Connected sums of knots and weakly reducible Heegaard splittings ${ }^{\text {* }}$

Yoav Moriah
Department of Mathematics, Technion, Haifa 32000, Israel
Received 28 January 2003; received in revised form 18 August 2003

Abstract

This paper studies the question of whether minimal genus Heegaard splittings of exterior spaces of knots which are connected sums are weakly reducible or not. Furthermore it is shown that the Heegaard splittings of the knots used by Morimoto to show that tunnel number can be sub-additive are all strongly irreducible. These are the first examples of strongly irreducible minimal genus Heegaard splittings of composite knots. We also give a characterization of when is a set of primitive annuli on a handlebody simultaneously primitive. This characterization is different from that given in [Gordon, Topology Appl. 27 (1997) 285]. © 2003 Published by Elsevier B.V.

MSC: 57N25
Keywords: Heegaard splittings; Weakly reducible; Strongly irreducible; Connected sum

1. Introduction

For some time it is known that there is a connection between the existence of closed incompressible surfaces in a 3 -manifold and the nature of its Heegaard splittings. See for example $[1,3,5,7,11,12,14,16]$. In this paper we begin to explore this connection with respect to essential surfaces with boundary and as a first step study spaces containing essential annuli. A special case of manifolds which contain essential (i.e., incompressible non-boundary parallel) annuli are exterior spaces of connected sums of knots in S^{3}. These manifolds are obtained from two knot exterior spaces by gluing them together along a meridional annulus A.

[^0]Given a Heegaard splitting for a manifold M (i.e., a decomposition $M=V_{1} \cup V_{2}$, $V_{1} \cap V_{2}=\Sigma$, where $V_{i}, i=1,2$, are compression bodies and $\Sigma=\partial V_{1}=\partial V_{2}$ is the Heegaard surface) let \mathcal{C}_{i} denote the set of all essential simple curves on Σ which bound disks in V_{i}. Define: $d\left(V_{1}, V_{2}\right)=\min \left\{d\left(C_{1}, C_{2}\right) \mid C_{i} \in \mathcal{C}_{i}(\Sigma)\right\}$, where $d\left(C_{1}, C_{2}\right)$ is measured in the curve complex \mathcal{C} of Σ. In particular a Heegaard splitting will be reducible if $d\left(V_{1}, V_{2}\right)=0$, weakly reducible if $d\left(V_{1}, V_{2}\right) \leqslant 1$ and strongly irreducible if $d\left(V_{1}, V_{2}\right) \geqslant 2$. Note that any knot exterior of a knot which is a connected sum, contains at least two essential tori. It is a result of Hempel [4] and Thompson [17] that if a manifold contains an essential torus then any Heegaard splitting $\left(V_{1}, V_{2}\right)$ has $d\left(V_{1}, V_{2}\right) \leqslant 2$. In general we have a result by Hartshorn [Ha] that if an irreducible 3-manifold M contains a closed incompressible surface of genus g the distance of any Heegaard splitting $\left(V_{1}, V_{2}\right)$ of M is less than or equal to $2 g$.

As the Euler characteristic of an annulus is 0 , just like that of a torus, and it is also a twice punctured 2-sphere one might "hope" that the theorem of Hartshorn might be extended to say that an essential annulus in a 3-manifold with torus boundary will imply that $d\left(V_{1}, V_{2}\right) \leqslant 1$. In other words: Any Heegaard splitting of such a manifold will be weakly reducible. Evidence in this direction is in [5] where the authors describe a very large class of knots in S^{3} for which the connected sum yields manifolds with a minimal genus Heegaard splitting which are weakly reducible. In this direction we prove the following theorems:

Theorem 4.1. Given knots K_{1}, K_{2} and $K=K_{1} \# K_{2}$ in S^{3} for which the tunnel number satisfies $t(K)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$, i.e., $t(K)$ is super additive, then there is a minimal genus Heegaard splitting of $E(K)$ which is weakly reducible.

Theorem 4.2. Let K_{1}, K_{2} and $K=K_{1} \# K_{2}$ be knots in S^{3} and $\left(V_{1}^{i}, V_{2}^{i}\right), i=1,2$, be Heegaard splittings for $E\left(K_{i}\right)$. If $\left(V_{1}^{1}, V_{2}^{1}\right)$ and $\left(V_{1}^{2}, V_{2}^{2}\right)$ induce a Heegaard splitting $\left(V_{1}, V_{2}\right)$ of $E(K)$ then $\left(V_{1}, V_{2}\right)$ is a weakly reducible Heegaard splitting.

In particular this theorem says that if one of $E\left(K_{1}\right)$ or $E\left(K_{2}\right)$ has a μ-primitive minimal genus Heegaard splitting then $E\left(K_{1} \# K_{2}\right)$ will have a weakly reducible Heegaard splitting of genus $g_{1}+g_{2}-1$, where $g_{i}=\operatorname{genus}\left(E\left(K_{i}\right)\right)$.

Theorem 5.3. Let $K=K_{1} \# K_{2} \subset S^{3}$ be a knot. Any Heegaard surface Σ for $E(K)$ which does not contain any Σ horizontal surfaces is weakly reducible.

Finally:

Theorem 5.6. Let K_{1}, K_{2} be prime knots in S^{3} and $K=K_{1} \# K_{2}$. Assume that $t(K)=$ $t\left(K_{1}\right)+t\left(K_{2}\right)$ and $t\left(K_{i}\right) \leqslant 2$. Furthermore, assume that a minimal tunnel system for K minimaly intersects a decomposing annulus A in a single point, then there is a Heegaard splitting of $E(K)$ of minimal genus which is weakly reducible.

