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SUMMARY

MAPK signaling is important for T lymphocyte devel-
opment, homeostasis, and effector responses. To
better understand the role of Mekk1 (encoded by
Map3k1) in T cells, we conditionally deleted
Map3k1 in LckCre/+ Map3k1f/fmice, and these display
larger iNKT cell populations within the liver, spleen,
and bone marrow. Mekk1 signaling controls splenic
and liver iNKT cell expansion in response to glyco-
lipid antigen. LckCre/+ Map3k1f/f mice have enhanced
liver damage in response to glycolipid antigen.
Mekk1 regulates Jnk activation in iNKT cells and
binds and transfers Lys63-linked poly-ubiquitin
onto Carma1. Map3k1 is critical for the regulation of
p27Kip1 (encoded by Cdkn1b).
INTRODUCTION

Mitogen-activated protein kinase (MAPK) kinase (MAP2K) ki-

nases (MAP3Ks) are important regulators of IkB kinases (IKKs)

andMAP2Ks (Dong et al., 2002; Ghosh and Karin, 2002; Kyriakis

and Avruch, 2001; Raman et al., 2007; Suddason and Gallagher,

2015). Nineteen MAP3Ks are present in mammals, though their

precise roles in regulating the immune system are not fully under-

stood (Karin and Gallagher, 2005; Suddason and Gallagher,

2015).Mek kinase 1 (Mekk1) is unique in containing both a kinase

domain and a plant homeodomain (PHD), that can bind trans-

forming growth factor (Tgf)-b-activated kinase 1 (Tak1)-binding

protein 1 (Tab1) and act as an E3 ubiquitin (Ub) ligase (Suddason

and Gallagher, 2015; Charlaftis et al., 2014). Map3k1DKD B cells

regulate Jnk and p38 signaling from tumor necrosis factor (TNF)

receptor family members (TNFRs) (Matsuzawa et al., 2008; Gal-

lagher et al., 2007; Karin and Gallagher, 2009). Analysis of

Map3k1DKD T cells demonstrated that Mekk1 is an important

regulator of T helper 2 (Th2) cytokine production by the Jnk-

dependent activation of Itch (Enzler et al., 2009; Gallagher

et al., 2006; Gao et al., 2004; Fang et al., 2002; Venuprasad

et al., 2006). Moreover, an intact Mekk1 PHD motif is required

for Itch phosphorylation following T cell receptor (TCR) signaling

(Suddason and Gallagher, 2015; Charlaftis et al., 2014), though

the means by which Mekk1 is recruited to the TCR remain to
Ce
be clarified. Map3k1DKD CD8+ T cells display enhanced expan-

sion in response to viruses, but the mechanism remains uncer-

tain (Labuda et al., 2006). The analysis of the precise role of

Mekk1 in T cells using Map3k1DKD mice has been complicated

by both B lymphocyte defects and also the partial lethality of

Map3k1DKD mice on the C57BL/6 background (Bonnesen

et al., 2005; Gallagher et al., 2007).

T lymphocytes form a critical cellular component of the adap-

tive immune response and can be broadly subdivided into con-

ventional and unconventional subtypes (Kronenberg and Gapin,

2002; von Boehmer, 1990). Of these, natural killer T (NKT) cells

constitute a unique unconventional T cell population of the

immune system (Kronenberg and Gapin, 2007). By contrast to

conventional CD4+ and CD8+ T cells, which are reactive to major

histocompatibility complex (MHC) class I- or II-associated pep-

tides, NKT cells can recognize lipids in the context of CD1d mol-

ecules (Bendelac et al., 1995; Spada et al., 1998; Brossay et al.,

1998). NKT cells may express a skewed range of TCR variable

region genes and the natural killer (NK) cell marker NK1.1 (Sköld

et al., 2000). NKT cells can be subdivided into three categories

based on their reactivity to the glycolipid a-galactosylceramide

(a-GalCer), TCR a chain diversity, and CD1d dependency.

Type I invariant NKT (iNKT) cells have invariant Va14-Ja18 TCR

a chains and react to a-GalCer in a CD1d-dependent manner.

