support the cost-effective use of NHS resources, but other factors regularly influence decision-making.

PHP163 ASSESSING THE QUALITY OF MANUFACTURERS’ SEARCHES IN NICE SINGLE TECHNOLOGY APPRAISALS BY EVIDENCE REVIEW GROUPS

Wong R, Paisley S, Carroll C

The University of Sheffield, Sheffield, UK

OBJECTIVES: No guidelines exist in the approach that Evidence Review Groups (ERGs) should take to appraise search methodologies in the manufacturer’s submission (MS) in single technology appraisals (STAs). As a result, ERGs are left to appraise searches using their own approach. This study investigates the limitations in the search methodologies as critiqued by ERGs in published STA reports. **METHODS:** Limitations from search critiques in 83 ERG reports published in the NIHR website between 2006 and May 2011 were extracted. The limitations were grouped into themes. Comparisons were made between limitations reported in clinical and cost-effectiveness searches in different search critiques. Over 60 different limitations were identified and sorted in seven broad themes: missing studies, search strategy, reporting, sources, limits, filters and translation. The search strategy theme contained the most limitations. Missing studies were frequently found by the ERG group in the clinical effectiveness searches. The omission of searches by manufacturers for unpublished and ongoing trials was frequently reported by the ERG. By contrast, failure of the manufacturer to report strategies was the most common limitation in the cost-effectiveness searches which may explain the number of missing critiques in some ERG reports. Themes with the most frequent limitations in both types of searches are search strategy, reporting and source. **CONCLUSIONS:** Variations exist in the limitations reported in both clinical and cost-effectiveness evidence searches in STAs. It is recommended that separate checklists or one that incorporates both reporting and search strategy is used to ensure that ERG groups and manufacturers are aware of the range of limitations that might exist when appraising searches.

PHP164 PAYER INFORMATION REQUIREMENTS FOR RELATIVE EFFECTIVENESS ASSESSMENT VARY ACROSS MARKETS AND CREATE DISCREPANCIES IN PATIENT ACCESS TO MEDICINES

Martinni C¹, Lockwood C², Hanlon AC¹, Rodrigues T¹, Tzmieieva M¹, Walker S¹, Ando C²

¹Department of Health Sciences, University of York, York, UK; ²Evidence Roadmap, London, UK

OBJECTIVES: To 1) evaluate how relative effectiveness assessment (REA) is used within the technology appraisal process in 8 developed markets; 2) to understand payer REA requirements and preferences in each of the markets studied; and 3) to analyse how the process impacts patient access to medicines across geographies. **METHODS:** IHS studied national P&R processes through primary and secondary research to establish how REA is leveraged to rationalise reimbursement and control price levels. Over 30 key relative effectiveness assessors and P&R decision makers were interviewed to understand the level and type of relative effectiveness evidence they look for in practice, broken down by public versus private sector, primary versus secondary-care segment, and key therapeutic areas. This research was further supported by real-life case studies across key therapeutic areas. **RESULTS:** The evaluation of the therapeutic value of a medicine can result in P&R decision discrepancies across markets. These coverage disparities notably reflect societal and methodological differences in the way that available evidence is interpreted across markets. In terms of how therapeutic value is factored into P&R decisions, markets can be segmented into two broad categories: 1) those that rely on economic evaluation to assess therapeutic value, and 2) those that evaluate the added therapeutic value/improvement in actual clinical benefit without considering associated costs. In terms of information needs, payers wish to be in a position to evaluate how new medicines compare with the standard of care in their specific health care setting and in their patient population when making their P&R decisions. **CONCLUSIONS:** REA will increasingly be used in future to rationalise finite health care resources and budgets. For now there are two schools when it comes to the methodology and patient access to medicines is more stringent in countries that undertake economic evaluation.

PHP165 EXPLORING THE ROLE OF THE COMMITTEE IN THE NICE APPRAISAL PROCESS: HOW CONSISTENT ARE DECISIONS ACROSS COMMITTEES?

McCann F, Pickett M

HERON, Laton, UK

OBJECTIVES: NICE technology appraisals are reviewed by one of four committees (A to D). Given the standard submission template, the information submitted as part of the appraisal process is the same across submissions. Therefore, committees may be expected to make similar decisions regarding the acceptance or rejection of submissions. This research explored whether there were differences in acceptances or rejections between committees and which factors affected those decisions. **METHODS:** Four-way cross-tabulation analysis was performed on the 3,766 reports developed a specific decision-analytic model. About 30% of the reports within each model come to a general consensus on the recommendations. This research gives a clear recommendation without major limitations. About 20% of these reports explicitly state that the development of a model for the German setting may have helped to come to a clear conclusion. In contrast, all reports incorporating a model give an economic recommendation—two of these with limitations. The identified models differ with respect to the type of health economic evaluation (cost-effectiveness, cost-utility), model type (decision tree, Markov model, Monte Carlo simulation), time horizon (two weeks – life long), discount rate (5%, 5%), perspective (statutory health insurance, care provider, social), outcome parameters (generic, disease specific) and sensitivity analyses (one-way, multi-way, probabilistic).

CONCLUSIONS: Incorporating decision-analytic models in German HTAs has the potential to increase the number of health economic recommendations, but only a fraction of reports developed a specific model so far.

PHP168 CALCULATED FORECAST FOR TECHNICAL OBSOCELIENCE IN COMPUTERISED TOMOGRAPHY EQUIPMENT

Reyes-Santius F¹, Vivas-Consuegra D², Ramos M²

¹Universidad de Vigo, Vigo, Spain, ²Universidad Politecnica de Valencia, Valencia, Spain

OBJECTIVES: To estimate the useful life of Computerised Tomography Equipment (CT) in this article. A main component analysis in this methodology has allowed for a reduction in the number of variables on the survey-file in Computerised Tomography technology and facilitates subsequent work without a significant loss of information. The Log Binomial Regression Model has enabled probability calculations for the parameters (technology, age of the different levels of stimulation, categories in variables, temporary development, detection system, imaging resolution and equipment power). Using a Discriminant analysis, the objective has been to estimate, based on time, the chances of a technological leap occurring. **RESULTS:** The 18 evaluated technical parameters (HFA), and the graphics which model have been grouped in three main components: Detection System which explains 72.4% of the variance; Imaging Resolution which explaining 13.55% of the variance and Equipment Power explaining 7.1% of the variance. Logistic regression allows us to approximate the influence of each main component with the passing of time, the implementation of a technology leap, with its significant influence with positive signs of temporary evolution (0.430), and with a negative sign for the main component the detection system (−3.974), image resolution (−3.766) and equipment power (−9.466). For Determinant analysis, the explanatory variables used in the model are the prediction model obtains a lower percentage of success than the Log Binomial, around 66.7%. The most important factor in influencing the change of technology seems to be the image resolution followed by the detection system and a negative sign for temporary evolution. **CONCLUSIONS:** The results of the present work will enable advance knowledge of the expectations of technological change in CT technology, allowing an advance in investment planning for this technology, for acquiring and installing this type of technology.