However the connection between the distance of Heegaard splittings and the existence of an essential annulus is more complicated as shown by the following theorem. Let K_{n} denote the knots as in [10]:

Theorem 6.1. Let $K_{n} \subset S^{3}$ be the knot as in Fig. 6 and $K\left(\frac{\alpha}{\beta}\right) \subset S^{3}$ a 2-bridge knot determined by $\frac{\alpha}{\beta} \subset \mathbb{Q}$. Let K denote the connected sum $K_{n} \# K\left(\frac{\alpha}{\beta}\right)$, then the Heegaard splitting of $E(K)$ determined by the minimal tunnel system for K (as in Fig. 6) is strongly irreducible.

These are the first examples of strongly irreducible Heegaard splittings of exteriors of connected sums. These knots have the property that $g\left(E\left(K_{1} \# K_{2}\right)\right)=g\left(E\left(K_{1}\right)\right)+$ $g\left(E\left(K_{2}\right)\right)-2$, where $g()$ denotes the genus of the manifold in brackets. Hence a minimal genus Heegaard splitting of $E\left(K_{1} \# K_{2}\right)$ cannot possibly be induced by Heegaard splittings of the two knot spaces.

In light of the above I would like to propose the following conjecture:
Conjecture 1.1. Given two knots K_{1}, K_{2} in S^{3} for which the tunnel number $t(K)$ satisfies $t\left(K_{1} \# K_{2}\right)=t\left(K_{1}\right)+t\left(K_{2}\right)$, then there is a minimal genus Heegaard splitting of $E(K)$ which is weakly reducible.

The situation is further complicated by the possibility of a positive answer to the following open question:

Question 1.2. Can a 3-manifold M have both weakly reducible and strongly irreducible minimal genus Heegaard splittings?

For definitions of the above terminology see Sections 2 and 4.

2. Preliminaries

Throughout the paper K_{1} and K_{2} will be knots in S^{3} and $K=K_{1} \# K_{2}$ will denote the connected sum of K_{1} and K_{2}. The knots K_{i} will be called the summands of the composite knot K. Let $N()$ denote an open regular neighborhood in S^{3}. An incompressible surface in a knot complement $E(K), K \subset S^{3}$ is called meridional if it has boundary components which are meridian curves of $\partial E(K)$.

Recall that (S^{3}, K) is obtained by removing from each space (S^{3}, K_{i}), $i=1,2$, a small 3 -ball intersecting K_{i} in a short unknotted arc and gluing the two remaining 3-balls along the 2 -sphere boundary so that the pair of points of K_{1} on the 2 -sphere are identified with the pair of points of K_{2}. If we denote $S^{3}-N(K)$ by $E(K)$ then $E(K)$ is obtained from $E\left(K_{i}\right)$, $i=1,2$, by identifying a meridional annulus A_{1} on $\partial E\left(K_{1}\right)$ with a meridional annulus A_{2} on $\partial E\left(K_{2}\right)$. A knot $K \subset S^{3}$ is prime if it is not a connected sum of two non-trivial knots. The annulus $A_{1}=A_{2}$ will be denoted by A and called the decomposing annulus. If both knots K_{1}, K_{2} are prime then the decomposing annulus is unique up to isotopy

A tunnel system for an arbitrary knot $K \subset S^{3}$ is a collection of properly embedded arcs $\left\{t_{1}, \ldots, t_{n}\right\}$ in $S^{3}-N(K)$ so that $S^{3}-N\left(K \cup t_{1} \cup \cdots \cup t_{n}\right)$ is a handlebody.

Given a tunnel system for a knot $K \subset S^{3}$ note that the closure of $N\left(K \cup t_{1} \cup \cdots \cup t_{n}\right)$ is always a handlebody denoted by V_{1} and the handlebody $S^{3}-N\left(K \cup t_{1} \cup \cdots \cup t_{n}\right)$ will be denoted by V_{2}. For a given knot $K \subset S^{3}$ the smallest cardinality of any tunnel system is called the tunnel number of K and is denoted by $t(K)$.

A compression body V is a compact orientable and connected 3-manifold with a preferred boundary component $\partial_{+} V$ and is obtained from a collar of $\partial_{+} V$ by attaching 2-handles and 3-handles, so that the connected components of $\partial_{-} V=\partial V-\partial_{+} V$ are all distinct from S^{2}. The extreme cases, where V is a handlebody, i.e., $\partial_{-} V=\emptyset$, or where $V=\partial_{+} V \times I$, are allowed. Alternatively we can think of V as obtained from $\left(\partial_{-} V\right) \times I$ by attaching 1 -handles to $\left(\partial_{-} V\right) \times\{1\}$. An annulus in a compression body will be called a spanning (or vertical) annulus if it has one boundary component on $\partial_{+} V$ and the other on $\partial_{-} V$.

Given a knot $K \subset S^{3}$ a Heegaard splitting for $E(K)$ is a decomposition of $E(K)$ into a compression body V_{1} and a handlebody $V_{2}=S^{3}-\operatorname{int}\left(V_{1}\right)$. Hence, a tunnel system $\left\{t_{1}, \ldots, t_{n}\right\}$ in $S^{3}-N(K)$ for K determines a Heegaard splitting of genus $n+1$ for $E(K)$.

When considering knot complements the operation of connected sum is well defined and not dependent on the choice of the removed trivial ball pair (B, t) as any two such ball pairs are isotopic in $E(K)$. However when we are studying the additional structure of Heegaard splittings of composite knot complements we must be careful as it is not clear that an isotopy of the ball pairs can induce an isotopy of the meridional annulus preserving the Heegaard surface.

