 1 ; ; =(c*ec-l)[i $cec*-1). 

THEOREM 2.11. Let S be non-singular and (F,E)-neutral and A= S*-‘S, 

and let f(t) and g(t) be manic F[t]-irreducible. (a) Then S i.s *-congruent to a 

neutrally partitioned matrix 0 z 
[ 1 M 0 

with M = PCBQ, the characteristic 

polynomials of P and P* - 1 being coprime and every elementary divisor of Q 
being *-self-reciprocal. (b) Let k be the multiplicity _of f(t)” as an e.d. 
(elementary divisor) of MAhere; then each of f(t)” and f(t)” bus multiplicity 
k as ane.d. of A if f(t)#f(t), and f( t)” has multiplicity 2k as an e.d. of A if 
f(t)= f(t). (c) Let 1 be the multiplicity of g(t)“’ as an e.d. of A here (so g(t)” 
also has multiplicity 1 as an e.d. of A); then one of g( t)” and i(t)” (the same 
one for every m) has multiplicity 1 and the other bus multiplicity 0, as an 
e.d. of M if g(t)#z(t), and (1 is even and) g(t)” has multiplicity i 1 as an 
e.d. of M if g(t) = i(t). (d) Thus the similarity class of A determines the 
*-congruence class of S here. (e) The matrices Si in Theorem 2.3 are 
(F, E)-neutral here. 

Proof. (a): Here S is 

a ’ 

*-congruent to a neutrally partitioned matrix 

2 0’ by Remark 2.10 (3), and by Remark 2.10 (4) we may assume M is 

e direct sum of the companion matrices of its e.d.‘s (elemen 

Thus S is *-congruent to the direct sum of the matrices 
[ ‘“I 

divisors). 

i i for which 

H is such a companion matrix (and multiplicities correspond). Further, if H is 
the companion matrix of an e.d. s(t)h with the divisor base s(t) manic 
F[t]-irreducible, then, by Remark 2.10 (3), we may replace the direct 
summand H in M by H* - ‘, and hence by the companion matrix K of i(t)h 
by Remark 2.10 (4) (since K is similar to H*-l). Thus we may choose the 
direct summands in M so that, for each pair { s(t),s^(t)} of manic F[t]-irreduc- 
ible polynomials with s(t)#i(t), at most one of the two occurs as a divisor 
base for (the e.d.‘s of) M. With this choice for M, let P be the direct sum of 
the companion matrices of the e.d.‘s of M which are not *-self-reciprocal, 
and let Q be the direct sum of the companion matrices of the *-self-recipro- 
cal e.d.‘s of M. Then M is similar to PG3 Q, so we may assume M itself 
= P @ Q by Remark 2.10 (4). Clearly P and Q satisfy the requirements of (a). 
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To prove (b), let 

T= o I 
[ 1 M 0’ 

Then A is similar to T+-lT=M~M*-l=P~Q~P*-l~Q*-‘, so it 

suffices to note that the characteristic polynomials of P, P*-l, Q are pairwise 

coprime (and that every e.d. of Q is *-self-reciprocal and hence Q is similar 
to Q*-I). Part (c) follows routinely from (a) and (b). Part (d) follows from (c) 

plus the fact that the *-congruence class of S is not changed here if a 
companion matrix H is replaced (as a direct summand in M) by the 

corresponding matrix K as specified in the proof of (a). 

To prove (e), let r(t) be the characteristic polynomial of A and r(t) = 

Ti( t) . . * rk(t) with the polynomials r,(t) manic *-self-reciprocal and pairwise 
coprime, and let S, CB . * 1 G3 Sk be the corresponding direct sum (*-congruent 
to S) given by Theorem 2.3; then ri(t) is the characteristic polynomial of 
Ai = SF - ‘Sj. Let P and Q be as in part (a), with respective characteristic 
polynomials p(t) and 9(t). Then A is similar to PCBQ@3P*-‘@Q*-‘, and 

the polynomials ~(f),$(t),q(t) are pairwise coprime, and 9(t) = 9(t) and 

hence r(t)=~(t)@(r)9(t)‘. Let Pi(t)=gcd(p(t),rj(t)) and 4i(t)=gcd(q(t),r,(t)) 
for each i. Then &(t)=gcd(+(t),ri(t)) and 9Jt)=q,(t), and hence r,(t)= 

Pi(t)$ii(t)9i(t)2~ f or each i. For each i let Pi be the direct sum of the 
companion matrices of the e.d.‘s of P which divide pi(t), and define Qi in like 

fashion from Q and 9i(t). Then Pd3 Q is similar to ei(Pi@Qi), so S is 

*-congruent [by Remark 2.10 (4)] to 

Thus Si is *-congruent by Theorem 2.3 to 

and hence is neutral, for each i. W 

One gets an essentially canonical form under *-congruence for nonsingu- 
lar neutral matrices from Theorem 2.11; the same applies to the next two 
results, which turn out to be special cases of Theorem 2.11 but are ap 
proached via the minimum polynomial of A. (In Theorem 2.11 we found it 
more convenient to employ the characteristic polynomial of A, but we revert 
to the minimum polynomial now.) 
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THEOREM 2.12. Let p(t) b e manic F[t]-irreducible and coprime to p(t), 

and let p(t)“‘@(t)” be the minimum polynomial of A = S* -IS. Then S is 

*-congruent to a neutrally partitioned matrix 0 I 
[ 1 M 0 

where p(t)” is the 

minimum polynomial of M. 

Proof. Let (in Notation 2.1) % =nspp(A)” and w =nspF(A)“. Then 
(see [6, Vol. I, p. 1791) Y= % @ %, dim ‘?L = dim %, p(t)” is the minimum 
polynomial of the “%-restriction of A, +(t)” is that of the w-restriction of A, 
% = $(A)” ?r, and % = p(A)* ?r. Also ?r* = w” CB %‘, and w” and %’ act 
in the usual way as the respective *-duals of % and %. To see that 
S w c w”, let x E w. Then x = p(A)“y for some y E Y, and hence 

(Sx)*w = y*p(A*)“s*~(A)~‘-v 

= y*S*p(A-‘)mp(A)“?T, 

which = 0 because F(A-‘)= P(O)A-~$(A) [where d=degreep(t)]. In like 
fashion S G2L c %‘. Let Ci3 be a basis for w, and let ??I * be its *-dual basis 
for %‘; then S%I is a basis for ‘%O, and its *-dual basis for G% is S*-‘3 *. 
The matrix of S: Y+7i* in the basis (S*-“%!I *, 33) for ?r and its *-dual 

basis (S 3, ??I *) for ‘V*] is thus a neutrally partitioned matrix t 1 i i over 

F (see Definition 2.9). One easily calculates that in this same basis A : ?r+?r 
has matrix M CB M*- ‘. Thus M is the matrix of the %-restriction of A, so its 
minimum polynomial is p(t)“. n 

COROLLARY 2.13. Let p(t) be manic and coprime to P(t) in F[t], and let 
p(t)@(t) be the minimum polynomial of A = S*-‘S. Then S is *-congruent to 

a neutrally partitioned matrix 0 z 
[ 1 M 0’ 

where p(t) is the minimum poly- 

nomial of M. 

