Some modular varieties of low dimension II

Eberhard Freitag a,*, Riccardo Salvati Manni b

a Mathematisches Institut, Im Neuenheimer Feld 288, D69120 Heidelberg, Germany
b Dipartimento di Matematica, Piazzale Aldo Moro, 2, I-00185 Roma, Italy

Received 27 June 2005; accepted 22 November 2006
Available online 18 April 2007
Communicated by The Managing Editors

Abstract

The paper extends results obtained by Frieder Hermann and Eberhard Freitag about a six-dimensional modular variety related to the orthogonal group of signature (2,6). The ring of modular forms of this variety turns out to be a weighted polynomial ring in 7 variables.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Algebraic geometry; Automorphic forms; Automorphic functions in symmetric domains

0. Introduction

Some years ago one of the two authors in collaboration with F. Hermann studied in [7] some modular varieties of small dimension. These are related to the orthogonal group O(2, n). In particular using some exceptional isogenies between orthogonal and symplectic groups, they used techniques of both “worlds.” The most significant variety they studied in [7] was related to O(2, 6) or—equivalently—to the symplectic group of degree two defined on the quaternions. In particular they gave a finite map from this variety to a weighted 6-dimensional projective space. Recently Krieg determined the structure of the graded ring of modular forms of degree two with respect to the Hurwitz integral quaternions. Krieg’s result convinced the authors to reconsider [7]. Here we found that in the computation of the covering degree of the mentioned finite map a factor three is missing in the denominator. The aim of this paper is to correct this mistake and to improve the result of [7]. In this way we will get Krieg’s structure theorem as a

* Corresponding author.
E-mail addresses: freitag@mathi.uni-heidelberg.de (E. Freitag), salvati@mat.uniroma1.it (R. Salvati Manni).

0001-8708/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
corollary of a more general result. In contrast to Krieg we work only in the orthogonal context. We think that this makes the underlying geometry much more visible.

1. Orthogonal and elliptic modular forms

A lattice L is a free abelian group together with a real valued non-degenerate bilinear form (\cdot, \cdot). It is called even, if the quadratic form, the so-called norm, (x, x) is even for all x. We also will consider the quadratic space $V = L \otimes_{\mathbb{Z}} \mathbb{R}$. Its orthogonal group is denoted by $O(V)$. Recall that in the indefinite case there is a subgroup $O^+(V)$ of index two, which is generated by all reflections along vectors a of negative norm (a, a). (The reflection along a is defined by the fact it changes the sign of a and fixes its orthogonal complement.) The reflections along vectors of positive norm are not contained in this group. We consider the signature (p, q). In a suitable basis of V the quadratic form is given by $x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2$. It is easy to check that the transformation $x \mapsto -x$ is contained in $O^+(V)$ when p is even. We also have to consider the integral orthogonal subgroups $O(L) := \{ g \in O(V); \ g(L) = L \}$ and

$$O^+(L) = O(L) \cap O^+(V).$$

Let V be a quadratic space of signature $(2, n)$. We denote by $\mathcal{H}(V)$ the set of all two-dimensional positive definite subspaces. If L is a lattice of signature $(2, n)$ we write $\mathcal{H}(L)$ instead of $\mathcal{H}(V)$. We recall that $\mathcal{H}(L)$ is a complex manifold. For this one considers the projective space $P(V(\mathbb{C}))$ of the complexification $V(\mathbb{C}) = V \otimes_{\mathbb{R}} \mathbb{C}$ of V. We extend (\cdot, \cdot) to a \mathbb{C}-bilinear form. The zero quadric $(z, z) = 0$ is a (smooth) complex submanifold. The set

$$\mathcal{K} := \{ z \in P(V(\mathbb{C})); \ (z, z) = 0, \ (z, \bar{z}) > 0 \}$$

is an open subset of the zero quadric and hence a complex manifold. It has two connected components, which can be interchanged by the map $z \mapsto \bar{z}$. We choose one of the components and denote it by \mathcal{K}^+. The map

$$\mathcal{K}^+ \sim \mathcal{H}(V), \quad \mathbb{C}z \mapsto \mathbb{R}x + \mathbb{R}y \quad (z = x + iy)$$

is bijective and defines the stated complex structure on $\mathcal{H}(V)$. The group $O^+(V)$ is the subgroup of $O(V)$ which preserves \mathcal{K}^+. Its action on $\mathcal{H}(V)$ is holomorphic. We recall the notion of a modular form. Let $\Gamma \subset O^+(V)$ be a subgroup, which is commensurable with $O^+(L)$. We consider the inverse image $\tilde{\mathcal{K}}^+$ of \mathcal{K}^+ under the natural map $V(\mathbb{C}) - \{0\} \to P(V(\mathbb{C}))$. The group $O^+(V)$ acts on $\tilde{\mathcal{K}}^+$ as well. A modular form of weight k and with respect to some character $v: \Gamma \to \mathbb{C}^*$ is a holomorphic function $f: \tilde{\mathcal{K}}^+ \to \mathbb{C}$ with the properties

(a) $f(v(y)z) = v(y)f(z),$
(b) $f(tz) = t^{-k}f(z),$
(c) f is holomorphic at the cusps.
We denote by \([\Gamma, k, v]\) the space of all these forms or simply by \([\Gamma, k]\), when \(v\) is trivial. When \(k\) is odd and \(-\text{id}\) is contained in \(\Gamma\) then \([\Gamma, k] = 0\). Sometimes we consider \([\Gamma/\{\pm \text{id}\}, k]\) instead of \([\Gamma, k]\) for even \(k\).