Type II nonclassical NKT cells are unreactive to a-GalCer and

have TCR a chain diversity but are CD1d dependent. NKT-like

(or type III) cells are CD1d independent, unresponsive to

a-GalCer, and possess diverse TCR a chains (Bendelac et al.,

2007). Following TCR engagement by glycolipid presented by

CD1d, iNKT cells undergo proliferative expansion and secrete

cytokines (Kawano et al., 1997; Crowe et al., 2003; Parekh

et al., 2005; Godfrey et al., 2010). Type I iNKT cells are abundant

within the liver, where they are important regulators of inflamma-

tion and liver damage (Van Kaer et al., 2013).

Here, we investigate Map3k1 by T-cell-specific and germline

ablation in mice.Map3k1 regulates iNKT cell proliferative expan-

sion in response to glycolipid antigen. CARD-containingMAGUK

protein 1 (Carma1), a TCR-associated scaffold protein, is a

target for the Mekk1 PHD motif and provides a mechanism for

Mekk1 recruitment to the TCR (Blonska and Lin, 2009; Rincón

and Davis, 2007). Microarray gene profiling of Map3k1-deficient

iNKT cells undergoing their clonal burst in response to glycolipid

antigen identified Cdkn1b as a cell-cycle gene that is aberrantly

expressed inMap3k1-deficient mice (Kiyokawa et al., 1996). The
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Figure 1. T Cell Development and Homeostasis within LckCre/+ Map3k1f/f Mice

(A) A schematic diagram representing the construction of the Map3k1f/f allele.

(B) Thymocytes, splenocytes, bone marrow, and liver cells from WT, Map3k1DKD, and LckCre/+ Map3k1f/f mice (all on the C57BL/6 background) were isolated,

stained with anti-CD4 and anti-CD8 antibodies, and analyzed by flow cytometry as indicated. Data are representative of three independent experiments.

Numbers in the profiles indicate the percentages of the gated populations.

(C) The average percentage (±SEM) of three cell populations CD4+CD8+, CD4+CD8�, and CD4�CD8+ cells from LckCre/+ Map3k1f/f and WT mice from six

independent experiments was statistically analyzed (green circle, CD4+CD8+; purple square, CD4+CD8�; blue triangle, CD4�CD8+), where appropriate, by

two-tailed Student’s t test (*p % 0.05; **p % 0.01; ***p % 0.001).
regulation of p27Kip1 by Mekk1 signaling provides a cell intrinsic

molecular explanation for the altered proliferative expansion

observed in both Map3k1DKD and LckCre/+ Map3k1f/f iNKT cells.

RESULTS

Map3k1 Regulates Conventional T Cells
Because Map3k1DKD mice have both B cell defects and partial

lethality on the C57BL/6 background, we generated LckCre/+

Map3k1f/f mice (Figures 1A, S1A, and S1B) to better understand

the roles of Map3k1 in T cells (Gallagher et al., 2007; Bonnesen
450 Cell Reports 14, 449–457, January 26, 2016 ª 2016 The Authors
et al., 2005). Within the thymus of LckCre/+ Map3k1f/f mice,

there is a minor development defect with significantly fewer

CD4+CD8+ double-positive thymocytes than WT but a signifi-

cantly larger than WT population of CD4+ single-positive thymo-

cytes (Figures 1B and 1C; Chang et al., 2011; Charlaftis et al.,

2014). However, the total number of thymocytes in Map3k1DKD

and LckCre/+ Map3k1f/f mice is similar to WT (Table S1; Gao

et al., 2004; Venuprasad et al., 2006; Labuda et al., 2006).

Splenic CD4+ T cells isolated from LckCre/+ Map3k1f/f mice

display an enhanced production of Il4 following TCR crosslinking

with anti-CD3 and anti-CD28 antibodies (Figure S1C), the
.



Figure 2. iNKT Cell Development and Homeostasis in Map3k1DKD and LckCre/+ Map3k1f/f Mice

(A) Cell suspensions were isolated from the spleen, thymus, bone marrow, and liver from WT, Map3k1DKD, and LckCre/+ Map3k1f/f mice, stained with CD1d

tetramer and anti-CD3 antibody, and analyzed by flow cytometry as indicated. Data are representative of five independent experiments. Numbers in the profiles

indicate the percentages of the gated populations.

