Numerical analysis for magnetohydrodynamic chemically reacting and radiating fluid past a non-isothermal uniformly moving vertical surface adjacent to a porous regime

Sahin Ahmed *

Heat Transfer and Fluid Mechanics Research, Department of Mathematics and Computing, Rajiv Gandhi Central University, Rono Hills, Itanagar 791112, Arunachal Pradesh, India

Received 7 November 2013; revised 12 January 2014; accepted 12 February 2014
Available online 21 April 2014

Abstract A mathematical model is conducted for the unsteady magnetohydrodynamic viscous, incompressible free convective flow of an electrically conducting Newtonian fluid over an impulsively-started semi-infinite vertical plate adjacent to saturated porous medium in the presence of appreciable thermal radiation heat transfer and chemical reaction of first order taking transverse magnetic field into account. The fluid is assumed optically thin gray gas, absorbing-emitting radiation, but a non-scattering medium. The governing non-linear partial differential equations are non-dimensionalized and are solved by an implicit finite difference scheme of Crank–Nicholson type. It is found that, increasing magnetic parameter serves to decelerate the flow, but increased temperatures and concentration values. An increase in the porosity parameter (K) is found to escalate the local skin friction (\(\tau_x\)), Nusselt number (Nu) and the Sherwood number (Sh). Applications of the model include fundamental magneto-fluid dynamics, MHD energy systems and magneto-metallurgical processing for aircraft materials.

1. Introduction

Magnetohydrodynamics deals with the dynamics of an electrically conducting fluid, which interacts with a magnetic field.

* Tel.: +91 9435024242.
E-mail address: asahirгу@gmail.com.
Peer review under responsibility of Ain Shams University.

The study of heat transfer and flow, through and across porous media, is of great theoretical interest because it has been applied to a variety of geophysical and astrophysical phenomena. Practical interest of such study includes applications in electromagnetic lubrication, boundary cooling, bio-physical systems and in many branches of engineering and science. In engineering, it finds its application in MHD pumps, MHD bearings, nuclear reactors, geothermal energy extraction and boundary layer control in the field of aerodynamics. In porous media applications such as packed beds, to sustain a given flow rate of the electrically conducting liquid in the bed, the pres-
The thermal radiation effects on the boundary layer may play an important role in controlling heat transfer in polymer processing industry where the quality of the final product depends on the heat controlling factors to some extent. Actually, many processes in new engineering areas occur at high temperatures and knowledge of radiation heat transfer besides the convective heat transfer becomes very important for the design of the pertinent equipment. Nuclear power plants, gas turbines and the various propulsion devices for aircraft, missiles, satellites and space vehicles are examples of such engineering areas. England and Emery [3] have studied the radiation effects of an optically thin gray gas bounded by a stationary plate. Again Raptis and Perdikis [4] studied the effects of thermal radiation on moving vertical plate in the presence of mass diffusion. The governing equations were solved by the Laplace transform technique. The thermal radiation effects in a steady free convective flow through a porous medium bounded by a vertical infinite porous plate have been considered by Raptis [5]. Hussain and Pop [6] studied the radiation effects on stationary free convection of an optically thin dense fluid along an isothermal vertical surface embedded in a porous medium with highly porosity using Brinkman–Forchheimer–Darcy extended model, by means of two different numerical techniques, the Keller-box method and the local non-similarity scheme. Jaiswal and Soundalgekar [7] obtained an approximate solution to the problem of an unsteady flow past an infinite vertical plate with constant suction and embedded in a porous medium with oscillating plate temperature.

An analysis of the thermal radiation effects on stationary mixed convection from vertical surfaces in saturated porous media for both a hot and a cold surface has been presented by Bakier [8]. The unsteady flow through a highly porous medium in the presence of radiation was studied by Raptis and Perdikis [9]. The effects of radiation and viscous dissipation on the transient natural convection–radiation flow of viscous dissipation fluid along an infinite vertical surface embedded in a porous medium, by means of network simulation method, were investigated by Zueco [10]. The effects of radiation and chemical reaction on natural convection flows of a Newtonian fluid along a vertical surface embedded in a porous medium presented by Mahmoud and Chamkha [11]. Sahin [12] investigated the effect of transverse periodic permeability oscillating with time on the heat transfer flow of a viscous incompressible fluid through a highly porous medium bounded by an infinite vertical porous plate, by means of series solution method. Sahin [13] studied the effect of transverse periodic permeability oscillating with time on the free convective heat transfer flow of a viscous incompressible fluid through a highly porous medium bounded by an infinite vertical porous plate subjected to a periodic suction velocity.