We recall the standard realization of \(\tilde{K}^+\). For this purpose we decompose \(V = \mathbb{R}^2 \times \mathbb{R}^2 \times V_0\), where the quadratic form is \(x_1x_2 + x_3x_4 + (\xi, \xi)/2\) with a negative definite form \((\xi, \xi)\) on \(V_0\). Then \(\tilde{K}^+\) can be taken as the set of all \(t(1, *, z_0, z_2; \tilde{z})\) where \(t \neq 0\), \(y_0 > 0\) and \(y_0y_2 + (\eta, \eta)/2 > 0\). (We use the notation \(z_0 = x_0 + iy_0, \ldots\).) A modular form \(f\) is determined by the function

\[
F(z_0, z_2, \tilde{z}) := f(1, *, z_0, z_2, \tilde{z})
\]

and this function satisfies the transformation formula

\[
F(\gamma(z_0, z_2, \tilde{z})) = a(\gamma, (z_0, z_2, \tilde{z}))^k F(z_0, z_2, \tilde{z}).
\]

Here \(\gamma(z_0, z_2, \tilde{z})\) and \(a(\gamma, (z_0, z_2, \tilde{z}))\) are defined as follows: Consider

\[
\gamma(1, *, z_0, z_2, \tilde{z}) = t(1, *, w_0, w_2, w)
\]

and define

\[
a(\gamma, (z_0, z_2, \tilde{z})) = t^{-1}, \quad \gamma(z_0, z_2, \tilde{z}) = (w_0, w_2, w).
\]

1.1. Lemma. The automorphy factor \(a\) is related to the Jacobian determinant \(J\) by the formula

\[
J(\gamma, (z_0, z_2, \tilde{z})) = \det(\gamma)a(\gamma, (z_0, z_2, \tilde{z}))^n.
\]

This formula can be verified directly for reflections, using some tedious but elementary calculation which we omit here.

1.1. Elliptic modular forms

Let \(\text{Mp}(2, \mathbb{Z})\) be the metaplectic cover of \(\text{SL}(2, \mathbb{Z})\) We use the notations of [2]. The elements of \(\text{Mp}(2, \mathbb{Z})\) are pairs \((M, \sqrt{c\tau + d})\), where \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z})\), and \(\sqrt{c\tau + d}\) denotes a holomorphic root of \(c\tau + d\) on the upper half-plane \(\mathbb{H}\). It is well known that \(\text{Mp}(2, \mathbb{Z})\) is generated by

\[
T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},
\]

\[
S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \sqrt{\tau} > 0.
\]

One has the relations \(S^2 = (ST)^3 = Z\), where \(Z = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, i\) is the standard generator of the center of \(\text{Mp}(2, \mathbb{Z})\).

Recall that there is a unitary representation \(\rho_L\) of \(\text{Mp}(2, \mathbb{Z})\) on the group algebra \(\mathbb{C}[L'/L] = \mathbb{C}[L':L]\).
\[Q_L(T) = (e^{2\pi i q_L(\alpha)})_{\alpha \in L'/L} \text{ (diagonal matrix)}, \]
\[Q_L(S) = \sqrt{1 - m} \left(e^{-2\pi i (\alpha, \beta)} \right)_{\alpha, \beta \in L'/L}. \]

This representation is the Weil representation attached to the “finite quadratic form” \((L'/L, \bar{q}_L)\), where \(q_L : L'/L \to \mathbb{Q}/\mathbb{Z}\) is induced by \((x, x)/2\).

We recall the notion of an elliptic modular form with respect to a finite-dimensional representation \(\varrho : \text{Mp}(2, \mathbb{Z}) \to \text{GL}(W)\). Let \(k \in (1/2)\mathbb{Z}\) and \(f : \mathcal{H} \to W\) be a holomorphic function. Then \(f\) is called modular form of weight \(k\) with respect to \(\varrho\) if
\[f(M\tau) = \sqrt{c\tau + d}^{2k} \varrho(M, \sqrt{c\tau + d}) f(\tau) \]
for all \((M, \sqrt{c\tau + d}) \in \text{Mp}(2, \mathbb{Z})\) and if \(f\) is holomorphic at \(i\infty\). We denote the space of all these modular forms by \(\text{[SL}(2, \mathbb{Z}), k, \varrho]\). A form is called a cusp form if it vanishes at \(\infty\). The space \(\text{[SL}(2, \mathbb{Z}), k, \varrho]\) decomposes into the direct sum of the subspace of cusp forms and into the space of Eisenstein series which can be defined as the orthogonal complement with respect to the Petersson scalar product. An Eisenstein series is determined by its constant Fourier coefficient.