(B) Statistical analysis of iNKT populations (CD1d tetramer+CD3+) within the spleen, thymus, bonemarrow, and liver fromWT,Map3k1DKD, and LckCre/+ Map3k1f/f

mice. The average percentage (±SEM) of CD1d-tetramer and CD3-positive cells from five independent experiments is shown (black circle, WT; red square,

Map3k1DKD; purple triangle, LckCre/+ Map3k1f/f mice). Statistical differences were analyzed by two-tailed Student’s t test (*p % 0.05; **p % 0.01; ***p % 0.001).

(C) Statistical analysis of iNKT populations (CD1d tetramer+TCRb+) within the spleen, thymus, bone marrow, and liver from WT, Map3k1DKD, and LckCre/+

Map3k1f/f mice. The average percentage (±SEM) of CD1d-tetramer and TCRb-positive cells from five independent experiments is shown (black circle, WT;

green square, Map3k1DKD; green triangle, LckCre/+ Map3k1f/f mice). Statistical differences were analyzed by two-tailed Student’s t test (*p % 0.05; **p % 0.01;

***p % 0.001).
same Itch activation-dependent Th2 phenotype observed in

Map3k1DKD CD4+ T cells (Gao et al., 2004; Venuprasad et al.,

2006). By contrast, gd T cells isolated from LckCre/+ Map3k1f/f

or WT mice are not significantly different (Figure S1D; Maki

et al., 1996). LckCre/+ Map3k1f/f mice display significantly more

CD4+ and CD8+ T cells within the spleen and liver and a signifi-

cantly larger CD8+ T cell population within the bone marrow

(Figures 1B and 1C; Chang et al., 2011; Charlaftis et al.,

2014). No significant difference was detected in T cells isolated

from the thymus, spleen, liver, or bone marrow between WT

and LckCre/+ mice (Figure S1E; data not shown).
Ce
Map3k1 Regulates iNKT Cells
LckCre/+ Map3k1f/f mice have significantly higher numbers

of iNKT cells (CD1d tetramer+CD3+, CD1d tetramer+TCRb+, or

CD1d tetramer+NK1.1+) within the liver, spleen, and bone

marrow relative to WT or LckCre/+ mice (Figures 2A–2C, S2A,

and S2B; data not shown; Ansari et al., 2010). Map3k1DKD

mice, which display a germline deletion of theMap3k1 exons en-

coding the Mekk1 kinase domain (Gao et al., 2004), similarly dis-

played significantly higher numbers of iNKT cells (CD1d tetra-

mer+CD3+, CD1d tetramer+TCRb+, or CD1d tetramer+NK1.1+)

in the liver (Figures 2B and 2C; data not shown). However,
ll Reports 14, 449–457, January 26, 2016 ª 2016 The Authors. 451
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Figure 3. Map3k1 Regulates Jnk Activation in iNKT Cells

(A) iNKT cells were isolated (four mice per experiment) and stimulated by TCR crosslinking with antibodies over a 240-min time course as indicated. Cell lysates

were made and analyzed by IB with the indicated antibodies. Arrowhead indicates phospho-p38 and asterisk a non-specific band.

(B) IPA network diagram of TCR signaling to show the presence of the Mekk1 PHD substrate Carma within this pathway.

(C) In vitro ubiquitination assays usingMekk1 PHD,Mekk1mPHD, Ube2N:Ube2V1, E1, Ub, and Carma1. Reactions were performed as indicated and analyzed by

IB as indicated. A fraction of the ubiquitination reactions was taken pre-incubation, boiled, analyzed by IB as shown, and indicated as input.

(D) HEK293 cells were transfected with the indicated constructs. To detect in vivo ubiquitination, lysates were made under denaturing conditions for IP (Gallagher

et al., 2007) and IB performed as indicated. Lysates were also made under non-denaturing conditions as a loading control and IB performed with the indicated

antibodies.

(E) iNKT cells were isolated (four mice per experiment) and stimulated by TCR crosslinking with antibodies over a 60-min time course. To detect in vivo

ubiquitination, lysates were made under denaturing conditions for IP (Gallagher et al., 2007) and IB performed as indicated. Lysates were also made under non-

denaturing conditions as a loading control and IB performed with the indicated antibodies.
iNKT cell development in the thymus is normal for both

Map3k1DKD and LckCre/+ Map3k1f/f mice (Figure S2C).