Chamkha [14] investigated the chemical reaction effects on heat and mass transfer laminar boundary layer flow in the presence of heat generation/absorption effects. Muthucumaraswamy and Kulaivel [15] presented an analytical solution to
the problem of flow past an impulsively started infinite vertical plate in the presence of heat flux and variable mass diffusion, taking into account the presence of a homogeneous chemical reaction of first order. Sahin and Kalita [16] analyzed the effects of chemical reaction as well as magnetic field on the heat and mass transfer of Newtonian fluids over an infinite vertical oscillating plate with variable mass diffusion. The study of heat and mass transfer on the free convective flow of a viscous incompressible fluid past an infinite vertical porous plate in the presence of transverse sinusoidal suction velocity and a constant free stream velocity was presented by Sahin [17]. Also, Sahin and Liu [18] analyzed the effects of mixed convection and mass transfer of three-dimensional oscillatory flow of a viscous incompressible fluid past an infinite vertical porous plate in the presence of transverse sinusoidal suction velocity oscillating with time and a constant free stream velocity. The non-linear coupled equations of the works [17,18] were solved analytically by employing perturbation technique.

Yang [19] employed the method of moments to study the interaction of mixed convection and thermal radiation in gray, absorbing, emitting laminar gas flow in a pipe, showing that radiation depresses the buoyancy effect, whereas heat transfer rate is enhanced with increasing radiation-conduction parameter. Makinde [20] used a superposition technique and a Rosseland diffusion flux model to study the natural convection heat and mass transfer in a gray, absorbing-emitting fluid along a porous vertical translating plate. Loganathan et al. [21] investigated the effects of porosity and magnetohydrodynamic type on laminar convective heat transfer flow of an incompressible, viscous, electrically conducting and Boussinesq fluid over an impulsively-started semi-infinite vertical plate in the presence of thermal radiation by an implicit finite-difference scheme of the Crank–Nicolson type. Bég et al. [23] presented a non-Darcy model for porous vertical translating plate. Batin [29].

Recently, Sahin [28] investigated the effects of radiation and magnetic effects. Here, the \(x \)-axis is taken along the plate in the vertically upward direction and the \(y \)-axis is taken normal to the plate. Initially, it is assumed that the plate and the fluid are of the same temperature and the temperature of the plate and the concentration level are also raised to \(T_w = T_\infty + ax^m \) and \(\mathcal{C}_w = \mathcal{C}_\infty + bx^m \). They are maintained at the same level for all time \(t > 0 \).

Then under the above assumptions, the governing boundary layer equations for free convective MHD flow through porous medium with usual Boussinesq’s approximation are as follows:

Equation of continuity:

\[
\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y} = 0
\]

Equation of momentum:

\[
\frac{\partial \bar{u}}{\partial t} + \bar{u} \frac{\partial \bar{u}}{\partial x} + \bar{v} \frac{\partial \bar{u}}{\partial y} = \frac{g \beta \bar{T} (T - T_\infty)}{\rho_c} + \frac{g \beta \bar{C} (C - C_\infty)}{\rho_c} + \nu \frac{\partial^2 \bar{u}}{\partial y^2} - \left(\frac{\sigma B_0^2}{\rho} + \gamma \right) \bar{u}
\]

Equation of energy:

\[
\frac{\partial \bar{T}}{\partial t} + \bar{u} \frac{\partial \bar{T}}{\partial x} + \bar{v} \frac{\partial \bar{T}}{\partial y} = \frac{1}{\rho c_p} \left(\kappa \frac{\partial^2 \bar{T}}{\partial y^2} - \frac{\partial q}{\partial y} \right)
\]

Equation of mass diffusion:

\[
\frac{\partial \bar{C}}{\partial t} + \bar{u} \frac{\partial \bar{C}}{\partial x} + \bar{v} \frac{\partial \bar{C}}{\partial y} = D \frac{\partial^2 \bar{C}}{\partial y^2} - \bar{C} \frac{\partial \bar{C}}{\partial y}
\]