Proof. Let p(t) = pr(t)‘“(‘) . . . pk(t)“@) with the k polynomials pi(t) being 
distinct manic F [ t]-irreducible. Then e(t) = f&( t)m(‘). . . &( t)m(k), and the k 

polynomials q,(t) = pi(t)&(t) are manic F [ t]-irreducibly *-self-reciprocal and 
are pairwise coprime, so S is *-congruent to a direct sum &Cl3 * * * Cl3 S, with 

q*(t) m@) the minimum polynomial of Ai = SF-‘Si for each i (by Theorem 2.3). 
Thus S is *-congruent by Theorem 2.12 to a direct sum 
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and hence to 0 I 
[ 1 M 0 

, where M= Ml @ . . . Cl3 Mk and pj( t)m(i) is the mini- 

mum polynomial of Mi (for each i), and hence p(t) is the minimum poly- 
nomial of M. n 

3. NONSINGULAR PENCILS S+ tS* 

In this and the next section we shall consider matrix pencils; in nonhomo- 

geneous notation they appear as A - tB, with t an indeterminate, and A and 
B conformable matrices, over a field F. Such a pencil is called nonsingular 

provided it is square and its determinant is nonzero in F[t]. Although we are 

concerned with square matrices in this paper, we shall introduce the 

following notation (Notation 3.1) and initial result (Lemma 3.2) in a way that 

will also apply to nonsquare matrices. 

NOTATION 3.1. Let A and B be m X n matrices over F, t be an 

indeterminate over F, ‘v be the space of all n X 1 matrices over F, and ?r, be 
the space of all m X 1 matrices over F. For a subset s of ?r we define AS 
and BS by regarding A and B as maps of ?f into T, and likewise for a 

subset S ’ of ?rl and the inverse images A - ‘S ’ and B - ‘S ‘: 

A& = {AxxES}, A-lS’= {xE%AxES’}, 

with analogous definitions for BS and B -‘S ‘. Next, for integers i > 0 we 
define (AB - ‘)i S ’ and (A-‘B)‘S inductively by (AB -l)OS’= S’, (A-‘B)‘S 
=S and 

(AB-i)‘+‘S’=AB-‘(AB-l)‘S’, 

for each i > 0. We denote the two special sequences of sets (subspaces here) 
starting with 0 E Y ( more properly, with (0) c ?r, but we shall persist in this 
“abuse of notation” for the sake of brevity) as follows: 

Qi = (A -IB)‘o, %$=(B-~A)‘o 

for each i > 0. (In particular, %, =nspA and %i=nspB.)Thu~O=%,,C~ 
c*** c%~, and if G2Li=%*+i, then qi=‘%“. (Hence %“=%“+i=..., 
and Gw;I=%“+i=... .) We shall often denote %” by % and “w;, by %. 
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Next we list some well-known elementary facts about images and inverse 

images for convenient reference. 

FACT 3.2. (a) In Notation 3.1 we have, for all subsets 5 and 9 of ?r 
and all subsets S ’ and 5’ of ?r,, the following: 

A(A-'S')=S'nAv, 

A-'(S'n5')=(A-'S')n(A-'ET'), 

A(S nT)c(AS)n(AT), 

A-‘(AS)=S +A-‘0, 

A-‘(S’+T’)>(A-%‘)+(A-‘y’), 

A-l[(AS)+T’]=S +A-‘7’. 

(b) In Notation 3.1, if ?rr = Y* is the *-dual of ?r, 5 and S * are subsets of 
?r and ?r* respectively, and T* is a subspace of ?r*, then 

(A*S)O=A-‘(SO), 

(A-% *)‘zA*(S *‘), 

LEMMA 3.3. In Notation 3.1 we have % n G2is = 0 iff rank(A - tB) = n 
(over the field F(t)), i.e., iff the pencil A - tB has no column-minimal 
indices [6, Vol. II, p. 381. Thus, when n = m here, % n ‘?U- = 0 iff the pencil 
A - tB is nonsingulur. 

Proof. “If’: Assume rank(A - tB) = n over F(t), and let xE % n %. 
Then there are vectors x0, xi,. . . , xsn inYwithx=x,,xiE~i,andx,,_iE~~ 

for all ibn, and Axi=Bxi_, for all iE{1,2,...,2n}. Let 

Then (A - tB)z=O over F(t). Thus i=O over F(t) because rank(A - tB) = n 
over F(t). Therefore i = 0 over F[ t], and hence r = X, = 0. 
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“Only if’: (This is essentially a reversal of steps in the “if’ proof, but 
with complications.) Assume % n % = 0, and suppose (A - tB)9 =0 for 
some n X 1 vector 3i over F(t). First, multiply the latter equation through by a 
“common denominator” in F[t]. Thus we may assume 3i is over F[t], and it 
suffices to prove that 2 must be 0 over F[t]. To do this, pick out an arbitrary 
coefficient (n X 1 over F) in ?; call it x; then it suffices to show that x must 
beO(overF).Sayg=... +t’x+*** has degree d ( > 1). (If i = 0 here, there 
is nothing more to prove.) Then 

for some n x 1 vectors x@ x1,. . . , x2, over F with xd = x. Thus (A - tB)td-‘f= 

0 over F(t), and hence over F[t], so Axi=Bxi__, for all iE{l,2,...,2d}, 
Ax, = 0, and BxZd - -0. Therefore x~E’?L~+~ and xsd_iE%i+i for all i<d, so 
x = xd E (?Ld+ I n %,+ I C % (‘I ‘?lf , and hence x must indeed be 0. n 

REMARK. By the same method used in proving the “if” part of Lemma 
3.3, one can show that 9Li n % = 0 implies % n W = 0 (as does % n “w; = 
O).Thuswehave%n%=Oiff G2L,n%=Oiff DZLn‘&=O;thisyieldstwo 
more criteria, which are less symmetric than G2L n % =0 but computation- 
ally simpler, for the pencil A - tB to have rank r~ 

NOTATION 3.4. From now on, in Notation 3.1 we shall be taking 
v=v*=the *-dual of ?i (and hence m=n), A=S, -B=S* (=the 

conjugate transpose of S). We shall be dealing simultaneously with all 
admissible pairs (F,E), both simplic and complic, and shall take t as in 
indeterminate over E as well as over F. (See Sec. 1 for terminology.) Thus 
‘$=(S-‘S*)‘O, %<=(S*-iS)iO, %zL’%~, and %=%“. 

LEMMA 3.5. In Notation 3.4 we have (fix all nonnegative integers i 
and j) 

(a) s%i+l=(s*%i)n(SV)), s*Wi+l=(S%Ji)n(S*V); 
(b) s*q =(s*s -1y0, sai =p*-‘)‘O; 
(c) %y=(s*s-yv*, Wf=(ss*-yv*; 
(d) (S*‘?Lj)o=(S-lS*)‘?r, (SG7Js,)“=(S*-‘S)‘?r; 
(e) S*qi CG2Lp, SWi CT&O; 
(f) S(%i+~nW~)=(S*%~)n(SGW;)=s*(~~n~f+~); 
(g) G21n(SW)“=%nW=(S*%)onW; 
(h) %+(sw)“=(s*%)o+(s~)o=(s*%)o+w; 
(i) (%+W)n[S*%+SS]“=9LnW; and 

(j) (GU+W)+[S*~+SS]O=[(S*%)n(S%)]O. 
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Proof. (a): We have S ‘?Li + r =SS-‘S*%i=(S*%i)nS?rbyFact3.2(a). 
[The rest of (a) is proved similarly.] 

(b) follows from definition, rearrangement of parentheses, and the fact 
that S*O=O= SO. 