Mekk1 Regulates TCR-Dependent Jnk Activation in
iNKT Cells
Map3k1DKD iNKT cells were isolated and stimulated in vitro by

TCR crosslinking with antibodies (Figure 3A; Gao et al., 2004;

Nagaleekar et al., 2011). WT iNKT cells display a transient Jnk

activation at 10 min that is significantly reduced in Map3k1DKD

iNKT cells following TCR crosslinking with antibodies (Figures

3A and S3A). Phosphorylation of c-Jun is similarly reduced in

Map3k1DKD iNKT and conventional cells following TCR cross-

linking with antibodies (data not shown), but there is no signifi-

cant defect in p38 activation (Figure S3B; Gao et al., 2004).

Because Mekk1 binds and ubiquitinates proteins by its PHD

motif, we analyzed a comprehensive Mekk1 PHD protein array
452 Cell Reports 14, 449–457, January 26, 2016 ª 2016 The Authors
screen by ingenuity pathway analysis (IPA) bioinformatics to

identify hits that are important for TCR signaling and identified

Carma1 as a possible Mekk1 PHD substrate (Figure 3B; Sudda-

son andGallagher, 2015; Charlaftis et al., 2014). TheMekk1 PHD

binds and, in association with Ub-conjugating enzyme E2N

(Ube2N), transfers Lys63-linked Ub chains onto Carma1 (Figures

3C and 3D). Mekk1 and Carma1 transiently co-purify from iNKT

cells 10min following TCR crosslinking (Figure S3C), and endog-

enous Carma1 is transiently ubiquitinated following TCR cross-

linking with antibodies (Figures 3E and S3D).

Map3k1 Regulates Splenic and Liver iNKT Cell
Expansion
To assess the role of Mekk1 signaling in iNKT cell responses

to antigen, WT, Map3k1DKD, and LckCre/+ Map3k1f/f mice were

immunized with the iNKT cell TCR agonist a-GalCer (Figures 4
.



Figure 4. iNKT Cell Expansion in Map3k1-Deficient Mice

(A) WT,Map3k1DKD, and LckCre/+ Map3k1f/fmice were i.p. injected with a-GalCer for 3 days. Splenocytes were harvested at days 0 and 3, stained with anti-TCRb

antibody and CD1d tetramer, and analyzed by flow cytometry as indicated. Data are representative of three independent experiments. Numbers in the profiles

indicate the percentages of the gated populations.

(B) Statistical analysis of a-GalCer-dependent iNKT expansion at days 0, 3, and 6 inMap3k1DKD mice. The average percentage (±SEM) of PBS-57-loaded CD1d

tetramer+ TCRb + cells from five independent experiments is shown (black circle, WT; black square,Map3k1DKD mice). Differences were analyzed by two-tailed

Student’s t test (*p % 0.05; **p % 0.01; ***p % 0.001).

(C) Liver cells were harvested at days 0 and 3 from WT, Map3k1DKD, and LckCre/+ Map3k1f/f mice following i.p. immunization with a-GalCer. Liver cells were

stained with CD1d tetramer and anti-TCRb antibodies and analyzed by flow cytometry as indicated. Data are representative of three independent experiments.

Numbers in the profiles indicate the percentages of the gated populations.

(D) Representative H&E-stained liver sections were prepared from unstimulated (upper panels) and 3-day a-GalCer stimulated (lower panels) WT, Map3k1DKD,

and LckCre/+ Map3k1f/f mice (original magnification340; scale bar, 10 mM). Arrows indicate lymphocyte infiltration. Data are representative of three independent

experiments (two mice per experiment).
and S4). Short-term stimulation of Map3k1DKD and LckCre/+

Map3k1f/f mice with a-GalCer lead to normal iNKT activation

and cytokine production (Figure S4A; data not shown). By

contrast, splenic iNKT cells from Map3k1DKD and LckCre/+

Map3k1f/f mice display significantly reduced long-term prolifera-

tive expansion following immunization with a-GalCer (Figures

4A, 4B, and S4B; data not shown). Conversely, liver iNKT cells

from Map3k1DKD and LckCre/+ Map3k1f/f mice showed signifi-

cantly enhanced long-term proliferative expansion following im-

munization with a-GalCer (Figures 4C, S4B, and S4C). Analysis
Ce
of the livers from Map3k1DKD and LckCre/+ Map3k1f/f mice re-

vealed significantly enhanced lymphocyte infiltration and liver

damage following long-term immunization with a-GalCer relative

to control mice (Figures 4D and S4D).