Given a Heegaard splitting $\left(V_{1}, V_{2}\right)$ for $S^{3}-N\left(K_{1} \# K_{2}\right)$ we will choose a decomposing annulus A which intersects the compression body V_{1} in two spanning annuli A_{1}^{*}, A_{2}^{*} and a minimal collection of disks $\mathcal{D}=\left\{D_{1}, \ldots, D_{l}\right\}$. Note also that A intersects V_{2} in a connected incompressible planar surface.

Let $\mathcal{E}=\left\{E_{1}, \ldots, E_{t(K)+1}\right\}$ be a complete meridian disk system for V_{2}, chosen to minimize the intersection $\mathcal{E} \cap A$. Since V_{2} is a handlebody it is irreducible and we can assume that no component of $\mathcal{E} \cap A$ is a simple closed curve.

When we cut $E(K)$ along a decomposing annulus A any Heegaard splitting $\left(V_{1}, V_{2}\right)$ of $E(K)$ induces Heegaard splittings on both of $E\left(K_{1}\right)$ and $E\left(K_{2}\right)$, as follows: Set $V_{1}^{i}=\left(V_{1} \cap E\left(K_{i}\right)\right) \cup_{\mathcal{D} \cup A_{1}^{*} \cup A_{2}^{*}} N(A)$, it is a compression body as it is a union of an annulus $\times I$ and some 1-handles along the two vertical annuli and a collection of disks. Now set $V_{2}^{i}=V_{2}-N(A)$, it is a handlebody since the annulus A meets V_{2} in an incompressible connected planar surface P which separates V_{2} into two components each of which is a handlebody. Hence the pair $\left(V_{1}^{i}, V_{2}^{i}\right)$ is a Heegaard splitting for $E\left(K_{i}\right)$ and will be referred to as the induced Heegaard splitting of $E\left(K_{i}\right)$.

We say that a curve on a handlebody is primitive if there is an essential disk in the handlebody intersecting the curve in a single point. An annulus A on H is primitive if its core curve is primitive. A Heegaard splitting $\left(V_{1}, V_{2}\right)$ for $S^{3}-N(K)$ will be called μ primitive if there is a spanning annulus $A \subset V_{1}$ such that $\partial A=\mu \cup \alpha$ where μ is a meridian and α is a primitive curve on ∂V_{2}. Note that a curve on a handlebody H is primitive if it represents a primitive element in the free group $\pi_{1}(H)$.

Two Heegaard splittings $\left(V_{1}^{i}, V_{2}^{i}\right)$ for $E\left(K_{i}\right)$, respectively, induce a decomposition of $E(K)$ into $\left(V_{1}, V_{2}\right)$. We can think of V_{1}^{i} as a union of $\left(\partial E\left(K_{i}\right) \times I\right) \cup 1$-handles, hence if we consider the ball pair $\left(B_{i}, N\left(t_{i}\right)\right)$ and remove it from $E\left(K_{i}\right)$ we can think of the decomposing annulus $A_{i}=\partial B_{i}-N\left(\partial t_{i}\right)$ as the union of two vertical annuli $A_{1}^{* i}, A_{2}^{* i}$ and a meridional annulus $A_{i} \subset \partial E\left(K_{i}\right) \times\{1\} \subset \partial V_{1}^{i}=\partial V_{2}^{i}$. We obtain V_{1} by gluing the compression bodies V_{1}^{1} and V_{1}^{2} along the two vertical annuli and V_{2} by gluing V_{2}^{1} and V_{2}^{2} along a meridional annulus. Hence V_{1} is always a compression body but V_{2} is a handlebody if and only if the meridional annulus is a primitive annulus in V_{2}^{i} for one of $i=1$ or $i=2$. In this case we will say that $\left(V_{1}, V_{2}\right)$ is the induced Heegaard splitting of $E(K)$ induced by $\left(V_{1}^{i}, V_{2}^{i}\right), i=1,2$.

3. Interior tunnels

Consider now a Heegaard splitting $\left(V_{1}, V_{2}\right)$ for $E(K)$ the exterior of $K=K_{1} \# K_{2}$, where $\partial E(K) \subset V_{1}$ and in which the decomposing annulus A meets V_{1} in disks and two vertical annuli. Since the annulus A meets V_{2} in a connected planar surface P it separates V_{2} into two components each of which is a handlebody. We will denote the handlebodies $\operatorname{cl}\left(V_{2}-A\right) \cap E\left(K_{i}\right)$ by V_{2}^{i}, respectively. However $V_{1}-A$ might have many components.

Definition 3.1. A component of $\operatorname{cl}\left(V_{1}-A\right)$ which is disjoint from $\partial E\left(K_{i}\right)$ and intersects A in n disks will be called an n-float (see Fig. 2).

Remark. Note that a n-float is either a 3-ball or a handlebody if its spine is not a tree. Furthermore there are always exactly two components of $\operatorname{cl}\left(V_{1}-A\right)$ not disjoint from $\partial E\left(K_{i}\right)$ (one in each of $E\left(K_{1}\right)$ and $E\left(K_{2}\right)$) and each one is a handlebody of genus at least one as V_{1} is a compression body with a T^{2} boundary. We denote these special components by N_{1} and N_{2} depending on whether they are contained in $E\left(K_{1}\right)$ or $E\left(K_{2}\right)$, respectively.