(c) follows from definition and recursive use of Fact 3.2(b). 
(d) follows from (b) and recursive use of Fact 3.2(b). 
(e) follows trivially from (b) and (c). 
(f): It suffices to show (S*G2L,) n (S ‘?Cj) L S(‘?Li+i n ‘lJJj), since the reverse 

inclusion follows routinely from (a) [and since the rest of (f) is proved in like 
fashion]. Thus let x~‘?lT;. with SXES*‘&. Then xE(S-lS*%i)n%j=%i+l 
n Wj, so SXE S(‘&+, n Wi), as required. 

(g): In view of (e), it suffices to show that (S %f)” n % c ‘?I- [the rest of 
(g) is proved similarly]. Thus let XE(S %)‘n %. Since XE(S w)‘= 
(S*-‘S)“?T, there are vectors x1, x2,. . . ,xn in ?r such that 

s*x = SX”, s*x,=sx,_,,..., s*x, = sx,. 

Thusr,E(S-‘S*)x,~-~~ ~(S-'S*)~X~(S-~S*)"G~L=~, so we have recur- 
sively (imagine x = x, + J 

as required. 
(h) can be proved by use of (g) as follows. In view of (e), it suffices to 

showthat (S~)o+%>(S*‘?L)o(etc.),i.e.,that(S‘?6)n%ocS*%.Thuslet 
XE% with SXE%‘, i.e., xE[S-‘(%“)]n9J=(S*9L)on%; then XE% by 
(g). Therefore Sx E S %, and hence Sx E S* % by (a). 

(i): We apply the modular law (for the lattice of subspaces of ?r) twice 
[using (e) each time]: 
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Now the required result follows from (g). 
(j): Take annihilators on both sides. Then the result follows from (e) and 

(h) the same way (i) follows from (e) and (g). n 

LEMMA 3.6. In Notation 3.4 the nullspace of S - LUS* is a subspace of 

[S*%+S%‘]“=(S*%)o~(SW)Oforeach nonzmo cuff. 

Proof. Let (S-CYs*)x=o with cr#O. We prove xE(S*%)O [the proof 
that XE(S%)’ is similar, so we omit it]. Here Sx=aS*x and S*x=a-‘Sx, so 
for each s c?r, XE(SS)’ iff x~(S*s)‘. Thus for every integer i>O we 
have 

the first implication coming from Lemma 3.5(a). Applying the composite 
implication successively for i = 0, 1,2,. . . , n - 1, we get x E (S*ozL,)O = 
(S*%)O, since certainly xEV=(S*%JO. 

THEOREM 3.7. Zf S is an n x n matrix over F and the pencil S + tS* is 

nonsingular (over F(t)), then S is +-congruent to So@&, where So - Sz and 

S, are nonsingular and all roots of the matrix (So - S:) - ‘So are in the set 

(0, l}; in fact, So can be chosen here in the form 

n k(i) O 4 so= cl3 a3 
II 

/=li=l zj 0 * 

An alternate fom fm So here is @y_l@:(i)lJzi. 

Proof. In Notation 3.4 we have by Lemma 3.3 that % n w =O. Thus 
by Lemma 3.5(f), (i), (j) we have 

It is trivial by Lemma 3.5(a)] to verify that this direct sum (at the second 
@) is S-orthogonal and S*-orthogonal; i.e., that S(% Cl9 ‘%-) and S*(‘?L 69 ‘%) 
are both included in S*%+SGzi)‘=[S*%+S~]O”. Since [S*%+S%]” 
includes nsp( S - S*) by Lemma 3.6 and ‘?l. @ % includes ‘?lr = nsp S and 
“w; =nspS*, the map S - S* (of ?r into v*) is nonsingular on % CD% and 
the maps S and S* are nonsingular on [S*% + S %I’. Thus we take So as a 
matrix of the (% @w)-restriction of S and take S, as a matrirc of the 
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[s*%+ s91q”- res nc ion of S. To complete the proof, it suffices to prove t . t’ 
the following four lemmas (Lemmas 3.8-3.11). 

LEMMA 3.8. In Notation 3.4 bt Y= %. CB % and let K = S - S*. Then K 

is nonsingular, and the map A = K - 'S (of Y into ?‘) has the folbwing 

properties : 

(a) S(I-A)=A*S, S*(Z-A)=A*S*, K(l--A)=A*K; 
(b) A?Li+r c%~ and (A-I)wj+, Cwj for all i>O; 
(c) A is nilpotent on %, and A - I is nilpotent on w; and 

(d) A is similar to Z-A (on ?r). 

Proof. By Lemma 3.6 the nullspace of K is included in [S*% + S %Y]‘, 
which by Lemma 3.5(i) is 0 here; thus K is nonsingular. 

(a): Notethat SA+A*S=SK-‘S-SK-‘S=KK-‘S=S (because K*= 

-KandA*=-S*K-‘),soS*=(SA+A*S)*=S*A+A*S*andK=KA+ 
A*K. 

(b): By Lemma 3.5(a) we have 

for all i>O, so A%!LrC(A-I)U?Ln=O and we have A‘?Li+,~(A-I)G2L, 
cA’?Li+%iG%j_l+‘%i=%i successivelyfori=l,2,....Theotherpartof 
(b) is proved in like fashion, 

(c) follows routinely from (b), since %n =0= qo. 
(d): By (c) all roots of A are in {O,l}, and hence A is similar to A* 

(e.g., because A and A* must have the same Jordan form). But A* = K(I- 

A)K-‘issimilartoI-Aby(a);thusAissimilartoI-A. H 

We shall need a more algebraic condition equivalent to the “geometric” 
condition V= c2L @‘X occurring in the hypothesis of Lemma 3.8. This is 
supplied by the following lemma. 

LEMMA 3.9. In Notation 3.4 let % n % =0 and K = S - S* and, when 

K i.s nonsingulur, A = K - ‘S. (a) Zf (K is non.sing&r and) ( A2 -A)” = 0 here, 

then (S*%)‘CnspA” and (S %)‘~nsp(A- Z)m. (b) The following three 

statements are equivalent to each other here: 

(i) (K is nonsingular and) A2 - A is nilpotent; 
(ii) ([S*%+ S%]“=) (S*%)“n(S%jo=O; 
(iii) Y=%+% (=‘%@Gzis here). 
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Proof. (a): Since dim ‘v= n in Notation 3.4, it suffices to assume m = n 
here. Thus assume (A’-- A)“=O; we prove (S*%)‘CnspA”. [We omit the 
proof of (S%)‘ensp(A-I)“, which is very similar.] Since S= KA and 
S* = K(A - I), Lemma 3.5(d) tells us that (S*‘%)’ = (S -lS*)n?r = 
[A-lK-iK(A-Z)l”?r=[A-‘(A-Z)]“~. I n what follows we shall write 
A-i0 for nspAi [and (A-Z)-jO f or nsp(A - Z)i] for i > 0, a notation 
consistent with Notation 3.1. The proof of (a) will be completed by showing 
that [A-‘(A-Z)]‘vCA-“O+(A-I)‘-“0 for O<i<n, which we do by 
induction on i. Clearly the assertion is true for i = 0. In the induction step 
below, we assume 0 < i <n and use the following facts (besides our induction 
assertion): (A - Z)A -“O CA -“O because A -“O is A-invariant]; (A - Z)(A - 
I)‘-“Oc(A -I)‘+‘-” 0 [obviously]; (A-I)-iO=A(A-I)-!0 if j=n-i-l 
[because (A - I)-‘0 is A-invariant and A is nonsingular on it]; A-‘(A -“O) = 
A -“O [because dim ?r= n]; and the last formula in Fact 3.2(a): 

=A-“()+(A-I)‘+‘-“0. 