Mekk1Controls iNKTCell Proliferative Expansion by the
Regulation of Jnk-Dependent p27Kip1 Expression
To understand the molecular basis underpinning the aberrant

proliferative expansion of both LckCre/+ Map3k1f/f and

Map3k1DKD iNKT cells, we analyzed global gene expression
ll Reports 14, 449–457, January 26, 2016 ª 2016 The Authors. 453
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Figure 5. Mekk1 Signaling Controls p27Kip1 Expression to Regulate iNKT Cell Proliferation

(A) WT andMap3k1DKDmice were i.p. injected with a-GalCer for 3 days. RNAwas isolated fromWT andMap3k1DKD splenic iNKT cells, processed, and hybridized

onto Affymetrix arrays. Bioinformatics analysis was performed, and a heatmap comparing gene hits between WT and Map3k1DKD iNKT cell microarray screens

was constructed. The data are from three independent experiments (four mice per experiment).

(B) Splenic and liver iNKT cells were isolated from 3-day a-GalCer-immunized LckCre/+ Map3k1f/f, WT mice stained with anti-phospho c-Jun antibody, and flow

cytometry performed as indicated (red line, WT; blue line, LckCre/+ Map3k1f/f). Data were representative of three independent experiments. Histograms show the

phospho c-Jun present in the gated iNKT cell population.

(C) Splenic iNKT cells from 3-day a-GalCer-immunized LckCre/+ Map3k1f/f and WT mice were isolated and stained with anti-p27Kip1 antibody and flow cytometry

performed as indicated (red line, WT; blue line, LckCre/+ Map3k1f/f). Data were representative of three independent experiments. Histogram shows the p27Kip1

present in the gated iNKT cell population.

(D) iNKT cells from the spleen and liver of WT and LckCre/+ Map3k1f/f mice were isolated 3 days post-i.p. injection with a-GalCer and their RNA analyzed by real-

time PCR as indicated (gray square, WT; black square, LckCre/+ Map3k1f/f). The average relative expression (±SEM) of genes from three independent experiments

was statistically analyzed, where appropriate, by two-tailed Student’s t test (*p % 0.05; **p % 0.01; ***p % 0.001).

(E) WT,Map3k1DKD, Cdkn1b�/�, orMap3k1DKD/Cdkn1b�/� (DKO) mice were treated with water containing BrdU and i.p. immunized with a-GalCer (day 3) or left

unstimulated (day 0). Splenocytes were extracted and analyzed as indicated. Representative results (±SEM) from three quantitated iNKT proliferation experi-

ments were statistically analyzed, where appropriate, by two-tailed Student’s t test (*p % 0.05; **p % 0.01; ***p % 0.001).

(F) WT, Cdkn1b�/�, Map3k1DKD, or Map3k1DKD/Cdkn1b�/� (DKO) iNKT cells were isolated and incubated in [3H] thymidine containing media for 24 hr in the

presence of DMSO (control), SP600125, PD98059, SB203580, NSC697923, or SU9516. The average cpm (±SEM) from three independent experiments was

statistically analyzed, where appropriate, by two-tailed Student’s t test (*p % 0.05; **p % 0.01; ***p % 0.001).

(G) WT,Map3k1DKD, and LckCre/+ Map3k1f/f mice were immunized with a-GalCer for 3 days, splenic or liver iNKT cells isolated, and Cdkn1b ChIP performed with

anti-phospho c-Jun antibody as indicated. The average relative signal (±SEM) from three independent experiments was statistically analyzed, where appropriate,

by two-tailed Student’s t test (*p % 0.05; **p % 0.01; ***p % 0.001).
patterns following the long-term immunization of Map3k1DKD

mice with a-GalCer (Figure 5A; Table S2). Bioinformatics anal-

ysis of the screened hits identified Cdkn1b (encoding p27Kip1)

as a Map3k1-dependent cell-cycle regulator (Figure S5A).