1.2. Borcherds’ additive lift

We now assume that the signature is \((2, n)\). We denote by
\[\Gamma_L := \text{kernel}(O^+(L) \to \text{Aut}(L'/L)) \]
the so called discriminant kernel. Borcherds defined for integral \(k + n/2\) a linear map
\[[\text{SL}(2, \mathbb{Z}), k, \varrho_L] \to [\Gamma_L, k + n/2 - 1], \]
which generalizes constructions of Saito–Kurokawa, Shimura, Maaß, Gritsenko, Oda et al. This map is equivariant with respect to the group \(O^+(L)\), which acts on both sides in a natural way. Borcherds defined in [2] this lift as a theta lift, but he also gives the Fourier expansion of the image of an elliptic modular form \(f\) at an arbitrary cusp in terms of the Fourier coefficients of \(f\).

We are interested in this construction especially in the case \(k = 0\). Modular forms of weight zero are constant, hence we get for even \(n\) a map
\[\mathbb{C}[L'/L]^{\text{SL}(2, \mathbb{Z})} \to [\Gamma_L, n/2 - 1]. \]
These orthogonal modular forms are the simplest examples of modular forms of several variables. The weight \(n/2 - 1\) is the so-called singular weight. Every modular form of weight \(0 < k < n/2 - 1\) vanishes.

We also have to recall the notion of a quadratic divisor. Let \(V\) be a quadratic space of signature \((2, n)\) and \(W \subset V\) a subspace of signature \((2, n - 1)\). Usually \(W\) is defined as orthogonal complement of a vector of negative norm. Then we obtain a natural holomorphic embedding \(\mathcal{H}(W) \hookrightarrow \mathcal{H}(V)\). Assume that \(V = L \otimes_{\mathbb{Z}} \mathbb{R}\) with an even lattice \(L\) and that \(W = M \otimes_{\mathbb{Z}} \mathbb{R}\) with
\[M = L \cap W. \] Let \(\Gamma \subset O^+(V) \) be a subgroup which is commensurable with \(O^+(L) \). The projected group \(\Gamma' \) consists of all elements of \(O^+(W) \), which are restrictions of an element of \(\Gamma \). This group is commensurable with \(O^+(M) \). Then we get a natural map

\[\mathcal{H}(W)/\Gamma' \rightarrow \mathcal{H}(V)/\Gamma. \]

From the theory of Baily–Borel [1] we know that this is an algebraic map of quasiprojective varieties. Moreover this map is birational onto its image.

2. A distinguished point

The root lattice \(D_4 \) will play a basic role. We take the realization given by the Hurwitz integers. This means the following: Denote by \(1, i_1, i_2, i_3 \) the standard generators of the Hamilton quaternions. Then \(o \) is the set of all \(a_0 + a_1 i_1 + a_2 i_2 + a_3 i_3 \) such that the \(a_i \) are all in \(\mathbb{Z} \) or all in \(1/2 + \mathbb{Z} \). The bilinear form is \((a, b) = 2 \text{Re}(ab) \), hence the norm is \((a, a) = 2a\bar{a} = 2(a_0^2 + a_1^2 + a_2^2 + a_3^2) \). We denote by \(H \) the lattice \(\mathbb{Z}^2 \) with bilinear form \((x, y) = x_1 y_2 + x_2 y_1 \). This is an even lattice of signature \((1, 1)\). Finally we define the orthogonal sum

\[L(o) = H \times H \times D_4(-1). \]

Here \(M(-1) \) means as usual the lattice \(M \) with the inner product negated. In the paper [7] the six lattice points of \(L(o) \)

\[
A_1 = (0, 0, 0, 0; i_3), \quad A_2 = (0, 0, 0, 0; \omega), \quad A_3 = (1, 0, 0, 0; -\bar{\omega}), \\
A_4 = (0, 1, 0, 0; -\bar{\omega}), \quad A_5 = (1, 1, 1, -1; -\bar{\omega}), \quad A_6 = (0, 0, 1, 0; -i_2)
\]

have been considered (\(\omega = (1 + i_1 + i_2 + i_3)/2 \)). The determinant of their Gram matrix is 3. The sublattice generated by them is a copy of \(E_6(-1) \), where \(E_6 \) denotes the well-known root lattice. We use the standard notations as in [5]. It is a basic fact that the group \(O^+(L(o)) \) acts transitively on the set of all sublattices of \(L(o) \) which are isomorphic to \(E_6(-1) \) (Proposition 8.1 in [7]). Hence the vectors above generate a representative of this set. The orthogonal complement \(W \) of this \(E_6(-1) \) in \(L(o) \) is generated by the two vectors

\[
B_1 = (2, 2, 2, 0; -1 + i_1), \quad B_2 = (0, 0, 2, 2; i_1 - i_2).
\]

Their Gram matrix is

\[
\begin{pmatrix}
4 & 2 \\
2 & 4
\end{pmatrix}
\]