Consider now any one of the meridian disks $E_{i} \subset \mathcal{E}$ of V_{2}. On E_{i} we have a collection of arcs corresponding to the intersection with the decomposing annulus. These arcs, as indicated in Fig. 1, separate E_{i} into sub-disks where disks on opposite sides of arcs are contained in opposite sides of A, i.e., in $E\left(K_{1}\right)$ or $E\left(K_{2}\right)$, respectively. So each sub-disk is contained in either $E\left(K_{1}\right)$ or $E\left(K_{2}\right)$. The boundary of these sub-disks is a collection of alternating arcs $\bigcup\left(\alpha_{i} \cup \beta_{i}\right)$ where α_{i} are arcs on A and β_{i} are arcs on some component of $\operatorname{cl}\left(V_{1}-A\right)$.

Proposition 3.2. Let K_{1} and K_{2} be knots in S^{3} and let K, A, \mathcal{E} be the connected sum, a minimal intersection decomposing annulus and a meridional system for some Heegaard splitting of $E(K)$ as above. Then
(a) the β arc part of the boundary of an outermost sub-disk in E cannot be contained in a n-float of genus 0 .

Fig. 1.
(b) if the β arc part of the boundary of an outermost sub-disk in E is contained in an N_{i} component, $i=1$ or 2 , and if $K_{i}, i=1,2$, are prime the genus of N_{i} is greater than one.

Proof. Denote an outermost sub-disk of some E_{j} by Δ and suppose it is cut off by an arc α on A. By the "Facts" proved in [9, pp. 41-42], any such outermost arc α must have both end points on a single disk $D_{i} \subset A$ which belongs to some n-float of genus 0 . Furthermore $\alpha \cup D_{i} \subset A$ must separate the boundary components of A. Assume further that $\partial \Delta=\alpha \cup \beta$ where β is an arc on the n-float meeting D_{i} in exactly two points $\partial \beta=\partial \alpha$. On ∂D_{i} there is a small arc γ so that $\gamma \cup \beta$ is a simple closed curve on the n-float bounding a disk D there, since the n-float has no genus (see Fig. 2 below). Furthermore $\gamma \cup \alpha$ is a simple closed curve on A which together with a boundary component of A bounds a sub-annulus of A. Hence $\gamma \cup \alpha$ bounds a disk D^{\prime} on the decomposing 2 -sphere of K intersecting K in a single point. Thus we obtain a 2 -sphere $D \cup \Delta \cup D^{\prime}$ which intersects the knot K in a single point. This is a contradiction finishing case (a).

For case (b), assume that the outermost disk Δ is contained in N_{1}, say, and that genus of N_{1} is one (coming from the fact that it is pierced by the knot). As before we have $\partial \Delta=\alpha \cup \beta$ where β is an arc on N_{1} and a small arc γ so that $\gamma \cup \beta$ is a simple closed curve on N_{1}. If $\gamma \cup \beta$ bounds a disk in N_{1} we have the same proof as in case (a). If $\gamma \cup \beta$ does not bound a disk on N_{1} we consider small sub-arcs β_{1} and β_{2} of β which are respective closed neighborhoods of $\partial \beta$. These arcs together with a small arc δ on $\partial N_{1}-\partial E\left(K_{1}\right)$ and γ bound a small band b on ∂N_{1}. Notice that $b \cup_{\beta_{1}, \beta_{2}} \Delta$ is an annulus A^{\prime}. The annulus A^{\prime} together with the sub-annulus $A^{\prime \prime}$ of A cut off by $\alpha \cup \gamma$ defines an annulus $A^{\prime} \cup_{\alpha \cup \gamma} A^{\prime \prime}$ which determines an isotopy of a meridian curve in ∂A to a simple closed curve λ on ∂N_{1}. Note that N_{1} is a solid torus and $\pi_{1}\left(N_{1}\right)=\mathbb{Z}$ which is generated by a meridian μ of $E\left(K_{1}\right)$. Adding a meridian disk to N_{1} to obtain N_{1}^{\prime} and using the loop theorem on N_{1}^{\prime} we can conclude that $[\lambda]=\mu^{n} \in \pi_{1}\left(E\left(K_{1}\right)\right)$. However $[\lambda]$ and μ cobound an annulus in $E\left(K_{1}\right)$. Hence $[\lambda]=\mu \in \pi_{1}\left(N_{1}\right)$ (see Fig. 3).

Now we can consider the annulus $\left(A-A^{\prime \prime}\right) \cup A^{\prime}$. If it is non-boundary parallel then since both knots K_{1}, K_{2} are prime it must be a decomposing annulus which has at least one less disk component intersection than A in contradiction to the choice of A. If it is boundary

Fig. 2.

Fig. 3.
parallel, then as above, we have $A^{\prime \prime} \cup A^{\prime}$ as a decomposing annulus with a smaller number of disks. Again in contradiction to the choice of A. So genus N_{1} cannot be one and this finishes case (b).

Corollary 3.3. Let $K_{1}, K_{2} \subset S^{3}$ be prime knots. Then every minimal genus Heegaard splitting $\left(V_{1}, V_{2}\right)$ for $E(K), K=K_{1} \# K_{2}$ has a spine which contains a circle disjoint from a minimal intersection decomposing annulus A for K.

Proof. Consider a meridional system and a decomposing annulus as in Proposition 3.2. Since the β part of an outer-most disk must be contained in a float of genus greater or equal to one if it is not on N_{i} or greater or equal to two if it is N_{i} we must have a 1-handle on the float to create the genus. The core arc of this 1-handle genetares the circle in the spine disjoint from the decomposing annulus A.