LckCre/+ Map3k1f/f mice have enhanced long-term phospho-c-

Jun in splenic iNKT cells but reduced phospho-c-Jun in liver

iNKT cells, relative to WT following immunization with a-GalCer
454 Cell Reports 14, 449–457, January 26, 2016 ª 2016 The Authors
(Figure 5B). Cdkn1b and p27Kip1 expression is significantly

enhanced in splenic Map3k1DKD and LckCre/+ Map3k1f/f iNKT

cells, but Cdkn1b expression is significantly reduced in liver

Map3k1DKD and LckCre/+ Map3k1f/f iNKT cells following long-

term stimulation by a-GalCer (Figures 5C and 5D; data not

shown). Similarly, other screened hits (including Rorc, Il1b,

Il1f9, and Cxcr2) identified by global gene expression analysis
.



were verified by real-time PCR in splenic (Figure S5B; data not

shown) and liver tissues (Figure S5C; data not shown). Integrin

gene expression (Itgb7, Itgb21, and Itgb1) is equivalent between

WT and Map3k1DKD iNKT cells (Figure S5D). Whereas splenic

iNKT cells from Map3k1DKD and LckCre/+ Map3k1f/f mice hypo-

proliferate, splenic Cdkn1b�/� iNKT cells hyperproliferate

following long-term stimulation by a-GalCer (Figure 5E). iNKT

cell proliferation in response to TCR crosslinking with antibodies

is significantly reduced by chemical inhibition of Jnk, Ube2N,

or cyclin-dependent kinases (CDKs) (Figure 5F). Splenic, in

contrast to liver, Map3k1DKD and LckCre/+ Map3k1f/f iNKT cells

display greater phosphorylation of c-Jun at the Cdkn1b pro-

moter activator protein-1 (AP-1)-binding site following long-

term stimulation by a-GalCer (Figure 5G; Khattar and Kumar,

2010).

DISCUSSION

We have shown, using LckCre/+ Map3k1f/f mice, that Mekk1 has

important roles in T cells. Thymic development is moderately

skewed in LckCre/+ Map3k1f/f mice, with reduced numbers of

CD4+CD8+ double-positive thymocytes and enhanced numbers

of CD4+ single-positive thymocytes. Our findings differ from

LckCre/+ Map3k7f/f mice that display reduced numbers of CD4+

and CD8+ single-positive thymocytes (Wan et al., 2006) and

LckCre/+ Map3k2�/� Map3k3 f/f mice that display normal thymic

development (Chang et al., 2011). The CD4+ and CD8+ T cell

populations are also larger within the spleen, bone marrow,

and liver tissues of LckCre/+ Map3k1f/f mice. Map3k1DKD mice

have elevated numbers of T cells in the liver, and analysis of

the iNKT cell population revealed that these are significantly

expanded in the liver of both Map3k1DKD and LckCre/+ Map3k1f/f

mice. Two factors complicating the analysis of T cells using

Map3k1DKD mice have been the germline kinase domain muta-

tion impacting B cells and partial embryonic lethality (Gao

et al., 2004; Gallagher et al., 2007; Bonnesen et al., 2005).

Bone marrow chimeras and in vitro assays using cells from

Map3k1DKD mice have previously demonstrated that B and

T cell Mekk1 signaling defects are intrinsic (Gao et al., 2004; Ven-

uprasad et al., 2006; Labuda et al., 2006; Gallagher et al., 2007).

As such, conditional deletion of Map3k1 in T cells using LckCre/+

Map3k1f/f mice represents a significant refinement of the anal-

ysis of Map3k1 in T cells.

TCR signaling leads to the rapid activation of MAPK and the

phosphorylation of its downstream targets (e.g., c-Jun), and

these can then initiate T cell effector responses (Su et al.,

1994; Dong et al., 2002). More recently, E3 Ub ligase Itch was

identified as a downstream Mekk1-signaling target that is phos-

phorylated by Jnk1 to induce a conformational change within the

protein leading to Itch activation and canonical ubiquitination of

Jun transcription factors (Gallagher et al., 2006; Gao et al., 2004;

Fang et al., 2002; Venuprasad et al., 2006). As with conventional

CD4+ T cells, TCR signal transduction rapidly activates Jnk in

iNKT cells and this is significantly reduced in Map3k1-deficent

iNKT cells (Gao et al., 2004). Mekk1 transiently binds and ubiqui-

tinates Carma1, a scaffold known to regulate Jnk activation,

following TCR engagement, and this provides a mechanism of

recruitment for Mekk1 to the TCR that differs from TNFRs or
Ce
Tgf-b receptors (Suddason and Gallagher, 2015; Charlaftis

et al., 2014; Gaide et al., 2002).