The determinant is 12. Hence the determinant of \(W + E_6(-1) \) is 36. Since \(D_4 \) has determinant 4, it follows that the index of \(W + E_6(-1) \) in \(L(o) \) is three. The vector

\[
A := \frac{A_1 + A_2 + A_3 + A_4 + A_5 - B_1 - B_2}{3}
\]

is contained in \(L(o) \). It follows that \(L(o) \) is generated by \(W + E_6(-1) \) and \(A \). We call \(A \) the glue vector.
We want to determine the subgroup G of $O(L(\sigma))$ which stabilizes W or what means the same, which stabilizes $E_6(-1)$. The automorphism group $O(E_6)$ contains the Weyl group $W(E_6)$ as subgroup of index two. Recall that $W(E_6)$ is generated by the reflections along the 72 minimal vectors of E_6. The group $O(E_6)$ is generated by this Weyl group and by the transformation $x \mapsto -x$. Since $W(E_6)$ is generated by reflections along vectors of norm 2 (roots), we obtain that the natural homomorphism $G \rightarrow O(E_6)$ is surjective and moreover that it has a natural section

$$O(E_6) \rightarrow G.$$

An element $g \in O(E_6)$ will act on W by $\pm \text{id}$ depending on the fact whether it is contained in $W(E_6)$ or not.

We have to determine the kernel of the homomorphism $G \rightarrow O(E_6)$, i.e. the subgroup of G, which acts trivial on E_6. In [7] it has been stated on p. 246 that the kernel of this homomorphism has order two. Unfortunately this is not true and we want to take the occasion to give the correct statement in some detail.

Let $g \in G$ be an element of the kernel. We consider the elements $C_1 = g(B_1), C_2 = g(B_2)$ which are elements of norm 4. A pair (C_1, C_2) of elements of W gives rise to an element of G, if and only is $(C_1, C_1) = (C_2, C_2) = 4$ and $(C_1, C_2) = 2$ and if the vector

$$A_1 + A_2 + A_3 + A_4 + A_5 - C_1 - C_2 \quad 3$$

is contained in $L(\sigma)$. This means that

$$B_1 + B_2 - C_1 - C_2 \quad 3$$

is contained in $L(\sigma)$. We call this the glue condition. Here is the list of all elements of norm 4 of W:

$$\pm B_1, \quad \pm B_2, \quad \pm(B_1 - B_2).$$

The set of all pairs (C_1, C_2) from this list with inner product $(C_1, C_2) = 2$ is

$$\pm(B_1, B_2), \quad \pm(B_2, B_1), \quad \pm(B_1, B_1 - B_2), \quad \pm(B_2, B_2 - B_1), \quad \pm(B_1 - B_2, B_1), \quad \pm(B_1 - B_2, -B_2).$$

The glue condition exhibits the following pairs:

$$(B_1, B_2), \quad (B_2, B_1), \quad -(B_1, B_1 - B_2), \quad -(B_2, B_2 - B_1), \quad -(B_1 - B_2, B_1), \quad -(B_2 - B_1, B_2).$$

This gives a group order 6 which is isomorphic to S_3. It is the Weyl group of W. Hence we have the exact sequence

$$1 \rightarrow S_3 \rightarrow G \rightarrow O(E_6) \rightarrow 1.$$
We have to intersect G with $O^+(L(\mathfrak{o}))$. We denote this intersection by G^+. We mentioned that the transformation $x \mapsto -x$ is contained in $O^+(L(\mathfrak{o}))$. Therefore the map $G^+ \to O(E_6)$ remains surjective. The Weyl group of W is generated by reflections along vectors of positive norm. Hence they define elements in the kernel of G which are not contained in $O^+(L(\mathfrak{o}))$. Only the products of two of them are in $O^+(L(\mathfrak{o}))$. The subgroup of S_3 generated by products of two elements is the alternating group. Hence we get the exact sequence

$$1 \to \mathbb{Z}/3\mathbb{Z} \to G^+ \to O(E_6) \to 1.$$

Since this sequence splits, we have

2.1. Proposition. The stabilizer of W in $O^+(L(\mathfrak{o}))$ is isomorphic to

$$\mathbb{Z}/3\mathbb{Z} \times O(E_6).$$

Sometimes it is better to consider the group

$$\Gamma := O^+(L)/[\pm \text{id}]$$

instead of $O^+(L)$. This group also acts on the set of linear subspaces of $L \otimes_{\mathbb{Z}} \mathbb{R}$. The inclusion $W(E_6) \to O(E_6)$ induces an isomorphism

$$W(E_6) \sim \to O(E_6)/[\pm \text{id}].$$

Hence we obtain:

2.2. Corollary of 2.1. The stabilizer of W in $\Gamma(\mathfrak{o}) := O^+(L(\mathfrak{o}))/[\pm \text{id}]$ is isomorphic to

$$\mathbb{Z}/3\mathbb{Z} \times W(E_6).$$

In terms of the pairs the group $\mathbb{Z}/3\mathbb{Z}$ corresponds to the three elements

$$(B_1, B_2), \quad -(B_1, B_1 - B_2), \quad -(B_2, B_2 - B_1).$$

There is an important congruence subgroup of $O^+(L(\mathfrak{o}))$, namely the kernel of

$$O^+(L(\mathfrak{o})) \to \text{Aut}(L(\mathfrak{o})/2L(\mathfrak{o})^*),$$

where $L(\mathfrak{o})^*$ denotes the dual lattice of $L(\mathfrak{o})$. We use the notation

$$\Gamma(\mathfrak{o})[p] := \text{kernel}(O^+(L(\mathfrak{o})) \to \text{Aut}(L(\mathfrak{o})/2L(\mathfrak{o})^*)/[\pm \text{id}]).$$

This notation comes from the fact that $2\mathfrak{o}^*$ is the two-sided ideal

$$p := (1 + i_1)\mathfrak{o}.$$

As has been proved in [7], the natural embedding $E_6 \to L(\mathfrak{o})$ induces an isomorphism

$$E_6/2E_6 \sim \to L(\mathfrak{o})/2L(\mathfrak{o})^*.$$
It is known that the group $W(E_6)$ acts faithfully on $E_6/2E_6$. From 2.2 we obtain:

2.3. Proposition. There is a natural exact sequence

$$1 \longrightarrow \Gamma(\mathfrak{o})[p] \longrightarrow \Gamma(\mathfrak{o}) \longrightarrow W(E_6) \longrightarrow 1$$

which splits. The stabilizer $\Gamma(\mathfrak{o})[p]_W$ of W inside $\Gamma(\mathfrak{o})[p]$ is isomorphic to $\mathbb{Z}/3\mathbb{Z}$.

We recall that W corresponds to a certain point $\varrho \in \mathcal{H}(L(\mathfrak{o}))$ and that Proposition 2.3 describes the stabilizer of this point. This point or also its image $[\varrho] \in \mathcal{H}(L(\mathfrak{o}))/\Gamma(\mathfrak{o})[p]$ is called the distinguished point. It is the unique point of its fibre in

$$\mathcal{H}(L(\mathfrak{o}))/\Gamma(\mathfrak{o})[p] \longrightarrow \mathcal{H}(L(\mathfrak{o}))/\Gamma(\mathfrak{o}).$$

3. Examples of additive lifts

We return to the lattice $L(\mathfrak{o}) = H \times H \times D_4(-1)$. We replace this lattice by the (even) lattice $\sqrt{2}L(\mathfrak{o})^*$. Then the orthogonal group remains unchanged but the discriminant kernel changes. Since $(\sqrt{2}L^*)^* = L/\sqrt{2}$, we have a natural isomorphism

$$((\sqrt{2}L(\mathfrak{o}))^*)^*/((\sqrt{2}L(\mathfrak{o}))^*) = L(\mathfrak{o})/2L(\mathfrak{o})^*.$$

Hence the additive lift gives forms on the group $\Gamma(\sqrt{2}L(\mathfrak{o}))^*$. Recall that we used the abbreviation

$$\Gamma(\mathfrak{o})[p] = \Gamma(\sqrt{2}L(\mathfrak{o}))^*/[\pm \text{id}].$$

We see that we obtain an additive lift

$$\mathbb{C}[L(\mathfrak{o})/2L(\mathfrak{o})^*]^{SL(2,\mathbb{Z})} \longrightarrow [\Gamma(\mathfrak{o})[p], 2].$$

Recall that the full group $O^+(L(\mathfrak{o}))$ acts on both sides. More precisely it acts through its quotient $\Gamma(\mathfrak{o})/\Gamma(\mathfrak{o})[p] \cong W(E_6)$. A direct computation shows:

3.1. Proposition. The dimension of $\mathbb{C}[L(\mathfrak{o})/2L(\mathfrak{o})^*]^{SL(2,\mathbb{Z})}$ is 7. Under $W(E_6)$ this space splits into a one-dimensional trivial and a 6-dimensional irreducible representation.

The additive lift is in general not injective. In Theorem 14.3 of [2] the Fourier coefficients of an additive lifts are given as elementary expression in the Fourier coefficients of the input forms. By means of this formula it is easy to check:

3.2. Proposition. The kernel of the additive lift is the one-dimensional trivial subspace. Hence the image of the additive lift is a 6-dimensional subspace of $[\Gamma(\mathfrak{o})[p], 2]$.
This 6-dimensional space has been discovered earlier [7]. But it has been described there in a different language using the isogeny between $O(2, 6)$ and the quaternionic symplectic group of degree two. In the symplectic context theta series are available and this 6-dimensional space has been obtained there as a space of theta series. Recently Krieg [9] studied also this space from the symplectic view and gave explicit simple Fourier expansions for a basis of this space. For sake of completeness we give the link between the two approaches. The vector space $V = L(o) \otimes \mathbb{Z} \mathbb{R}$ appears in the form $V = \mathbb{R}^2 \times \mathbb{R}^2 \times V_0$, where $V_0 = D_4(-1) \otimes \mathbb{Z} \mathbb{R}$. Hence we can use the coordinates (z_0, z_2, \bar{z}) introduced in the previous section. We now simply write them as a matrix

$$Z = \begin{pmatrix} z_0 & \bar{z} \\ z' & z_2 \end{pmatrix},$$

where z' is defined as $\bar{z} + i\bar{n}$. This matrix is an element of the quaternionic half-plane of degree two in the sense of Krieg. That the space of thetas and the additive lift space are the same follows from the fact that both spaces are irreducible under $W(E_6)$ and that they contain one joint element as follows from [7, 11.1]. At the end we will see also that $\dim[\Gamma(o)[p], 2] = 6$.