The initial and boundary conditions are

\[
\begin{align*}
\bar{T} & = T_\infty, \quad \bar{C} = C_\infty \\
\bar{u} & = 0, \quad \bar{v} = 0, \quad \bar{T} = T_\infty, \quad \bar{C} = C_\infty \\
\bar{u} & \to 0, \quad \bar{T} \to T_\infty, \quad \bar{C} \to C_\infty \quad \text{as} \quad \bar{y} \to \infty
\end{align*}
\]

For the case of an optically thin gray gas, the local radiant absorption is expressed by

\[
\frac{\partial \bar{q}_r}{\partial y} = -4 \bar{a} \bar{T} (T^4 - \bar{T}^4)
\]
We assume that the temperature differences within the flow are sufficiently small such that T^4 may be expressed as a linear function of the temperature. This is accomplished by expanding T^4 in a Taylor series about T^{∞}_{∞} and neglecting higher-order terms, thus

$$T^4 \approx 4T^{\infty}_{\infty} T - 3T^{\infty}_{\infty}$$

(7)

By using Eqs. (6) and (7), Eq. (3) reduces to

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{1}{\rho C_p} \left[\frac{\partial^2 T}{\partial y^2} - 16\alpha T^3 \frac{T - T^{\infty}_{\infty}}{T^{\infty}_{\infty}} \right]$$

(8)

On introducing the following non-dimensional quantities:

$$x = \frac{\xi}{u_0}, y = \frac{\eta}{u_0}, \quad t = \frac{\tau}{u_0^2}, \quad \theta = \frac{T - T^{\infty}_{\infty}}{T^{\infty}_{\infty}}, \quad \phi = \frac{\eta C_{\infty}}{u_0}, \quad \beta = \frac{\eta C_{\infty}}{u_0}, \quad \Gamma = \frac{\eta C_{\infty}}{u_0}, \quad \theta_{\ast} = \frac{\eta C_{\infty}}{u_0}, \quad \theta_{\ast} = \frac{\eta C_{\infty}}{u_0}$$

$$K = \frac{\eta C_{\infty}}{u_0}, \quad C_{\ast} = \frac{\eta C_{\infty}}{u_0}, \quad R_{\ast} = \frac{64\alpha v^2 T^{\infty}_{\infty}}{\kappa T^{\infty}_{\infty}}, \quad M = \frac{\sigma k_0^2}{\rho u_0^3}$$

Eqs. (1)–(4) are reduced to the following non-dimensional form:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

(10)

$$\frac{\partial \theta}{\partial t} + u \frac{\partial \theta}{\partial x} + v \frac{\partial \theta}{\partial y} = Gr \theta + Gr_{\ast} \theta + \frac{\partial^2 \theta}{\partial y^2} - (M + K^4)u$$

(11)

$$\frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} + v \frac{\partial \phi}{\partial y} = \frac{1}{Sc} \frac{\partial^2 \phi}{\partial y^2} + C_{\ast} \phi$$

(12)

The corresponding initial and boundary conditions in non-dimensional form are

$$t \leq 0: \quad u = 0, \quad v = 0, \quad \theta = 0, \quad \phi = 0$$

$$t > 0: \quad u = 1, \quad v = 0, \quad \theta = x, \quad \phi = x^2 \quad \text{at} \quad y = 0$$

$$u = 0, \quad \theta = 0, \quad \phi = 0 \quad \text{at} \quad x = 0$$

$$u \rightarrow 0, \quad \theta \rightarrow 0, \quad \phi \rightarrow 0 \quad \text{as} \quad y \rightarrow \infty$$

(14)

The local skin friction (wall shear stress), local Nusselt number (surface heat transfer gradient), and the local Sherwood number (surface species transfer gradient) are given respectively by

$$\tau_x = -\mu \left(\frac{\partial u}{\partial y} \right)_{y=0} = -\left(\frac{\partial u}{\partial y} \right)_{y=0}$$

(15)

$$N_{ul} = -\frac{\tilde{x}}{T_u - T^{\infty}_{\infty}} \left(\frac{\partial T}{\partial y} \right)_{y=0} = -\left(\frac{\partial T}{\partial y} \right)_{y=0}$$

(16)

$$S_{sh} = -\frac{\tilde{x}}{C_w - C^{\infty}_{\infty}} \left(\frac{\partial C}{\partial y} \right)_{y=0} = -\left(\frac{\partial C}{\partial y} \right)_{y=0}$$