Our work identifies a role for Map3k1 in the regulation of the

iNKT cell proliferative expansion in response to glycolipid anti-

gen. In order to identify the mechanism underpinning Map3k1-

dependent iNKT cell expansion, we analyzed their global gene

expression profile to identify Cdkn1b as a regulated target. The

modulation of p27Kip1 expression in T cells by Mekk1 signaling

represents a molecular mechanism that regulates T cell prolif-

eration. We have identified increased iNKT cell infiltration into

the liver and a higher degree of liver damage in Map3k1DKD

and LckCre/+ Map3k1f/f mice. The aberrant iNKT cell expansion

within the spleen and liver of Map3k1-deficient mice can be

explained by altered c-Jun-dependent Cdkn1b expression.

Our results reinforce the importance of Mekk1 signaling in

T cells.

EXPERIMENTAL PROCEDURES

Gene Targeting of Map3k1

Map3k1 was targeted by insertion of a FRT site followed by a LacZ sequence

and a loxP site into chromosome 13 upstreamof the exons of theMap3k1 gene

(to generate theMap3k1f allele; Skarnes et al., 2011). The first loxP site was fol-

lowed by neo under the control of the human B-actin promoter, SV40 poly-A, a

second FRT site, and a second loxP site. A third loxP site was inserted down-

stream of the Map3k1 exons. Map3k1+/f ESCs (C57BL/6) were generated by

standard procedures (Gossler et al., 1986) and genotyped by Southern blotting

or genomic PCR (Ledermann, 2000; Gao et al., 2004; Charlaftis et al., 2014).

Four independently generatedMap3k+/f ESC clones were injected into blasto-

cysts, and the resulting transgenics were genotyped by PCR (Gao et al., 2004;

Charlaftis et al., 2014). Genomic PCR was carried out on mice biopsies using

primers to detect theMap3k1-specific WT allele, the shorter mutant allele, and

the recombinant allele (50 to 30 primers: TCGTGGTATCGTTATGCGCC;

AATAGGCCACACGTTGACTGG; and CAACCCACGAAAGGAGGTTC; Char-

laftis et al., 2014).Map3k1+/f mice were crossed with ACTFLPemice (Jackson

Laboratory) to initiate recombination at the FRT sites, deleting the lacZ and neo

and resulting in offspring that contain a Map3k1f/f allele.

Cell Line and Cell Culture Conditions

HEK293 cells were maintained in DMEM (22320; Invitrogen) supplemented

with 10% FBS (SH3007003; Thermo Scientific) and antibiotics in a humidified

atmosphere at 37�C.Cells were passaged every 2 or 3 dayswhen approaching

full confluence (Charlaftis et al., 2014).

Transfection

HEK293 cells were plated in 6-well plates at a density of 13 106 cells per well.

The following day, cells were transfectedwith Lipofectamine 2000 (11668-019;

Invitrogen) or Jet Prime (114-07; Polyplus) transfection reagents according to

the manufacturer’s instructions. Cells were collected and lysed 48 hr later.

Tissue Preparation

Spleen and perfused liver tissues weremashed through a 70-mmand a 100-mm

strainer, respectively, and resuspended in RPMI 1640 medium (Invitrogen)

supplemented with 10% FBS (ThermoScientific). Following low-speed centri-

fugation, the splenic pellet was treated with red blood cell (RBC) lysis buffer

(Sigma), washed, and resuspended in medium. The liver cell pellet was resus-

pended in 38% Percoll (GE Healthcare) and then centrifuged at 500 g for

20 min at room temperature. Cell pellets were treated with RBC lysis buffer,

washed, and resuspended in medium.

Isolation of iNKT Cells

Mouse iNKT cells isolation from spleen or liver tissues was performed

using PE-conjugated and a-GalCer-loaded CD1d tetramer (Nagaleekar et al.,

2011). Tetrameric CD1d:a-GalCer cell complexes were purified using anti-PE
ll Reports 14, 449–457, January 26, 2016 ª 2016 The Authors. 455



MicroBeads (Miltenyi Biotec). Residual B cells were depleted prior to iNKT cell

enrichment using a CD45R (B220) MicroBead kit (Miltenyi Biotec), and the final

iNKT cell purity obtained was greater than 95%.