To prove (b), we note that (i)*(ii) follows immediately from (a), that 
(ii)=#i) follows immediately from Lemma 3.5(f), (j) (plus our hypothesis 
that % n w = 0), and that (iii)=+(i) follows from Lemma 3.8. n 

REMARK on Lemma 3.9(a). It is easy to show that the inclusions here are 
actually equalities, in fact, that nspA i = ‘?Li and nsp(A - Z)i = wi for all 
i > 0. We shall not need this, however. 

LEMMA 3.10. In Lemma 3.8 the minimum polynomial of A is (t2- t)” 
for some m, and there are two m-dimensional A-cyclic subspaces To and v, 
of Vsuch that V,C%, VIM%’ (andhence YonVl=O), and 

(a) (Vo+?r,)n[~(?I;,+?r,)lO=~, 
04 w.l+v,,cwi+?/;)~ 
(4 s*cv, + v,, G K(CV, + v,). 
(d) Also there is a basis for V. + V, in which (the restriction of) S bus 

matrix y 0’ (with Z=Z,,, and J=.l,,,). 
[ I 

(e) There is also a basis for To + V, in which S has matrix J2,. 
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Proof. Every invariant factor of A is a power of t2- t by Lemma 3.8(d), 
so the minimum polynomial is ( t2 - t)” for some m. Also % = (A - I)” % = 
(A - I)“(% + %) by Lemma 3.8(c), so A”-‘% =A”-l(A - Z)“?T#O. Thus 

thereisaneE% suchthatA”-‘eZ0. Then (A2-A)m-1e#ObecauseA-Z 
is nonsingular on % and A m- ‘e E % . Thus there is a vector fl E V such that 

f:K(A2-A)“-‘e= -1. Write fr=f+fa with fEw and foe%. Then 
f$K(A2-A)“-‘eEf$K%=O b ecause K % c 9~’ by Lemma 3.5(e), (a), 

so f *K(A’- A)“- ‘e = - 1. Let To and vl be the respective A-cyclic sub- 

spaces generated by e and f. Then To c % and V, c w, and (b) and (c) hold 

because S=ZZA and S*=K(A-I). 
To prove (a), let redo and YE’?& and (x+y)*K(7/b+vl)=0. Then 

O=X*K~~+~*K~~ because K?l’,~K%~?L” and K?r,~%‘by Lemma 

3.5(e), (a). Thus x* K 5; =0= y* K To (e.g., because OE y*K To). It suffices 
to show that x and y must be 0. Say x = A ‘p(A)e with 1 > 0 and p(t) E F[ t] 

and p(O)#O. Then p(Z-A) is nonsingular on %, and hence p( Z - A) vi = 

V,. Thus 

O=x*K?r,=e*p(A*)A*‘K?r,=e*A*‘Kp(Z-A)?T, 

=e*A*‘K?i,>e*A*‘K(Z-A)‘A”-‘f 

for all i > 0, so I> m because K * = - K (and hence, if 1 <m - 1, we would 

have a contradiction for i = m - 1 - 1). Thus r = 0, and y = 0 in like fashion. 
To see that (d) and (e) are equivalent, let P be the 2m X 2m permutation 

matrix whose columns are, in order, e,,ea, . . . , e2,,_ ,,e,, e4,. . . ,esm (where 

e1,e2,. . . ,e2m are, in order, the columns of Z2,). Then 

p*=p-’ 

To prove (d), first note that S To c S ‘?L C ‘?L” C T and S vi C VP, SO the 
two m x m blocks on the diagonal of the matrix of S will be 0 if we choose a 
basis for V, C3 V, by adjoining a basis for V. to a basis for vr. In vl we 

choose the [A -‘(A - I)]-anticyclic basis 

{ [A-$+qf) 
where 

i=m-I,..., 2,1,0 (in order) 
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and in V, we choose the [(A - I) - 'A]-cyclic basis 

183 

{ [(A-I)-'A]'c} 

where 

i=o,1,2 ,..., m - 1 (in order). 

Then in the resulting basis for vi CiYV, (in that order) the matrix of A is 

because the matrix of the ?&-restriction of A(A - I) - ’ is J and the matrix of 

the ?r,-restriction of A -‘(A - 2 is J*. Let 

i 1 
the matrix of the (vi @v,)- 

restriction of S in this basis be 0 T 
R 0’ 

Then, since S = KA = (S - S*)A, 

we have 

0 (T- R*)J(J- I)-’ 
(R- T*)(Z-J*)-’ 

, 
0 1 

so T=R*_l. Also R(Z-J*)=R- T* is nonsingular (because K=S-S* is) 
and hence so is R. Thus the matrix of the (vi @ ?T,)-restriction of S is 

which is *-congruent to 
[ I 

y (: , as required for (d). n 

LEMMA 3.11. In Lemmas 3.8 and 3.10 there is a basis in which the 
matrix of S is in the f&m @~c1@~~)lJ2i. 

Proof. By Lemma 3.10(a), ?/= (v, + vl)CBIK(?& + ?i;)J’, and by 
Lemma 3.10(b), (c), the direct sum is S-orthogonal and S*-orthogonal. Thus S 
has matrix ./a,,, @ W by Lemma 3.10(e)], where W is the matrix of the 
[K(?ir,+ v,)]“- res tri t’ c ion of S. The proof is completed by an obvious induc- 
tion, once we show that W satisfies the same hypotheses that S satisfies in 
Lemma 3.10 (except with order <n = order S). In Lemma 3.10 the hypothe- 
sis on S is just that ‘Y= % G3 W, and by Lemma 3.9(b) this is equivalent to 
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requiring that S - S* be nonsingular and 

A’-A=A(A-1)=(S-S*)-‘S(S-S*)-‘S* 

be nilpotent. Clearly this implies that W- W* is nonsingular and 

(w- w*)-‘W(W- w*)_‘w* 

is nilpotent, so the proof (of Lemma 3.11 and Theorem 3.7) is complete. n 

In Theorem 3.7 the *-congruence class of S (in fact, the F[t]-equivalence 
class of the pencil S + tS*) determines that of S, by the fact that k(i) is (for 
each i) just the number of degree-i e.d.‘s of S + tS* at (t = ) 0. The next result 
gives a somewhat more direct way in which the *-congruence classes of S,, 
and S, are both determined from that of S. 

COROLLARY 3.12. In Theorem 3.7 the *-cmgruence classes of S, and S, 

are determined from that of S. In fact, if C*( S,@S,)C= TO@ TI with 

C, S,, T,, SO-- Sz, TO - To* nonsingular and all roots of (SO- S,*)- ‘S, and (T,, - 

T,)-‘TO in {O,l}, then C= C,@C, confonmbZy with S,@S, (and hence 

with TO@ TJ. 