(17)

3. Numerical techniques

In order to solve the unsteady, non-linear coupled Eqs. (10)–(13) under the conditions (14), an implicit finite difference scheme of the Crank–Nicolson type has been employed. The finite difference equations corresponding to Eqs. (10)–(13) are as follows:

$$\left[v_{ij}^{n+1} - v_{ij}^{n+1} + v_{ij}^{n} - v_{ij}^{n-1} + v_{ij}^{n} - v_{ij}^{n-1} + v_{ij}^{n} - v_{ij}^{n-1} \right]$$

$$+ 4\Delta t$$

$$\left[v_{ij}^{n} - v_{ij}^{n} + v_{ij}^{n} - v_{ij}^{n} \right] = 0$$

(18)

$$\frac{u_{ij}^{n+1} - u_{ij}^{n+1} + u_{ij}^{n} - u_{ij}^{n-1} + u_{ij}^{n} - u_{ij}^{n-1} + u_{ij}^{n} - u_{ij}^{n-1} \right]$$

$$+ 4\Delta y$$

$$\left[u_{ij}^{n} - u_{ij}^{n} + u_{ij}^{n} - u_{ij}^{n} \right] = 0$$

(19)

The region of integration is considered as a rectangle with sides $x_{max} = 1$ and $y_{max} = 14$, where y_{max} corresponds to $y = \infty$ which lies very well 50% outside both the momentum and energy boundary layers. The maximum of y was chosen as 14 after some preliminary investigations so that the last two of the boundary conditions (14) are satisfied within the tolerance limit 10^{-5}. After experimenting with a few set of mesh sizes, the mesh sizes have been fixed at the level $\Delta x = 0.05$, $\Delta y = 0.25$ with time step $\Delta t = 0.01$. In this case, the spatial mesh sizes are reduced by 50% in one direction, and later in both directions, the results are compared. It is observed that, when the mesh size is reduced by 50% in the y-direction, the
results differ in the fifth decimal place while the mesh sizes are reduced by in x-direction or in both directions; the results are comparable with three decimal places.

Hence, the above mesh sizes have been considered as appropriate for calculation. The coefficients \(\beta_j \) and \(\alpha_j \) appearing in the finite-difference equations are treated as constants in any one step. Here \(i \) designates the grid point along the x-direction, \(j \) along the y-direction. The values of \(u, v, \theta \) and \(\phi \) are known at all grid points at \(t = 0 \) from the initial conditions.

The computations of \(u, v, \theta \) and \(\phi \) at time level \((n + 1)\) using the values at previous time level \(n\) are carried out as follows: The finite difference Eq. (21) at every internal nodal point on a particular i-level constitutes a tridiagonal system of equations. Such systems of equations are solved by using Thomas algorithm as discussed in Carnahan et al. [22]. Thus, the values of \(\phi \) are found at every nodal point for a particular \(i \) at \((n + 1)\)th time level. Similarly, the values of \(\theta \) are calculated from Eq. (20). Using the values of \(\phi \) and \(\theta \) at \((n + 1)\)th time level in Eq. (19), the values of \(u, v, \theta \) at \((n + 1)\)th time level are found in a similar manner. Thus, the values of \(\phi, \theta, u \) and \(v \) are known on a particular i-level. Finally, the values of \(v \) are calculated explicitly using Eq. (18) at every nodal point on a particular i-level at \((n + 1)\)th time level. This process is repeated for various i-levels. Thus the values of \(\phi, \theta, u \) and \(v \) are known at all grid points in the rectangular region at \((n + 1)\)th time level.

Computation are repeated until the steady-state is reached. The steady state solution is assumed to have been reached, when the absolute difference between the values of \(u \), as well as temperature \(\theta \) and concentration \(\phi \) at two consecutive time steps are less than \(10^{-5}\) at all grid points.