Let $a \in L(o)$ be a vector of norm $(a, a) = -2$. Its orthogonal complement defines an irreducible subvariety of codimension one (divisor) of $\mathcal{H}(L(o))/\Gamma(o)[p]$. Since there are 36 orbits of pairs a, a' with respect to $\Gamma(o)[p]$ we get 36 such divisors [7, 36.4]. The reflection along a defines an automorphism of $\mathcal{H}(L(o))/\Gamma(o)[p]$ which fixes the corresponding divisor. If f is a modular form which changes its sign under this reflection, it will vanish along this divisor. Now we need some information about the six-dimensional irreducible representations of $W(E_6)$. Actually $W(E_6)$ admits two isomorphy classes of irreducible representations. The first one is represented by the obvious representation on $E_6 \otimes \mathbb{Z} \mathbb{C}$. The second one is its twist with the non-trivial character of $W(E_6)$ (determinant). In both cases there exist elements which change their sign under the reflection. Hence we obtain a non-vanishing modular form f in $[\Gamma(o)[p], 2]$ (in the additive lift subspace) which vanishes along the divisor. From the theory of Borcherds products, it follows [7] that there exists a form of weight 2 with precisely this divisor. Hence f must be this Borcherds product. This also shows that the subspace of $[\Gamma(o)[p], 2]$, which changes its sign under the reflection is one-dimensional. Hence we obtain:

3.3. Remark. The representation of $W(E_6)$ on the additive lift space in $[\Gamma(o)[p], 2]$ is isomorphic to $E_6 \otimes \mathbb{Z} \mathbb{C}$.

In [7] it also has been shown:

3.4. Proposition. The intersection of the 36 divisors belonging to the vectors of norm -2 of L consists in the Baily–Borel compactification [1] of $\mathcal{H}(L(o))/\Gamma(o)[p]$ of precisely one point, namely the distinguished point $[0]$ from Section 2.

4. The structure theorem

In Section 2 we introduced a certain two-dimensional positive definite subspace $W \subset V$, which defines a point $\varrho \in \mathcal{H}(L)$. We consider a basis f_1, \ldots, f_6 of the six-dimensional additive lift space. Assume that $f \in \Gamma(o)[p]$ is a modular form of even weight, which does not vanish at the distinguished point. Because ϱ is a fixed point of order 3 of $\Gamma(o)[p]$ its weight has to be divisible by 3 and hence divisible by 6. We write $6k$ for the weight. Now we consider a
neighbourhood $U(\varrho) \subset \mathcal{H}(L)$, which is invariant under the stabilizer $\Gamma(\varrho)[p]_\varrho \cong \mathbb{Z}/3\mathbb{Z}$ (see 2.3) and such that $f = g^{3k}$ with some invertible holomorphic function g on $U(\varrho)$. We consider the map

$$\phi : U(\varrho) \longrightarrow \mathbb{C}^6, \quad z \longmapsto \left(\frac{f_1(z)}{g(z)}, \ldots, \frac{f_6(z)}{g(z)}\right).$$

Now we use that the space $\mathbb{C} f_1 + \cdots + \mathbb{C} f_6$ can be generated by Borcherds products with the divisors described in 3.4. This implies that this space admits a basis of forms whose zero divisors have normal crossings in ϱ. Hence for sufficiently small $U(\varrho)$ the map ϕ is biholomorphic from $U(\varrho)$ onto an open subset $V(0)$ of \mathbb{C}^n.

Let $N = N(k)$ denote the number of all partitions $i_1 + \cdots + i_6 = 3k$. We consider the system of modular forms of weight $6k$

$$f, \ f_1^{i_1} \cdots f_6^{i_6}, \ i_1 + \cdots + i_6 = 3k.$$

Choosing some ordering of this system, we obtain a holomorphic map

$$\mathcal{H}(L(\varrho))/\Gamma(\varrho)[p]_\varrho \longrightarrow P^N(\mathbb{C}), \quad z \longmapsto [f(z), \ldots, f_1(z)^{i_1} \cdots f_6(z)^{i_6}, \ldots].$$

By the theory of Baily–Borel this is an algebraic map onto an algebraic variety Y. We want to compute its covering degree d. We denote by $Y_0 \subset Y$ the small open subset which corresponds to $U(\varrho)$. Because of the uniqueness of the distinguished point, d is the same as the covering degree of $U(\varrho)/\Gamma(\varrho)[p]_\varrho \to Y_0$. This can be computed from the commutative diagram

$$\begin{array}{ccc}
U(\varrho) & \longrightarrow & V(0) \\
\downarrow & & \downarrow \\
U(\varrho)/\Gamma(\varrho)[p]_\varrho & \longrightarrow & Y_0.
\end{array}$$

The first vertical arrow has covering degree 3, the second has covering degree $3k$. The first row has covering degree 1. Hence the second row has covering degree k.