Proof. We sketch two proofs. In both proofs we note that S, is *-con- 
gruent by Theorem 3.7 to a direct sum of neutrally partitioned matrices of 

the form y i 
[ I 

and hence to a neutrally partitioned matrix 
[ 1 O N with I 0 

N nilpotent; thus we may assume 

s=o N 0 [ 1 I 0 

here is such a matrix, and likewise for T,,. 
First proof. Let Pi = Si + tSF and Qi = Ti + tTF for i E (0, l}. Then [with 

respect to the pair (F(t), E(t)), which is admissible since t = i is an inde- 
terminate over E] 

P,*-‘PO= [(N+ tZ)-‘(I+ tN)]*@[ (I+ tN)-‘(N+ tI)], 

and hence all its roots are in { t, t - ‘}, and likewise for Qz - ‘Qo, However, no 
roots of P:-’ P, are in {t,t-I} since the two matrices PI-tP:=(l-t2)S1 

and P, - t-‘Pf = (t- t-‘)S: are nonsingular over F(t); likewise for QT-‘Qi. 
Let P=Po@P, and Q=Qo@Q1. Then C*PC=Q and C*P*C=Q*, so 
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C-‘p*-‘PC= Q*-lQ, and hence the direct sums P,* -‘PoG3 Pf -‘PI and 

Q~-‘QaEB Q:-‘Qi conform and 

(P;-lPo@Pf-lPl)C= C(Q;-'Qo@Q:-'Q1). 

Thus C= C,,@ Cl conforms to PO@ P, (by [6, Vol. I, top of p. 2201). 

Second proof. Let S = S,@ S,, and take ?r, %, W as in Notation 3.4. Let 
Y,,, Vl be the coordinate subspaces of ?r corresponding respectively to S,, S, 
in the direct sum S,@ S,, and further let ‘&, ?&, be the coordinate sub- 
spaces of V, for which Vo = V,, 69 V, conforms to 

SE0 N 0 [ 1 IO’ 

Let x, y,z be column vectors for which the n X 1 column vector o = [x* y* 

.a*]* conforms to ?i= To, @V, 69 V;. Then 2, E % = (S - ‘S*)“O iff there are 
vectorsuiE9Li for0<i<nwitbu=u,and%,=S*u,_,for1<i<n.Putting 

Us = [xi* y* .zT]* gives 

for all iE{l,..., n}. Since u. E %n = 0 here, this shows that u E % iff 
x = (N*)“O= 0 and z = ( SIWIS:)nO =O. (Note that y is arbitrary here because 
N” = 0.) Thus % = vo2, and a like calculation shows that ‘?U- = To,. The same 

equations, with different side conditions [namely, u, E (S*$)’ for all i] can 

be used to calculate that uE(S*%)~=(S-‘S*)“~ iff x=0, and hence that 

(S*%)“=?&63?Tl; a like calculation shows that (S~)“=~,,@~,. Thus 
To= %@‘?lf and vl =[S*% + S%]‘. Next, let T= TofT3Tl, ‘% =(T-‘T*)“O, 
% = (T* - ‘T)“O, and let ?rd, vr’ be the coordinate subspaces corresponding 

respectively to To, Tl in the direct sum To@ Tl. Then 5% 63 9 = VJ, [T* %i + 
T%]‘=v;, b y th e same proof as above (that G% @ % = v,, etc.). Further- 
more, C -‘(WW)=%W% and C-‘[S*%+S%f]“=[T*%+T%]o; in 
fact, C-‘%=%, C-lw=%, C-‘(S*%)“=(rC%)o, and C-‘(SW)‘= 
(T % )“. For example, 

=(T-‘Tf)“?T=(T*%)‘. 
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Thus ‘v~=C-‘?& and hence dimTi=dimCV,, so ?&=v~=C-‘?f,, and 
likewise Vi = ‘Vi’ = C - ‘VI. Therefore C = C, @ C, conformably with ‘T = V, 
@Vi. n 

REMARK 3.13. A pencil A + tB is said to have a degree-j e.d. of 
multiplicity k at (t=) cc provided the pencil B + tA has the e.d. ti with 
multiplicity k [6, Vol. II, pp. 26-271. Unsurprisingly, for a nonsingular pencil 
of the form S + tS* the degree-j e.d.‘s at 0 and co have the same multiplicity 
for each j, as can be seen from Theorem 3.7. The uniqueness assured by 
Corollary 3.12 enables us to add the following two statements to the three 
equivalent statements of Lemma 3.9(b): 

(iv) every e.d. of S+ tS* is at 0 or 00; 

(v) the direct summand S, is missing in Corolluy 3.12 (and Theorem 
3.7). 

We conclude this section with an expected result for a neutral matrix S 
in Theorem 3.7. 

COROLLARY 3.14. Zf S is (F,E)-neutral in Theorem 3.7, then so is S,. 

Proof. Here S is 

[ 1 

*-congruent to a neutrally partitioned matrix 

; ; (by D fi ‘t e ‘m ion 2.9), so S + tS* is correspondingly *-congruent to 

0 N+ tM* 
M+ tN* 1 0 * 

The pencil M + tN* is nonsingular (because S + tS* is), and so is F-equivalent 
to (R + tTC) CT+( V+ tW*) with V and W nonsingular and every e.d. of 
R + tT* at 0 or cc (by [6, Vol. II, Theorem 3, p. 281). Thus there are 
nonsingular matrices P and Q over F such that 

Q*(M+tN*)P=(R+tT*)@(V+tW), 

so S + tS* is *-congruent to 

[‘d ;*I[ M+otN* “+Ot”*][: ;] 

= 
(R+ tT*):(V+ tW*) 

(T+ tR*)@( W+ tV*) 

0 1 3 
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which in turn is *-congruent to 

i 

0 T+tR* a 0 

R+ tT* 0 I [ v+ tw* 

Therefore S is *-congruent to 

[: (r]@[“v 71 

with every e.d. of 

[: (r]+t[:: ;I* 

187 

w+ tv* I 0 * 

at 0 or cc and 
0 w 

[ I v 0 
nonsingular, so S, (in Theorem 3.7) is *-congruent 

to 0 

[ 1 v r by Corollary 3.12 (and Remark 3.13), and hence S, is (F,E)- 

neutral. n 

4. SINGULAR PENCILS S + tS* 

In this section we continue to use Notation 3.4 and the results, especially 
Lemma 3.5, of Sets. 2 and 3. In addition we shall use the following notation: 

NOTATION 4.1. For each positive integer m we denote by i,,, and j,,, the 

following matrices [respectively m X (m + 1) and (m + 1) X m]: 

L=[ 1, o,,,]. 

We shall often write i, as i and j, as j when m is understood from context. 

We also adopt the convention that the (2m + 1) X (2m + 1) matrix 

understood as 0 (the 1 X 1 zero matrix) when m = 0. 

We begin with two lemmas. 

LEMMA4.2. InNotation3.4let%!Lj+,n‘?Lf~_i=OfoTaUiE{O,l,...,q- 

l}. Then (a) the q+l subspaces %i+ln%q_i+l with iE{O,l,...,q} are 
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independent and each has the same dimension, say k. Also, (b) the q 
subs-paces S(G2Li+lnWq_i+,)=S*(‘%in%q_i+,) with iE{1,2,...,q} are 
independent and each has dimension k. 

Proof. For the independence in (b), it suffices to show that if xi E 9~~ + i 

n G$++i for each iE{l,e,...,q} and S(x,+x,+.*. +xs)=O, then x1=x2 
= . . . =xq=O. So suppose S(x,+... +xJ=O with xiE9Li+in%q_i+r for 
eachi.Thenx,+... +x~E~=S-~O.BU~X~E~~_~+~C~~ foreachi,so 
x1+*** + x4 E %i n %? = 0. Therefore xi = - (x2 + . . . + xJ, which is in qL, 
(because xi is) and also in W,_ 1 (because xi E Wq_i+ i c ‘WV_ 1 for each 
i>2),andhenceis E%,n~~_I=O.Thu~xr=Oandx,=-(x,+~~~+xJ. 
Proceeding in this way, we clearly get x1 = * . . = X~ = 0 eventually. 