4. Super additive and additive knots I

Given knots $K_{1}, K_{2} \subset S^{3}$ then the knot $K=K_{1} \# K_{2}$ falls into one of three possibilities.
(i) $t(K)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$,
(ii) $t(K)=t\left(K_{1}\right)+t\left(K_{2}\right)$,
(iii) $t(K) \leqslant t\left(K_{1}\right)+t\left(K_{2}\right)-1$.

Recall that Heegaard splittings $\left(V_{1}^{i}, V_{2}^{i}\right), i=1,2$, of $E\left(K_{i}\right)$ induce a Heegaard splitting $\left(V_{1}, V_{2}\right)$ of $E\left(K_{1} \# K_{2}\right)$ if and only if one of $\left(V_{1}^{i}, V_{2}^{i}\right), i=1,2$, has a primitive meridian. $\operatorname{If}\left(V_{1}, V_{2}\right)$ is induced then we have $t(K) \leqslant t\left(K_{1}\right)+t\left(K_{2}\right)$. Therefore Case (ii) splits into two subcases: (a) $\left(V_{1}, V_{2}\right)$ is induced by $\left(V_{1}^{i}, V_{2}^{i}\right), i=1,2$, and (b) $\left(V_{1}, V_{2}\right)$ is not induced by $\left(V_{1}^{i}, V_{2}^{i}\right), i=1,2$. In this section we will deal with Case (i) and Case (ii)(a). Case (ii)(b) will be discussed in the next section. In Case (i) we have:

Theorem 4.1. Given knots K_{1}, K_{2} and $K=K_{1} \# K_{2}$ in S^{3} for which the tunnel number satisfies $t(K)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$, i.e., $t(K)$ is super additive, then there is a minimal genus Heegaard splitting of $E(K)$ which is weakly reducible.

Proof. No one of the two knots has a Heegaard splitting where the meridian is a primitive element since $t(K)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$. A primitive meridian would mean that the Heegaard splittings of the knots will induce a Heegaard splitting of the connected sum which would make the tunnel number additive or less. Now drill a tunnel in V_{2}^{i} with end points on opposite sides of the meridian curve on ∂V_{2}^{i} for one of the knots K_{i} and add it as a 1-handle to V_{1}^{i} thus making the meridian primitive at the expense of increasing the genus by 1 . The two Heegaard splittings will now induce a Heegaard splitting on the connected sum which is of genus $t(K)+1$. It is minimal since $t(K)=g-1$ and weakly reducible by Proposition 4.2.

For Case (ii)(a) we have the following theorem:

Theorem 4.2. Let K_{1}, K_{2} and $K=K_{1} \# K_{2}$ be knots in S^{3} and $\left(V_{1}^{i}, V_{2}^{i}\right)$, $i=1$, 2, be Heegaard splittings for $E\left(K_{i}\right)$. If $\left(V_{1}^{1}, V_{2}^{1}\right)$ and $\left(V_{1}^{2}, V_{2}^{2}\right)$ induce a Heegaard splitting $\left(V_{1}, V_{2}\right)$ of $E(K)$ then $\left(V_{1}, V_{2}\right)$ is a weakly reducible Heegaard splitting.

Proof. We can assume that the decomposing annulus A intersects the Heegaard splitting V_{1}, V_{2} as follows: It intersects V_{1} in two vertical annuli and V_{2} in one meridional annulus. (This is a consequence of the fact that $\left(V_{1}, V_{2}\right)$ is induced by the respective Heegaard splittings). Choose two essential disks D_{1}^{1} and D_{1}^{2} for V_{1} on both sides of A, for example cocore disks for tunnels. Note that $D_{1}^{1} \subset V_{1}^{1}$ and $D_{1}^{2} \subset V_{1}^{2}$. The handlebody V_{2} is obtained from V_{2}^{1} and V_{2}^{2} by gluing them along the meridional annulus A. Since V_{2} turns out to be a handlebody A must be a primitive annulus in at least one of V_{2}^{1} or V_{2}^{2}, say V_{2}^{1}. So there is at least one essential disk D_{2} in V_{2}^{1} which is disjoint from A and hence is also an essential disk in V_{2}. But D_{2} is disjoint from D_{1}^{2} as D_{1}^{2} is also disjoint from A and is on the opposite side. Hence the Heegaard splitting $\left(V_{1}, V_{2}\right)$ is weakly reducible.

Remark 4.3. Case (i)(a) is very common indeed, e.g., any two knots which realize a minimal Heegaard splitting in a $2 n$-plat projection with the canonical tunnel systems will have a weakly reducible Heegaard splitting when composed (see [5]).

5. Additive knots II

In this section we consider Case (ii)(b): In this case both knots cannot have minimal genus Heegaard splittings with primitive meridians. Knots with this property, called also fiendish knots, are very elusive and their existence was first proved in [13] and first examples were given in [15]. The knots considered in both [13] and [15] satisfy $t(K)=$ $t\left(K_{1}\right)+t\left(K_{2}\right)+1$ so they fall into Case (i). For fiendish knots we have the following conjecture (see also [12, Conjecture 1.5]):

Conjecture 5.1. Knots $K_{1}, K_{2} \subset S^{3}$ will satisfy $t(K)=t\left(K_{1}\right)+t\left(K_{2}\right)+1$ if and only if both $E\left(K_{1}\right)$ and $E\left(K_{2}\right)$ do not have minimal genus Heegaard splittings with primitive meridians.