In the paper [7] we consider the case of a form of weight 48. (In the present paper the weights are doubled compared to [7].) Hence in this case the covering degree is $d = 8$ and not $d = 24$ as stated in 12.2 of [7].

Krieg constructed in [10] a form of weight 6 with respect to the full modular group. His structure theorem shows that this form cannot vanish at ϱ. Because this result is basic for our approach, we want to give a new construction of this form and include a direct proof for the non-vanishing at the point ϱ.

For this we need another example of an additive lift, lifting an elliptic modular form of weight 4. We use now $L(\varrho)$. The discriminant $L(\varrho)'/L(\varrho)$ is isomorphic to $L(\varrho)/2L(\varrho)'$. The latter group is represented by the elements

$$0, \ 1, \ \omega, \ \bar{\omega}, \ \omega = \frac{1+i_1+i_2+i_3}{2}.$$
The components of the vector valued modular forms, which we have to consider have four components indexed by this group. We denote them by h_1, h_2, h_3, h_4 in the above ordering. They are solutions of

$$h_1(\tau + 1) = h_1(\tau), \quad h_i(\tau + 1) = -h_i(\tau) \quad (2 \leq i \leq 4)$$

and

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{pmatrix} \left(-\frac{1}{\tau} \right) = -\frac{\tau^4}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{pmatrix}(\tau).$$

Upto a constant factor the only solution is (compare [7, p. 260])

$$h_1(\tau) = \vartheta^8(\tau) - 4\vartheta^4(\tau)\vartheta^4(\tau + 1) + \vartheta^8(\tau + 1),$$

$$h_2(\tau) = h_3(\tau) = h_4(\tau) = \vartheta^8(\tau) - \vartheta^8(\tau + 1).$$

Here

$$\vartheta(\tau) = \sum_{n=-\infty}^{\infty} e^{\pi i n^2 \tau}$$

is the classical theta function.

Since $h_2 = h_3 = h_4$, the additive lift will be a modular form with respect to the full modular group $\Gamma(\mathfrak{o})$. Computing some Fourier coefficients by means of Borcherds formula 14.3 of [2] it is possible to verify that it does not vanish identically.

4.1. Proposition. The additive lift G_6 of the above elliptic modular form is a non-vanishing element of $[\Gamma(\mathfrak{o}), 6]$.

It is possible to compute some Fourier coefficients of the determinant. If g is some holomorphic function on an open set in the 6-dimensional vector space with coordinates (z_0, z_2, z), we denote by ∇g the column of its partial derivatives. It turns out that the determinant

$$f = \det \begin{pmatrix} f_1 & \ldots & f_6 & 3G_6 \\ \nabla f_1 & \ldots & \nabla f_6 & \nabla G_6 \end{pmatrix}$$

is not zero. Using 1.1 it can be checked that the determinant above is a modular form of weight 24 with respect to the character $\det(\gamma)$. Since the permutations of the coordinates of the variable z are contained in $\Gamma(\mathfrak{o})[p]$, the determinant vanishes along $z_1 = z_2$. The mentioned form of weight 48 is a square of a form of weight 24 that has precisely this divisor (see [7, 12.1]). Hence it is the determinant f up to a constant factor. In [7] it has been proved that the point ϱ is not contained in this divisor. Hence the determinant does not vanish at this point and we obtain:

4.2. Proposition. (Krieg) There exists a modular form $G_6 \in [\Gamma(\mathfrak{o}), 6]$, which does not vanish at the distinguished point.
Moreover we obtain that the covering degree of the map, which has been explained above,
\[\mathcal{H}(L(\omega))/\Gamma(\omega)[p] \longrightarrow P^N(\mathbb{C}), \]
\[Z \mapsto [G_6(Z), f_1^{i_1}(Z) \cdots f_6^{i_6}(Z)] \quad (i_1 + \cdots + i_6 = 3) \]
is one. This implies:

4.3. Theorem. The graded algebra
\[A(\Gamma(\omega)[p]) := \sum_{k=0}^{\infty} [\Gamma(\omega)[p], 2k] \]
is a weighted polynomial ring generated by six forms \(f_1, \ldots, f_6 \) of weight two and a form \(G_6 \) of weight six.

Proof. The above geometric result in connection with a criterion of Hilbert (compare [6, p. 123f]) implies that the ring of all modular forms is the normalization of \(\mathbb{C}[G_6, f_1, \ldots, f_6] \). Since the seven forms are algebraically independent, this is a polynomial ring and hence normal. \(\square \)

Since we know the action of \(\Gamma(\omega)/\Gamma(\omega)[p] = W(E_6) \) on the generators, we can compute the ring of modular forms for the full modular group and reproduce Krieg’s theorem [9]. Using well-known results due to Burkhardt [3] and Coble [4], see also [8], we have:

4.4. Theorem. (Krieg) The ring of modular forms with respect to the group \(\Gamma(\omega) \) is a weighted polynomial ring generated by seven forms of weight 4, 6, 10, 12, 16, 18, 24.