3.1. Stability analysis

The stability criterion of the finite difference scheme for constant mesh sizes is examined using Von-Neumann technique as explained by Carnahan et al. [22]. The general term of the Fourier expansion for \(u, \theta \) and \(\phi \) at a time arbitrarily called \(t = 0 \), is assumed to be of the form \(\exp(i\pi x)\exp(i\beta y) \) (here \(i = \sqrt{-1} \)). At a later time \(t \), these terms will become,

\[
\begin{align*}
\theta &= G(t) \exp(i\pi x) \exp(i\beta y) \\
\phi &= H(t) \exp(i\pi x) \exp(i\beta y)
\end{align*}
\]

where

\[
\begin{align*}
u(F) &= \frac{\frac{\Delta t}{2\Delta x} [1 - \exp(-i\pi x)] + \frac{\Delta t}{2\Delta y}(H + H)[1 - \exp(-i\beta y)]}{2} + \frac{v(F + F)\sin(\beta \Delta y)}{2\Delta y} \\
\phi &= \frac{(G' + G)\Delta t}{2\Delta x} + \frac{v(F + F)\sin(\beta \Delta y)}{2\Delta y} \\

\text{Equations (23)–(25) can be rewritten as,}
\end{align*}
\]

\[
(1 + A)F = (1 - A)F + \frac{\Delta t}{2\Delta x} (G' + G) + Grm(H' + H)
\]

\[
(1 + B)G' = (1 - B)G'
\]

\[
(1 + E)H' = (1 - E)H'
\]

where

\[
\begin{align*}
A &= \frac{u \Delta t}{2 \Delta x} [1 - \exp(-i\pi x)] + \frac{v \Delta t}{2 \Delta y} \sin(\beta \Delta y) - \frac{\exp(-i\pi x)}{1 - \exp(-i\pi x)} \\
B &= \frac{u \Delta t}{2 \Delta x} [1 - \exp(-i\pi x)] + \frac{v \Delta t}{2 \Delta y} \sin(\beta \Delta y) - \frac{\exp(-i\pi x)}{1 - \exp(-i\pi x)} \\
E &= \frac{u \Delta t}{2 \Delta x} [1 - \exp(-i\pi x)] + \frac{v \Delta t}{2 \Delta y} \sin(\beta \Delta y) - \frac{\exp(-i\pi x)}{1 - \exp(-i\pi x)}
\end{align*}
\]

After eliminating \(G' \) and \(H' \) in Eq. (26) using Eqs. (27) and (28), the resultant equation is given by,

\[
(1 + A)F = (1 - A)F + \frac{Gr\Delta t}{(1 + B)} - H\frac{Grm\Delta t}{(1 + E)}
\]

Eqs. (27)–(29) can be written in matrix form as follows:

\[
\begin{align*}
F' = \begin{pmatrix} 0 & -A & D_1 & D_2 \\
0 & 0 & -B & 0 \\
0 & 0 & 0 & -E \\
\end{pmatrix} \begin{pmatrix} F \\
G' \\
H' \\
\end{pmatrix}
\end{align*}
\]

where \(D_1 = \frac{Gr\Delta t}{(1 + B)} \) and \(D_2 = \frac{Grm\Delta t}{(1 + E)} \).

Now, for stability of the finite difference scheme, the modulus of each Eigen value of the amplification matrix does no \((1 - A)(1 + B) \) exceed unity. Since the matrix Eq. (30) is triangular, the Eigen values are its diagonal elements. The Eigen values of the amplification matrix are \((1 - A)/(1 + A), (1 - B)/(1 + B) \) and \((1 - E)/(1 + E) \).

Assuming that, \(u \) is everywhere non-negative and \(v \) is everywhere non-positive, we get

\[
A = 2a_1 \sin^2 \left(\frac{\pi \Delta x}{2}\right) + 2c_1 \sin^2 \left(\frac{\beta \Delta y}{2}\right)
\]

\[
+ i[a_1 \sin(\pi \Delta x) - b_1 \sin(\beta \Delta y)] + \frac{(M + K - 1)\Delta t}{2}
\]

\[
\begin{align*}
a_1 &= \frac{u \Delta t}{2 \Delta x}, \quad b_1 = \frac{v \Delta t}{2 \Delta y}, \quad c_1 = \frac{\Delta t}{(\Delta y)^2}
\end{align*}
\]
Since the real part of A is greater than or equal to zero, always. Similarly, $|(1 - B)/(1 + B)| \leq 1$ and $|(1 - E)/(1 + E)| \leq 1$. Hence, the finite difference scheme is unconditionally stable. The local truncation error is $O(\Delta t^2 + \Delta x^2 + \Delta y^2)$ and it tends to zero as Δt, Δx and Δy tend to zero. Hence, the scheme is compatible. Stability and compatibility ensures convergence.