Note that Conjecture 5.1 implies Conjecture 1.1. As if Conjecture 5.1 is true then Case (ii)(b) cannot arise as all such knots will be in Case (i) and we are done. Conjecture 5.1 is known for knots which do not contain essential surfaces with meridian boundary components [12, Theorem 1.6]. We have the following:

Definition 5.2. An incompressible meridional surface S in a knot complement $E(K)$ will be called Σ horizontal if it is not an annulus and it is contained in a Heegaard surface Σ of $E(K)$ as a sub-surface, except for annuli collar neighborhoods of the meridian boundary components of S. These annuli will have one boundary component on the surface Σ and the other on $\partial E(K)$.

Theorem 5.3. Let $K=K_{1} \# K_{2} \subset S^{3}$ be a knot. Any Heegaard surface Σ for $E(K)$ which does not contain any Σ horizontal surfaces is weakly reducible.

Proof. Assume in contradiction that $\left(V_{1}, V_{2}\right)$ is a strongly irreducible Heegaard splitting for $E\left(K_{1} \# K_{2}\right)$. Let $\Sigma=\partial V_{1}=\partial V_{2}$ be the Heegaard surface and let A be the decomposing annulus for the connected sum minimizing the intersection with Σ. We can assume (see [11, Lemma 2.3]) that after an isotopy of the annulus $A \cap \Sigma$ is a collection of essential curves on both A and Σ. Hence, as we assumed that V_{1} is the compression body containing $\partial E\left(K_{1} \# K_{2}\right)$ then $V_{1} \cap A$ is composed of two vertical annuli A_{1}^{*}, A_{2}^{*} and a minimal collection of essential annuli A_{1}, \ldots, A_{d} and $V_{2} \cap A$ is composed of a minimal collection of essential annuli B_{1}, \ldots, B_{d+1}. By Lemma 2.1 of [11] we can find essential disks D_{1}, D_{2} in V_{1}, V_{2}, respectively, which are disjoint from A_{1}, \ldots, A_{d} and B_{1}, \ldots, B_{d+1}. Since A_{1}^{*}, A_{2}^{*} share a boundary component with B_{1} and B_{d+1} we can conclude that the disks D_{1}, D_{2} are disjoint from A. The annulus A splits each of V_{1} and V_{2} into two unions of handlebodies $\bigcup_{r} V_{1, r}^{i}$ and $\bigcup_{s} V_{2, s}^{i}$, respectively, where $i=1,2$ depending if the component is in $E\left(K_{1}\right)$ or $E\left(K_{2}\right)$. If the disks D_{1}, D_{2} are contained in $V_{1, r}^{i}$ and $V_{2, s}^{j}$, respectively, $i, j \in\{1,2\}$, for different values of i and j then $\partial D_{1} \cap \partial D_{2}=\emptyset$ as both of D_{1} and D_{2} are disjoint from A. Hence the Heegaard splitting $\left(V_{1}, V_{2}\right)$ is weakly reducible in contradiction. So we can assume that both of D_{1} and D_{2} are contained in $V_{1, r}^{i}$ and $V_{2, s}^{i}$ for the same i, say $i=1$, i.e., on the same side of A. Consider now the components of $\Sigma-A$ contained in V_{1}^{2} and V_{2}^{2}. An innermost disk argument shows that each of these components must be incompressible in V_{1}^{2} and V_{2}^{2} as otherwise we obtain a compressing disk D_{3} disjoint from A which is disjoint from both D_{1} and D_{2} and hence the Heegaard splitting $\left(V_{1}, V_{2}\right)$ is weakly reducible in contradiction. The boundary curves of any component of $\Sigma-A$ contained in V_{1}^{2} and V_{2}^{2} are essential curves on the meridional decomposing annulus A and hence are isotopic to meridian curves in $E\left(K_{2}\right)$. Therefore they are isotopic to meridian curves in $E(K)$. Thus these components of $\Sigma-A$ are horizontal surfaces. Since we assumed that such surfaces do not exist in $E(K)$ we obtain a contradiction to our assumption that $\left(V_{1}, V_{2}\right)$ is a strongly irreducible Heegaard splitting of $E(K)$.

Remark 5.4. A result of similar nature is mentioned by Morimoto (see [11, Remark 4.3]): If $K_{i} \subset M_{i}$ are knots then $E\left(K_{1} \# K_{2}\right)$ always has a weakly reducible Heegaard splitting of minimal genus if none of M_{1} and M_{2} have Lens space summands and none of $E\left(K_{1}\right)$ and $E\left(K_{2}\right)$ contains meridional essential surfaces. It seems that the conditions in Theorem 5.3 are weaker.

We will now specialized to the situation where there is a tunnel system for K with a single tunnel minimally intersecting the decomposing annulus in a single point. More precisely: $E(K)$ has a minimal genus Heegaard splitting so that $t(K)=t\left(K_{1}\right)+t\left(K_{2}\right)$ and $V_{1} \cap A$ consists of two spanning annuli and a single disk. This is clearly a subset of Case (ii)(b). However to the best of my knowledge all examples of minimal tunnels systems of composite knots which have tunnels intersecting the decomposing annulus essentially do so exactly once.

Before we specialize we need the theorem below which is true in a more general setting. It is of independent interest as it gives a new characterization for when a set of primitive curves on a handlebody is simultaneously primitive (compare [2]).

Given a collection of annuli A_{1}, \ldots, A_{n} on the boundary of a handlebody H we say that they are simultaneously primitive if there exists a collection D_{1}, \ldots, D_{n} of disjoint essential disks so that $D_{i} \cap A_{i}$ is a single essential arc in A_{i} and if $i \neq j$ then $D_{i} \cap A_{j}=\emptyset$.