Flow Cytometry

Cell staining with CD1d tetramer was followed by intracellular staining per-

formed using a Fix/Perm kit (BD PharMingen). For intracellular staining, the

cells were incubated with 50 mg/ml PMA (Sigma-Aldrich), 1 mM ionomycin

(Sigma-Aldrich), and 10 mg/ml brefeldin A (Sigma-Aldrich) for 2 hr before pro-

cessing. For 5-bromo-2-deoxyuridine (BrdU) labeling, mice were fed with

BrdU (0.8 mg/ml) in drinking water supplemented with 5% (weight/volume)

glucose 1 day prior to a-GalCer (2 mg) i.p. injection. Mice were treated with

BrdU in drinking water for 3 days to study proliferation. Cells were surface

stained, and BrdU staining was performed according to the manufacturer

protocol (BD PharMingen BrdU Flow Kit). Cells were analyzed on a Cyan

ADP (DakoCytomation) flow cytometer and further analyzed on a workstation

using FlowJo software (TreeStar).

Immunoblotting, Immunoprecipitation, Real-Time PCR, and

Chromatin Immunoprecipitation

iNKT cells were isolated by magnetic selection using MACS LS columns ac-

cording to the manufacturers protocols (Miltenyi Biotech). Immunoblotting

(IB) and immunoprecipitation (IP) were carried out as previously described

(Gao et al., 2004). iNKT cell RNA was prepared with the RNeasy kit (QIAGEN),

and total RNA (500 mg) was converted to cDNA using the High Capacity cDNA

RT-Kit (Applied Biosystems). Real-time PCR was performed in triplicate with

the appropriate gene primers (Invitrogen; Table S3) using SYBR Green

(Applied Biosystems) and an ABI Prism 7700 Sequence Detector (Applied

Biosystems). b-actin was used for normalization of results. Chromatin IP

(ChIP) was performed using an EpiTect ChIP qPCR primer assay for mouse

Cdkn1b kit (QIAGEN) according to the manufacturer instructions.

Ubiquitination Assays

Carma1 cDNA was overexpressed in HEK293 cells and IP performed with

anti-FLAG antibody, washed extensively, and protein eluted. Subsequently,

Carma1 was incubated for 1 hr at 37�C with the ubiquitination assay enzymes

E1 (100 nM), Ube2N:Ub-conjugating enzyme E2 variant 1 (Ube2V1; 0.36 mM),

Ub, and ATP, with or without WT Mekk1 PHD (100 ng) or Mekk1 mutant PHD

(mPHD; 100 ng; Charlaftis et al., 2014). All ubiquitination assay reagents were

from Boston Biochem.

Microarray and Bioinformatics Analysis

Total RNA from iNKT cells was reverse transcribed into biotinylated cRNA

with an RNA amplification kit according to the manufacturer’s instructions

(Ambion). RNA quality was verified using a 2100 Bioanalyzer (Agilent Tech-

nologies). Samples were hybridized to Mouse Gene 1.0 ST arrays (Affymetrix;

Charlaftis et al., 2014). Partek software was used according to the vendor

protocols for data analysis, quality control, and for creating gene lists and

scatterplots. GeneSpringX software was used according to the vendor pro-

tocols to generate heatmaps. Probes with a fold change of less than two

were discarded. Probes were quantile normalized among all microarray

data. Gene lists were uploaded into the IPA program (Ingenuity Systems)

to generate relevant signaling networks and gene wheels according to the

vendor instructions.

Liver Damage Assay

Mice were injected i.v. with 2 mg KRN7000. After 3 days, the livers were har-

vested, fixed in 4% paraformaldehyde, processed, and paraffin embedded.

H&E staining was carried out on liver sections (4 mm). Slides were analyzed

using an Olympus light microscope, and pictures were taken using Image

Pro-Software at 403 magnification.

Statistical Analysis

Data were expressed as SEM. Statistical significance was determined by

two-tailed Student’s t test. All analyses were performed using GraphPad Prism

5 software (GraphPad).
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