4. Results and discussions

Selected computations have been depicted graphically in all the figures. These figures generally show the spatial variable distribution at a variable time t. All parametric values corresponding to each figure are included therein. It should be noted that $Gr = Gr_m = 5$ imply strong species and thermal buoyancy forces; $Sc = 0.60$ approximately simulates lower molecular weight gases diffusing in air, $Pr = 0.71$ which represents air unless otherwise stated.

In order to ascertain the accuracy of the numerical results, the results for the present study are compared with the available exact solution in the literature. The velocity profiles for $Ra = 1.5$, $K = 0.5$, $Sc = 0.60$, $m = n = 0.7$, $t = 1.75$ and $Pr = 0.71$ are compared with the available exact solution of Loganathan et al. [21] at $t = 0.2$ and they are presented in Table 1. It is clearly observed from this table that the present results are in good agreement with the available theoretical solution at lower time level. This favorable comparison lends confidence in the numerical results reported subsequently.

Figs. 1b–1d present the response of velocity (u), temperature (θ) and concentration (c) to magnetohydrodynamic body force parameter (M). Here $M = (\sigma B_0^2) / (\mu_0 u_0^2)$ and it signifies the ratio of Lorentz hydromagnetic body force to viscous hydrodynamic force. Increasing M from 0 (non-conducting case), to 1.0 (magnetic body force and viscous force equal), 2.5, 5.0 and 10.0 (very strong magnetic body force) induces a distinct reduction in velocities as shown in Fig. 1b. With higher M values since the magnetic body force, $(-Mu)$ in the momentum Eq. (11) is amplified, this serves to increasingly retard the flow. The imposition of an external magnetic field is therefore a powerful mechanism for inhibiting flow in the regime. The maximum velocities as before arise close to the surface of the plate, a short distance from it (at the surface, $y = 0$); with further distance into the boundary layer, the profiles converge, i.e. the magnetic body force has a weaker effect in the far field regime than in the near-field regime. Conversely with increasing M, temperature, (Fig. 1b) is observed to be markedly increased. This is physically explained by the fact that the extra work expended in dragging the fluid against the magnetic field is dissipated as thermal energy in the boundary layer, as elucidated by Sutton and Sherman [30], Pai [31] and Hughes and Young [32]. This results in heating of the boundary layer and an ascent in temperatures, an effect which is maximized some distance away from the surface. The magnetic field influence on temperatures while noticeable is considerably less dramatic than that on the velocity field, since the Lorentz body force only arises in the momentum Eq. (11) and influences

<table>
<thead>
<tr>
<th>y</th>
<th>Loganathan et al. [21]</th>
<th>Present work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>1.472185</td>
<td>1.717228</td>
</tr>
<tr>
<td>2.0</td>
<td>0.146033</td>
<td>0.193744</td>
</tr>
<tr>
<td>4.0</td>
<td>0.028031</td>
<td>0.052325</td>
</tr>
<tr>
<td>6.0</td>
<td>0.004672</td>
<td>0.012958</td>
</tr>
<tr>
<td>8.0</td>
<td>0.000729</td>
<td>0.001352</td>
</tr>
</tbody>
</table>
the temperature (θ) and concentration (ϕ) fields, only via the thermal and buoyancy terms. Magnetic effects do not feature in either the temperature (12) or species diffusion Eq. (13). The deceleration in flow serves to enhance species diffusion in the regime and this causes a rise also in the concentration profiles (Fig. 1d) with increasing magnetic parameter. Applied external magnetic field, therefore while counteracting the momentum development in the regime, serves to enhance the heat and species diffusion, and this is of immense benefit in chemical engineering operations, where designers may wish to elevate transport in a regime without accelerating the flow.