Theorem 5.5. Let H_{1} and H_{2} be two handlebodies and let B_{1}, \ldots, B_{n} be a set of disjoint mutually non-parallel incompressible primitive annuli in ∂H_{1}. Let C_{1}, \ldots, C_{n} be any collection of incompressible non-primitive disjoint annuli in ∂H_{2}. Then B_{1}, \ldots, B_{n} are simultaneously primitive in H_{1} if and only if $H_{1} \cup_{\left\{B_{1}=C_{1}, \ldots, B_{n}=C_{n}\right\}} H_{2}$ is a handlebody.

Proof. Assume first that the annuli B_{1}, \ldots, B_{n} are simultaneously primitive in H_{1}. The proof will be by induction on n. For $n=1$ we can glue H_{1} to H_{2} along B_{1} and C_{1} to obtain a manifold N_{1}. Since the annuli B_{1} and C_{1} are incompressible we have that $\pi_{1}\left(N_{1}\right)=\pi_{1}\left(H_{1}\right) *_{\mathbb{Z}} \pi_{1}\left(H_{2}\right)$. The generator of the \mathbb{Z} is a primitive element in the free group $\pi_{1}\left(H_{1}\right)$ so $\pi_{1}\left(N_{1}\right)$ is a free group. It now follows from the Loop Theorem that N_{1} is a handlebody. Assume by induction that $N_{n-1}=H_{1} \cup_{\left\{B_{1}=C_{1}, \ldots, B_{n-1}=C_{n-1}\right\}} H_{2}$ is a handlebody. The annulus B_{n} is disjoint from the annuli B_{1}, \ldots, B_{n-1} and C_{1}, \ldots, C_{n} and is still primitive in N_{n-1} as the annuli B_{1}, \ldots, B_{n} are simultaneously primitive and nonparallel and hence there is an essential disk D in N_{n-1} which is disjoint from B_{1}, \ldots, B_{n-1} and C_{1}, \ldots, C_{n} and which intersects B_{n} in a single arc. Now N_{n} is obtained from N_{n-1} by gluing the primitive annulus B_{n} to the annulus C_{n}. Hence $\pi_{1}\left(N_{n}\right)=\pi_{1}\left(H_{n-1}\right) *_{\mathbb{Z}}$ is an HNN extension of the free group $\pi_{1}\left(H_{n-1}\right)$ where two \mathbb{Z}-subgroups are identified and the generator of one of them is a primitive element. It follows that $\pi_{1}\left(N_{n}\right)$ is a free group and again by the Loop Theorem $N_{n}=H_{1} \cup_{\left\{B_{1}=C_{1}, \ldots, B_{n}=C_{n}\right\}} H_{2}$ is a handlebody.

For the proof in the other direction: Assume that $H_{1} \cup_{\left\{B_{1}=C_{1}, \ldots, B_{n}=C_{n}\right\}} H_{2}$ is a handlebody H and let $B=\left\{B_{1}, \ldots, B_{n}\right\}$ and $C=\left\{C_{1}, \ldots, C_{n}\right\}$ be as in the theorem. Let H_{1}^{\prime} be the result of cutting H_{1} along a maximal set of compression disks of $\partial H_{1}-\bigcup B_{i}$. Note that gluing H_{1}^{\prime} to H_{2} along B and C yields a handlebody. As it is obtained from the handlebody H by cutting it along disks which are disjoint from both of B and C. Up to relabeling we may assume that $B^{\prime}=\left\{B_{1}, \ldots, B_{k}\right\}$ is the set of annuli in B which are a longitudinal annulus of some solid torus component $V_{i}, i=1, \ldots, k$, of H_{1}^{\prime} containing no other B_{j}. Denote by $H_{1}^{\prime \prime}=H_{1}^{\prime}-\bigcup V_{i}$, and let $B^{\prime \prime}=B-B^{\prime}$. There is no compressing disk in $H_{1}^{\prime \prime}$ intersecting $B^{\prime \prime}$ in a single essential arc. As any such disk would define another torus components V_{j} containing some annulus $B_{j}, j \notin\{1, \ldots, k\}$, and no other annulus.

Let C^{\prime} and $C^{\prime \prime}$ be the corresponding subsets of C. Then $H_{1}^{\prime} \cup_{B=C} H_{2}$ can be obtained by gluing V_{1}, \ldots, V_{k} to H_{2} along B^{\prime} and C^{\prime} to obtain a manifold H_{2}^{\prime}, and then gluing $H_{1}^{\prime \prime}$ to H_{2}^{\prime} along $B^{\prime \prime}$ and $C^{\prime \prime}$. The manifold H_{2}^{\prime} is a handlebody and is homeomorphic to H_{2} by the definition of B^{\prime} and the first part of the theorem. Hence the annuli $C^{\prime \prime}$ are still non-primitive annuli on ∂H_{2}^{\prime}. If B is not simultaneously primitive then $B^{\prime \prime}$ is non-empty, hence after gluing the remaining components of H_{1}^{\prime} to H_{2}^{\prime}, the surface $B^{\prime \prime}=C^{\prime \prime}$ is an essential surface in the handlebody $H_{1}^{\prime} \cup H_{2}=H_{1}^{\prime \prime} \cup H_{2}^{\prime}$ because there is no compressing or boundary compressing disk for this surface, which contradicts the fact that there are no essential non-disk surfaces in a handlebody.