It is possible to derive structure theorems for several known and unknown modular varieties which can be embedded as Heegner divisors into \(\mathcal{H}(V)/\Gamma(\omega)[p] \).

4.5. Remark. Let \(W \subset V = L(\omega) \otimes_{\mathbb{Z}} \mathbb{R} \) be a subspace of signature \((2, m)\), which is defined over \(\mathbb{Q} \). For any subgroup \(\Gamma \subset \Gamma(\omega) \) of finite index we consider the projected group \(\Gamma_W \), which consists of all elements \(g \in O^+(W)/[\pm \text{id}] \) that extend to \(\Gamma \). Restricting the modular forms (even weight) of the ring \(A(\Gamma) \) to \(\mathcal{H}(W) \) one obtains a ring \(B \), whose normalization is
\[A(\Gamma_W) = \sum_{k=0}^{\infty} [\Gamma_W, 2k] = \bar{B}. \]

This follows from the fact that the map \(\mathcal{H}/\Gamma_W \to \mathcal{H}(V)/\Gamma \) is generically injective in connection with the mentioned criterion of Hilbert.

Hence the determination of \(A(\Gamma_W) \) means to find the ideal of relations \(a_W \) and to normalize \(A(\Gamma)/a_W \), which is a purely algebraic problem. In the case that \(W \) has codimension one, the ideal of relations is the radical of the principal ideal, which is generated by any non-zero relation. Hence it can be determined in principle by a numerical calculation.

We give just one very simple example, namely the 5-dimensional variety defined as orthogonal complement of a vector of norm \(-2\) from \(L(\omega) \). It can be described as follows. Take as \(W \) the
subspace of V which is defined by the equation $x_0 = 0$. Recall that the elements of V can be written in the form (x_1, x_2, x_3, x_4, x), where the x_i are reals and x is a Hamilton quaternion, which we can write as $x = x_0 + x_1i_1 + x_2i_2 + x_3i_3$. The half-plane $\mathcal{H}(W)$ can be identified with the set of all matrices

$$Z = \begin{pmatrix} z_0 & z_1 \\ z_2' & z_2 \end{pmatrix}, \quad z_0 = 0.$$

We know that there is an element f in the space generated by f_1, \ldots, f_6 which vanishes along $\mathcal{H}(W)$. We may assume that $f = f_1 + \cdots + f_6$ is it. Since $A(\Gamma(\mathfrak{o})[p])/(f)$ is a polynomial ring, especially an integral domain, a dimension argument shows that the kernel of $A(\Gamma(\mathfrak{o})[p]) \to A(\Gamma(\mathfrak{o})[p]_{W})$ is generated by f. We obtain from 4.5:

4.6. Theorem. The graded algebra

$$A\left(\Gamma(\mathfrak{o})[p]_{W}\right) := \bigoplus_{k=0}^{\infty} [\Gamma(\mathfrak{o})[p]_{W}, 2k]$$

is a polynomial ring generated by five forms of weight two (the restrictions of f_1, \ldots, f_5) and a form of weight six (the restriction of G_6).

The determination of the group $K = \Gamma(\mathfrak{o})_{W}/\Gamma(\mathfrak{o})[p]_{W}$ and its action on the f_i can be taken from [7]. On p. 278 a certain copy of S_6 inside $W(E_6)$ has been defined. This group is an image of the Siegel modular group of degree two. From this and the fact that S_6 is a maximal subgroup of the quotient of $W(E_6)$ by its center follows that

$$K = \Gamma(\mathfrak{o})_{W}/\Gamma(\mathfrak{o})[p]_{W} \cong S_6.$$

The action of this S_6 on the six-dimensional representation space of $W(E_6)$ has been described in [7] in a very explicit manner on p. 278. There have been defined generators F_1, \ldots, F_6, U of this space with the defining relation $F_1 + \cdots + F_6 = 0$. The form U vanishes along the five-dimensional subvariety in consideration. The group S_6 leaves U invariant up to the sign-character and acts on the F_1, \ldots, F_6 as standard permutation group. Choosing the $f_i := F_i$, we obtain:

4.7. Corollary. The ring $A(\Gamma(\mathfrak{o})_{W})$ is a polynomial ring in the restrictions of

$G_6, \quad f_1^k + \cdots + f_6^k \quad (2 \leq k \leq 6).$

In a similar way the structures for rings of modular forms corresponding to subgroups of S_6 can be obtained. For example the ring of modular forms for the subgroup of index two in $\Gamma(\mathfrak{o})_{W}$ which corresponds to A_6 needs as additional generator $\prod_{i<j} (f_i - f_j)$.

Acknowledgment

This paper bases on many discussions with A. Krieg. We thank him for his support and for showing us unpublished manuscripts.
References