Next, to prove the independence in (a), suppose x0+ xi + * . * + xs =0 
with XiE%i+inW,_i+i for all i > 0. Then Sr,= 0 (because x0 E q), so 
S(x, + * . * + xs) = 0. By the preceding paragraph, we must consequently have 

x1= .* . = x4 = 0. Therefore also x0 = 0. 
Finally, to prove the equal dimensionality in (a) and (b), let 1 fi <q and, 

for this fixed i, suppose ( yr, . . . , yk) is a basis for ‘?Li n ‘Wq _ i +2. Since 
S*(9Li n Wq_i+2)= S(%i+I n W,_i+l) by Lemma 3.5(f), there are vectors 
al,...,+ in %i+rnGwb_*+r such that S* yi = Szi for each j. To show that 
SZ i, . . . , Szk must be linearly independent here, suppose a,!%, + * . * -I- ‘Y&&k = 
0 for some scalars oi in F. Then S*(ar yi + * * . +(Ykyk) = ~~iS*yi 
+... +@*y~=o, so ‘yiyr+.*. +akykE%qnW, (because %Jr=S*-i0 
andyiE~iiCG2L,foreachj).But~~n~,=Obyhypothesis,soal=...= 
ok = 0 by the linear independence of ( yr, . . . , yk). Then (Sz,, . . . , Sz,) is linearly 
independent. This shows 

dim(Qi n “wq_,+2) GdhS(G21,+, n %b_l+l), 

which in turn is obviously f dim( ‘?Li + i n wq _ i + 1). A like argument shows 

dim(?&+, n wq_i+l) <dimS*(%i n wq_,+,) 

< dim(Qi n Wq_i+2). 

These two chains of inequalities, and hence the corresponding equalities, 
hold for everyiE{l,...,q}, which proves the equal dimensionality in (a) and 

(b)* n 

The major work of this section is concentrated in the following lemma. 
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LEMMA 4.3. In Notation 3.4 suppose ‘?_L n *?li #O, and let q =0 if 

%2L, n %, #O, and otherwise let q be the largest integer satisfying 

Then S is *-congruent to S,@S, with 

SC0 j 
0 

[ I i 0’ 

where i=i, and i=j, (see Notation 4.1). 

Proof. Since %+, n %,, = % n % #O, the integer q is well defined. By 
Lemma 4.2 there is an integer k = dim(% n wq+ i) = . . * = dim(G21,+ i n 
%,), and k >0 by the definition of q. Thus there is a nonzero vector 

x0EQ-l f-l “wb+i. Therefore there are also vectors xi,. . . , xq in Y such that 

0 = Fix,, s*xo= sx,, s*x1=sx2,..., 

s*+ = sx9, s*x9 =o. 

Consequently xiE%i+ln%q_i+l for all iE{O,l,...,q}. (We also take 
x~+ i = 0 when it occurs later). Also each xi #O for 0 <i <q, as otherwise, if 
xi =0 for some index i <q, then x0 
Thus (x0, x1, . . . , 

would be E”?1,n”1JSic9LGZL,nWq=0. 
x ) is linearly independent, because by Lemma 4.2 the q + 1 

subspaces 94 n kr g+l,..., 
3.5(f) and (e) we have 

qq+ 1 n ‘?J1 are independent. Also, by Lemma 

for all j<q, whereas xiE~~+lnuu;_i+lCO~i+G21iy_i+l for all i and i in 

(0, I,. * *, q} (to see the latter inclusion, consider separately the two cases i <i 

and i > i). Thus x: Sri= 0 for all i and j. 
Next, xo@wq = S*-’ 

SX, = S*x, 4 S “zlr, _ i, and 
S wq _ 1 (because 0 #x,, E 94 and ‘?Li n ‘??$ = 0), so 
hence there is a vector zi in ?r such that Z: Sx, = 1 

and z: S qq_ i = 0. (If q = 0, this paragraph and the next are vacuous.) 
Choose such a vector zi; then Z,E S(‘?tiq_,)‘, which =(S*-iS)9-‘?T by 
Lemma 3.5(d), so there are vectors r;, . . . ,zq with zj E(S*-‘S)~-‘Y for all i 



190 C. S. BALLANTINE AND E. L. YIP 

and s*z, = sz,,, for all i <y. Thus by Lemma 3.5(c) we have 

s*q E s*(s -ls*)‘-’ zl~(s*s-yv*=%~ for all i, 

S*zitS(S*-‘S)*-‘-‘z9~(SS*-‘)9-i~*=qiJ~_i 

for all i<q, 

and of course S*Z+E~*=%:_~, so S*Z,E‘?L~,‘?~&~ for all i<q. Hence 
zj* Sxi = (XT S*zi)* = 0 for all i #i (consider separately the two cases i >j and 
i<j, using xiE9Lj+r n‘%?9_j+,). Furthermore z~S;sx,=~i*S*;t~_~=z~_~Sx,_, 
= . . . = a: Sr, = 1; thus ,zF Sri = 6,, ( = the Kronecker delta) for all i and j with 
l<i<q and O<j<q. 

Next, let ‘yi=z~S~~_~+r for all iE{1,2,...,q} and 

for each kE{l,..., q}. Then y: Sx, = a: Sr, = 1 (because X; Sx, =O for all i), 
and y:S%9_1=z:S~9_l-O=0 because S*X~~ES*%~_~+~CS~~_~ [by 
Lemma 3.5(a)], which is 2 Sw9_r C ‘?6i_r if i > 1 [by Lemma 3.5(e)]. Aho 

s*t_,k= s*zk- 2 “i_k+ls*xj 
i=k 

for all kE{1,2 ,..., q-l}, because x,+r=O. Thus yr ,..., y9 satisfy all the 
properties of zr, . . . , z9 used in the last paragraph to show that z~Sxi = &,, and 
hence y: Sxj = Sii for all i and i (1 < i < q, 0 < j <q). Furthermore, we shall 
show that y: Sy, = 0 for all i and k. To show this, first note that yFSyk = 
yF+,S*yk=( yfSy,+J*=( y*i+lSyk+l)**=y~+lSyk+l, so it suffices to show 
y,J Syk = 0 for all k > 1 (consider separately the three cases i = q, q >i > k, and 
i <k). Now, z: Sri = 6+ and X: S = (S * x9)* = 0, so, omitting all terms having 
factors of the form xy*Sxi (since these factors are 0), we have 
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Now, let Vrr, TIO, V,, ?ra be the subspaces of ‘V given by 

‘Vi, = span(x,,x,, . . . ,xq), To = spa4 yl,. . . , y,), 

v, = { sx,, sx,, * *. , sxq, sy,, sy,, . . . , syq, s*yq}O. 