Figs. 2a–2c illustrate the influence of the porosity (K) on the boundary layer variables, u, θ and ϕ, respectively. Increasing the porosity of the porous medium clearly serves to enhance the flow velocity (Fig. 2a), i.e. accelerates the flow. This effect is accentuated close to the surface K where a peak in the velocity profile arises. With further distance transverse to the surface, the velocity profiles are all found to decay into the free stream. An increased porosity clearly corresponds to a reduced presence of matrix fibers in the flow regime which, therefore, provides a lower resistance to the flow and in turn, boosts the momentum. For increasing values, the time t required to attain the steady-state scenario is also elevated considerably. As such, the steady state is achieved faster for higher values of K. Conversely, with increasing porosity values, the temperature profile (Fig. 2b) in the regime is found to be decreases, i.e. the boundary layer is cooled. A reduction in the volume of solid particles in the medium implies a lower contribution via thermal conduction. This serves to decrease the fluid tem-
perature. As with the velocity field (Fig. 2a), the time required to attain the steady-state condition decreases substantially with a positive increase in. In Fig. 2c a similar response for the concentration field is observed, as with the temperature distributions. The values of ϕ are continuously decreased with increasing values of porosity, also decrease with positive increases in the values of K, but reach the steady state progressively faster.

Figs. 3a–3c present the effects of the chemical reaction parameter, C_r, on the velocity (u), temperature (θ) and concentration (ϕ) profiles, respectively. Physically, the mass diffusion Eq. (13) can be adjusted to represent a destructive chemical reaction (means endothermic, i.e., heat is absorbed) if $K > 0$ or a generative chemical reaction (means exothermic, i.e., heat is generated) if $K > 0$. Endothermic reactions cannot occur spontaneously, due to that a work must be done in order to get these reactions to occur. When endothermic reactions absorb energy, a temperature drop is measured during the reaction. Endothermic reactions are characterized by positive heat flow (into the reaction) and an increase in enthalpy. Exothermic reactions may occur spontaneously and result in higher randomness or entropy of the system. They are denoted by a negative heat flow (heat is lost to the surroundings) and decrease in enthalpy. There is a clear increase in the velocity values at the wall accompanying a rise in C_r from -1.5 through -1.0, 0.0, 1.0 to 1.5, i.e. the flow is accelerated throughout the boundary layer. This shows that velocity increases during generative reaction and decreases in destructive reaction. Irrespective of the values of C_r or t, it is important to highlight that there is no flow reversal condition, i.e. no back flow in the boundary layer regime. The velocity u sustains positive values throughout the flow regime. With an increase in the value of C_r, the time taken to attain the steady-state condition does not follow a direct increase or decrease. For $C_r = -1.5$, $t = 10.51$ a value which decreases to 9.27 for $C_r = -1.0$ but then increases to 9.67 for $C_r = 0.0$ and then increases to 11.01 for $C_r = 1.5$. The steady-state condition is therefore, achieved fastest for $C_r = -1.0$. Conversely, with an increase in the value of C_r, the temperature, θ, as shown in Fig. 3b, increases continuously through the boundary layer. Again the steady-state condition is attained fastest for $C_r = -1.0$ but slowest for $C_r = 1.5$. Fig. 3c indicates that a rise in the value of C_r strongly suppresses the concentration levels in the boundary layer regime. All profiles decay monotonically from the surface (wall) to the free stream. The concentration boundary layer thickness is therefore, considerably greater for $C_r = -1.5$ than for $C_r = 1.5$.

In Figs. 4a–4c, the influence of the radiation parameter, R_a, on the steady-state velocity, temperature and concentration distributions with distance transverse to the surface (i.e. with y-coordinate) are presented, respectively. The parameter R_a defines the ratio of thermal conduction contribution relative to thermal radiation. For $R_a = 1$, the thermal radiation and the thermal conduction contributions are equivalent. For $R_a > 1$, the thermal radiation effect is dominant over the thermal conduction effect and vice versa for $R_a < 1$. An increase in the value of R_a from 0 (non-radiating) through 0.5 (thermal conduction is dominant over radiation), 1.0, 3.0, 5.0 to 8.0 (radiation is dominant over thermal conduction), causes a significant decrease in the velocity with distance into the boundary layer, i.e. decelerates the flow. The velocities in all cases ascend from the surface, peak close to the wall and then decay smoothly to zero in the free stream. It is also noted that with increasing values of the parameter R_a, the time taken to attain the steady state condition is reduced. Therefore, it is concluded that the thermal radiation flux has a de-stabilizing effect on the
This is important in polymeric and other industrial flow processes since it shows that the presence of thermal radiation while decreasing temperatures, will affect flow control from the surface into the boundary layer regime. As expected, the temperature values are also significantly reduced with an increase in the value of Ra as there is a progressive decrease in the thermal radiation contribution accompanying this. All profiles show monotonic decays from the wall to the free stream. The maximum reduction in temperatures is witnessed relatively close to the surface since thermal conduction effects are prominent closer to the surface, rather than further into the free stream. The concentration (ϕ) profile is conversely boosted with an increase in the value of Ra (i.e. decrease in thermal radiation contribution). The parameter Ra does not arise in the species conservation Eq. (13) and therefore, the concentration field is indirectly influenced by Ra via the coupling of the energy Eq. (12) with the momentum Eq. (11), the latter also being coupled with the convective acceleration terms in the species Eq. (13). However, as with the response of the velocity and temperature fields, an increase in the value of Ra decreases the time that elapses to achieve the steady-state condition. Therefore, while greater thermal radiation augments diffusion of species in the regime, it requires greater time to achieve the steady-state condition.

Fig. 5 shows the effects of porosity (K) and magnetic parameter (M) on shear stress function ($-\tau'_x$) plotted against time variable (t). Increasing the porosity parameter (K) clearly enhances the skin friction since with progressively decreasing solid matrix fibers to resist the flow, the fluid will be accelerated and shear faster past the surface of the wall. However, it is interesting to note that for each profile, the shear skin friction initially grows from the lower value of time (here $t = 0.01$, where it vanishes owing to the no-slip condition), peaks at $t = 0.05$ and thereafter descends in value when $t > 0.06$ (which although not included in the graph scale, clearly indicates that profiles are decaying toward it). Therefore, the maximum shear stress arises for any porosity value at the time $t = 0.05$ point on the surface of the wall. The converse response is seen for M, wherein a sharp decrease in skin friction is induced by increasing the magnetic parameter, M from 0 (electrically non-conducting case) through 1.0, to 5.0. Here $M = \left(\frac{\sigma B_0^2}{\rho \mu_0^2}\right)$ and is directly proportional to the applied radial magnetic field, B_0, for constant electrical conductivity (σ), fluid density (ρ), kinematic viscosity (ν) and plate velocity (u_0). Therefore greater retarding effect is generated in the flow with greater M values (i.e. stronger magnetic field strengths) which causes the prominent depression in skin friction. For $M = 1$, the magnetic drag force will be of the same order of magnitude as the viscous hydrodynamic force. For $M > 1$, hydromagnetic drag will dominate and vice versa for $M < 1$. In magnetic transient flow regime.
In this paper, investigations were made to study the transient magnetohydrodynamic convective heat and mass transfer in boundary layer flow from an impulsively-started and upward translating semi-infinite plate immersed in a porous medium in the presence of thermal radiation and homogeneous chemical reaction of first order. A flux model was employed to simulate thermal radiation effects. The dimensionless governing coupled, non-linear partial differential equations for this investigation were solved by an efficient, accurate, and extensively validated and unconditionally stable finite-difference scheme of the Crank–Nicolson type. It has been shown that increasing magnetic field generally decelerates the flow, but increases temperatures and concentration values in the regime. Increasing porosity serves to accelerate the flow but reduce temperatures and concentration values. The analysis showed that increasing the thermal radiation effects decelerated the flow velocity as well as the fluid temperature, but depressed the solute concentration. Increasing the porosity parameter boosted the wall shear stress as well as the Nusselt and Sherwood numbers, whereas increasing the magnetic parameter effectively reduced the shear stress as well as the Nusselt and Sherwood numbers at the wall. The present study was confined to Newtonian fluids. It is hoped that the present results be used as a vehicle for understanding more complex problems dealing with viscoelastic and power-law rheological fluid models.

References

Sahin Ahmed is an Associate Professor in the Department of Mathematics and Computing, Rajiv Gandhi University, Arunachal Pradesh, India. He obtained his M. Sc. Degree in Mathematics from Delhi University and Ph. D. degree from Gauhati University in the year 2005. He has been doing his research work in the field of Computer oriented Heat and Mass transfer Fluid Dynamics and Magnetohydrodynamic Flow in porous media Transport since 1998. More than 75 research papers have been published in internationally reputed peer reviewed journals to his credit. Fifteen research scholars have obtained M. Phil degrees under his supervision and few research scholars have been registered for Ph.D. degree. He is currently dealing with few research projects sponsored by government of India. He regularly attends National and International Conferences/Workshops related to his research field.