(Exception: when q =0 here, we let ?i, be any subspace complementary to 
‘Vr=Vii in V.) Then dim‘I;,=q+l, dimV1<2q+1, and dim?r,>dim‘V 
- (29 + 1) because ‘VL is defined as the annihilator of 2q + 1 vectors. Thus, in 
order to show that dim Vi = 2q + 1 and 7i = V, @ V,, it suffices (when q > 1 

here) to suppose that x E V,, , y = pi y1 + . . . + P, y,( E Vi,), and x + y E V. 
(and show that consequently we must have x =0 = y and every pi =O). We 
may put x=a,x,+.** +a4x4_ here, and hence x*Sx, = 0 for all i. 
Thus O=(x+y)*S~~=y*Sx~=~~~~yi+Sx~=pi for all i>l, so y=O. Also 0= 

(sy,)*(x+y)=y;s* ~=y~*~~~~S*x~=C~~yiy~Sx~.+~=(~~_~ for all i <q, and 
hence x+y=x=~y9x~ and O=(S*y,)*(x+y)=y,*S(~yy~~)=~yq. Thus x=0 (as 

well as all pi =O), so (dim Vi = 2q + 1 and) ‘If= y1 @ ?To. 
Finally, there remains only to show that ?< and V. are S-orthogonal and 

S*-orthogonal, i.e., that 2 E 71, implies z*S V, =0= z*S*5\. (The matrix of 
the ?r,-restricted *-bilinear form u* Su is clearly in the desired form So if we 

choose the basis (x0,. . . , xy, yl,. . . , yJ for V,.) These orthogonalities are trivial 
if q = 0, so assume q > 1. Then ,z* Sri = 0 for all i > 1 (by definition of To) and 

for i=O (becausexoEG2L,=S10), andz*Syi=Oforalli>l andz*S*y4=0 

(by definition of To). Also z* S*xs = 0 because X~ E w,. Lastly, for all i <q, 
we have I;* S* x. = .z* Sx. 1+1 = 0 and .z* S* yi = ,z* Sy,, r = 0 (by 
Thus indeed z*‘S ?; = 0 = .z* S* ?‘;, and the lemma is proved. 

definition of To). 

I 

THEORFM 4.4. Each n x n matrix S over F is *-congruent to L@M, 
where M+ tM* is a nonsingular pencil (i.e., det(M+ tM*)#O in F[t]) and 
the pencil L + tL* has no elementary divisors; in fact, L can be taken here 
as 

n z(i) O ji L= CEJ CEJ 

! 1 

j=O i=l $ 0 

(see Notation 4.1). An alternate form for L here is L= @~_o@f(i)Jzi+l. 
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Proof. The main result follows by a routine induction on Lemma 4.3. 
The alternate form follows by noting that 

P*J,i+lP= q J 
[ .I 1 0 

if P= P* ~ ’ is the permutation matrix whose columns are (in order) 

e,, e3,. . . , ezi + 1, e2, e4,. . . , eq, where the columns (in order) of Izi+ i are 

e,, e2, . . . , e2i + 1. n 

REMARK 4.5. 

(1) For each i the number Z( i) in Theorem 4.4 is of course just the 
multiplicity of i as a column-minimal index (likewise as a row-minimal index) 
of the pencil S+ tS* (see [6, Vol. II, p. 381). Thus the F-equivalence class of 
the pencil S+ tS* determines the *-congruence class of L, and hence so does 
the (F,E)-congruence class of S. In Corollary 4.7 (below) we shall show that 
the latter class determines the (F, E)-congruence class of M and give another 
way to see that it determines the numbers I( 1). 

(2) If C*SC = T with C nonsingular, then (as in the proof of Corollary 
3.12) 

C-‘%YLi =(T-‘T*)‘O, C-‘(S*%i)o=(T-‘~)i?r, 

C-‘wi =(T*-‘T)‘O, C-l(S%i)o=(Z’-‘T)‘?r, 

for all i > 0, and hence the *-congruence class of S determines, among other 
things, dim Qi,, dim Wj, dim( $ n wi) (f or all nonnegative i and i), and the 
*-congruence class of the matrix of the [(S* %)‘+ (S %)‘I-restricted *-bilin- 
ear form x*Sy (as in [3, p. 66, following (7)]). 

(3) When S = L @M in Theorem 4.4, the subspaces % n %f and (S*%)’ 
+ (S %r)’ turn out to be coordinate subspaces, but they can be more easily 
identified as such after a reordering of the blocks of L by means of a 
permutation *-congruence. To that end, we make the following definitions. 

(4) Let L be a square matrix such that the pencil L+ tL* has no e.d.‘s. 
We say L is in first standard form provided L is a direct sum of neutrally 

partitioned matrices 0 j 
[ 1 i 0’ 

in second standard fmm provided it is a direct 

sum of matrices .lZi and in third standard form provided it is a neutrally 

partitioned matrix where P+ tQ* has no nonzero row-minimal 

indices and Q+ tP* has no nonzero column-minimal indices [6, Vol. II, p. 
381. 
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(5) Thus Theorem 4.4 says that each such matrix L is *-congruent to 
matrices in the first and second standard form, and hence to a matrix in third 
standard form. For example we can take for P, in addition to some zero 
columns, the direct sum of the rectangular blocks i occurring in the first 
standard form, and for Q, in addition to some zero rows, the direct sum of 
the rectangular blocks j. 

LEMMA 4.6. 

(a) If S is a single block of order2m+l (z&h i=i, andj=j,) 

and e1,e2,...,e2m+1 is the standard ordered busti for ?i, then, for i Gm + 1, 

“%li =span(e,~_i+2,...,e,,e,+,), 

“?Ci = span(e,,e,, . . . ,eJ, 

% =4K=(S*%)0=(SW)o=span(e,,e2,...,e,,e,+,). 

(b) lf S = M ‘B L (with M and L as in Theorem 4.4) and 

L= 6 Q 
[ 1 P 0 

is in third standurd form (Remark 4.5(4) , and if ‘Ir = v, @To conf0nn.s to 

M@L and ‘!jo=liol@~02 conforms to i f , then %n”x=?rT,, and 

(s*G2L)“+(sw)o= ccr, @yII. ri 1 
Proof. The proof of (a) is a routine computation using the special form 

of the blocks Q and _&. One finds also that 

for i<m; and (S*%~)“=(SO%i)o=%~+l=%~~+l=%=% for i>m. 

The proof of (b) is also routine: we start by assuming L is in first standard 
form and use [3, Lemma 1, p. 63] [and the corresponding result for (S -‘T)‘O] 
to reduce the computations to those in (a) (plus the obvious computations for 
the case S = M), and then rearrange the blocks in L [via a permutation 
*-congruence, as suggested in Remark 4.5(5)] to third standard form, keeping 
track of what happens to the coordinate subspaces in the process. n 
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COROLLARY 4.7. 

(a) In Theorem 4.4 the *-congruence class of S determines the numbers 
I( 1) by the fact that 

and determines the *-congruence class of M by the fact that the matrix of 
the [(S*%)‘+ (S %?)‘I-restricted +-bilinear form x*Sy is *-congruent to 
M @O, in which the 0 direct surnmand has order =dim(% n w) = Zi( i+ 

W i). 
@) Furthermore, if C*SC= T with C nonsingular and S = M f33 L, T-N 

@II, and M + tM* and N + tN* are nonsingular pencils and 

L= “p ; 
[ 1 and R= 0 w 

[ 1 v 0 
are in third standard form (and the pencils L + tL* and R + tR* have no 
e.d.‘s), then 

C,, 0 Cm 

c- c,, c, c, 

0 0 c, 

conformably with 

S=[ r i 01 and T=[ p & t]. 

and hence C,, is non-singular, N= C&MC,,, and M is *-congruent to the 
matrix of the restriction of the form x*Sy to any subspace complementuy to 
tin% in (S*%)“+(S%J)o. 

(No_te that C= C -’ here implies C,, = CL’, and that C= c-’ implies 

c,, = c, 1.) 

Proof, (a): By Lemma 4.6(a), if 

SC 0 i 
[ 1 i 0 
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is a single block of order 2m + 1, then dim(%/ II “w;) =0 for i <m and = 1 
for j>m. Thus, if S is any square matrix in Theorem 4.4, then 

dim( Qi n ‘?c,) = 1(O) + I( 1) + . . . + I( j - 1) 

for all j > 0. (Recall that %e = 0 and, for S = M in Theorem 4.4, % I-J % = 0 

by Lemma 3.3.) This proves the formula for Z(j) in (a). The rest of (a) follows 
from Lemma 4.6 and Remark 4.5(Z). Part (b) follows routinely from Lemma 

4.6(b) and Remark 4.5(2) in much the same way as the second proof of 

Corollary 3.12 was carried out. n 

REMARK (about Corollary 4.7). Notice that the uniqueness result in (b) 

of Corollary 4.7 is stronger than the uniqueness result for M in (a). It is clear 

that this stronger form of uniqueness must also hold for pencils A + tB in the 

following three cases (namely, those mentioned in [3] as having the weaker 
form of uniqueness): (1) where (F, E ) is admissible and A = A* and B = B*, 
(2) where (F, E) is simplic and A is symmetric and B is alternating, and 

(3) where (F, E) is simplic and A and B are both alternating. 

Next we summarize some of the existence and uniqueness results from 
this section and last section, 

COROLLARY 4.8. Let (F,E) b e an admissible pair of fields, and let S be 

a square matrix over F. Then S is (F, E )-congruent to a direct sum S,@ S, 

with S, nonsingular and every e.d. of the pencil S,@ tS,* at 0 or 00. 

Moreover, S,, here is (F, E)-congruent to ei( @?:‘1Ji), and the numbers m( j), 

as well as the (F,E)-congruence class of S,, are uniquely determined by the 

(F,E )-congruence class of S. Finally, if C is a nonsingular matrix over F 

partitioned as 

Go co1 
c=c C’ 

i 1 10 11 

conformably with So@&, and C*(S,63S,)C= T,@T,, where Tl is rwnsingu- 

lar and every e.d. of To + tT,* is at 0 or co, then C&SIC,, = Tl and So is 

(F, E)-congruent to To; also C,, = Cl;’ here if C= C-‘, and C,, = cl;’ if 
C= c-1. 

Proof. The existence part comes from Theorems 4.4 and 3.7 (plus 
Remark 3.13). The rest comes from Corollaries 4.7 and 3.12. 
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REMARK 4.9. 

(a) Let S be n X n in Corollary 4.8 (thus n= dim 7) and S, be ni X n,. 

Then from Theorems 4.4 and 3.7 one sees that 

n,=dim[(S*%)“+(SO?lT)o]-dim(%+‘~?) 

=dim(S*%)“-dim‘?L=dim(S%)o-dim%, 

etc., and in fact dim Qj =dim “w; and dims*‘& =dimSwi for every i. Also 
the order of So is Xjjm( i) = n - ni = dim %. + dim S*%, etc. 

(b) The (F,E)-congruence class of S, in Corollary 4.8 [as well as the 
number n, in (a)] can be characterized by the following maximality property: 
for every direct sum R, @ R, which is (F, E)-congruent to S with R, 
nonsingular, the order of R, is less than or equal to the order of S,, with 
equality only if R, is (F, E)-congruent to S, and R, is (F, E)-congruent to So 
[Proof: first apply Corollary 4.8 to R, in place of S, getting that R, is 
(F, E)-congruent to R,@ R,, with R,, nonsingular and every e.d. of R,+ 
tR& at 0 or 00, so that S is (F,E)-congruent to R,@(R,,@R,); then apply 
Corollary 4.8 to S, getting that S, is (F,E)-congruent to R,,@R,.] 

REMARK 4.10. If B is a nonsingular matrix over F, and A is a matrix over 
F conforming to B, it is known [6, Vol. I, Theorem 6, p. 1451 that the 
F[t]-equivalence class of the pencil A + tB determines the F-equivalence 
class of A + tB (i.e., the similarity class of B -‘A). This no longer holds if B is 
singular, even if the pencil A + tB is still nonsingular, but it does hold for a 
nonsingular pencil of the form S + tS*, since in the latter case the e.d.‘s at cc 
are the same as those at 0 (and the e.d.‘s at 0 are determined by the 
F[t]-equivalence class). Of course the F-equivalence class of S + tS* does not 
determine the (F, E)-congruence class of S + tS* (which is essentially that of 
S) in general, but does if S is (F, E )-neutral (as we shall see in Corollary 
4.12). 

Note that Corollary 4.8 reduces the study of (F,E)-congruence of arbi- 
trary square matrices over F to the case of nonsingular matrices over F. (An 
analogous remark in [5, p. 671 failed to take into account the uniqueness 
aspect of this reduction.) 

COROLLARY 4.11. Zf S is an (F,E)-neutral matrix, then so is M in 
Theorem 4.4 and so is S, in Corollary 4.8. 

Proof. The proof is practically the same as that of Corollary 3.14, except 
that here we use [6, Vol. II, pp. 35-401 and the uniqueness results in 
Corollaries 4.7 and 4.8. n 
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COROLLARY 4.12. If S is (F,E)-neutral, then the (F,E)-congruence class 

of S+ tS* (which is essentially that of S) is determined by its F-equivalence 

class and hence, if nonsingular, by its F[ t]-equiualence cluss. 

Proof. Let S be (F,E)- neutral. Then S is (F, E)-congruent by Corollary 
4.8 to S,@ S,, and hence S + tS* is correspondingly (F,E)-congruent to 
(S,+ tS,*)@(S,+ t!q), with S, nonsingular and every e.d. of S,+ tS,* at 0 or 
co. Here S, is (F,E)-neutral by Corollary 4.11, so by Theorem 2.11(d) its 
(F, E)-congruence class is determined by the similarity class of SF -?S,, which 
is essentially the same as the F-equivalence class of S, + tST. Thus the 

(F,E)-congruence class of S, is determined by the F-equivalence class of 
S+ tS* (in fact by the e.d.‘s of S+ tS* other than those at 0 or co). By 
Corollary 4.8 the (F, E)- con rruence class of S,, also is determined by the b 

F-equivalence class of S + (tS* (in fact by the minimal indices and the e.d.‘s 
at 0). n 

ADDENDUM 

After this paper was prepared, the authors became aware of the paper by 
C. Riehm and M. A. Shrader-Frechette, The equivalence of sesquilinear 
forms, J. Algebra 42:495-530 (1976), which deals with the complic cases 
[over semisimple (Artinian) rings] but considers generally deeper questions 
than those considered here. In particular, it proves a generalization of part of 
the complic case of Theorem 2.4 (in its Proposition 25, p. 516) and “reduces” 
the singular complic cases to the nonsingular ones (in its Section 9, pp. 
526-529) and, unlike [5], also considers the uniqueness aspect (in pp. 
528-529); one of the referees assures us that the uniqueness is “very easy” to 
prove also in the context of [5]. 

The first author did some. of his share of this research while on sabbatical 

leave from Oregon State University, for whose support he is grateful. 
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