Further evidence in the direction of Conjecture 1.1 is the following:
Theorem 5.6. Let K_{1}, K_{2} be prime knots in S^{3} and $K=K_{1} \# K_{2}$. Assume that $t(K)=$ $t\left(K_{1}\right)+t\left(K_{2}\right)$ and $t\left(K_{i}\right) \leqslant 2$. Furthermore, assume that a minimal tunnel system for K minimaly intersects a decomposing annulus A in a single point, then there is a Heegaard splitting of $E(K)$ of minimal genus which is weakly reducible.

Proof. Let $\left(V_{1}, V_{2}\right)$ be the Heegaard splitting of $E(K)$ determined by the minimal tunnel system which intersects the decomposing annulus A in a single point. We can therefore assume that $V_{1} \cap A=A_{1}^{*} \cup A_{2}^{*} \cup D_{1}$. The once punctured annulus $A \cap V_{2}$ has two boundary components coming from the vertical annuli A_{1}^{*}, A_{2}^{*} and denoted by C_{1}^{*}, C_{2}^{*}, respectively, and one boundary component ∂D_{1} coming from the tunnel. As A intersects V_{1} minimally $A-D_{1}$ is an incompressible planar surface in a handlebody and hence is boundary compressible. A boundary compression cannot be on an arc connecting $C_{i}^{*}, i=1,2$, to ∂D_{1} as then we could use the compressing disk to isotope the tunnel off A. Such an arc will be called of type I. Furthermore a boundary compression cannot be on an arc connecting C_{1}^{*} to C_{2}^{*} as then A will be boundary parallel in contradiction. Hence the boundary compressing arc will connect ∂D_{1} to itself and since it is non-trivial it must separate C_{1}^{*} and C_{2}^{*}. Such an arc will be called of type II (Compare also [9]).

Choose a meridional system of disks $\mathcal{E}=E_{1}, \ldots, E_{t(K)+1}$ for V_{2}. Each disk in \mathcal{E} must intersect D_{1} as otherwise the Heegaard splitting will be weakly reducible and we are done. An outermost arc of intersection α on some E_{i} separates a boundary compressing sub-disk $\Delta \subset E_{i}$ and from the previous paragraph α is an arc of type II on A.

We can boundary compress A along Δ or alternatively isotope $\partial V_{1}=\partial V_{2}$ along Δ. Doing the second operation does not change A or the isotopy class of the Heegaard splitting (V_{1}, V_{2}), but does change the intersection of the "new" Heegaard surface, also denoted by $\partial V_{1}=\partial V_{2}$, with A. The result is that now $A \cap V_{1}=A_{1}^{*} \cup A_{2}^{*} \cup A_{1}$, where A_{1} is an essential sub-annulus of A which contains the disk D_{1}. The intersection $A \cap V_{2}=B_{1} \cup B_{2}$, where B_{1}, B_{2} are also essential sub-annuli of A (as in Fig. 4).

Let V_{1}^{i} denote the components of $V_{1}-A$ and V_{2}^{i} denote the components of $V_{2}-A$. Assume that the disk Δ is contained in $E\left(K_{k}\right), k=1$ or $k=2$. Note that isotoping the Heegaard surface ∂V_{1} along Δ changes the induced Heegaard splitting only on the knot complement containing Δ (i.e., on $E\left(K_{k}\right)$ only!). On the induced Heegaard splitting of $E\left(K_{k}\right)$ this isotopy is equivalent to cutting V_{2}^{k} along Δ to obtain W_{2}^{k} and adding the 2-handle $N(\Delta)$ to V_{1}^{k} to obtain W_{1}^{k}. It is possible that in this case W_{1}^{k} might not be a handlebody. It is also possible that Δ is a separating disk in V_{2}^{k} and in this case, W_{2}^{k} might have two components $W_{2}^{k, 1}$ and $W_{2}^{k, 2}$.

The annuli B_{1}, B_{2} are essential annuli contained in V_{2} which together separate V_{2}. Hence, when we cut V_{2} along them we obtain a handlebody $W_{2}^{j}, j \neq k$, and if neither of B_{1} or B_{2} is separating a handlebody W_{2}^{k}. If one of B_{1} or B_{2} is separating then $V_{2} \cap E\left(K_{k}\right)$ splits into two handlebodies $W_{2}^{k, 1}$ and $W_{2}^{k, 2}$ This is the situation corresponding to the disk Δ being a separating disk in V_{2}^{k}. Denote the "traces" of B_{1} and B_{2} on W_{2}^{i} by B_{1}^{i}, B_{2}^{i}, $i=1$, 2 .

Fig. 4.
Since $t(K)=t\left(K_{1}\right)+t\left(K_{2}\right)$ and only one tunnel gets split into two arcs by cutting along A it follows that after cutting $\left(V_{1}, V_{2}\right)$ along A there are two possibilities: The induced Heegaard splitting $\left(V_{1}^{1}, V_{2}^{1}\right)$ of $E\left(K_{1}\right)$ is of minimal genus and $\left(V_{1}^{2}, V_{2}^{2}\right)$ of $E\left(K_{2}\right)$ is of minimal genus plus one or vice versa. Up to relabeling the knots we assume that $E\left(K_{1}\right)$ is of minimal genus.

Claim 1. If one of B_{1}^{1} or B_{2}^{1} is primitive in $W_{2}^{1} \subset E\left(K_{1}\right)$ then $E(K)$ has a weakly reducible Heegaard splitting of minimal genus.

Proof of Claim 1. If the disk Δ is contained in $E\left(K_{2}\right)$ then $\left(W_{1}^{1}, W_{2}^{1}\right)$ is a Heegaard splitting of minimal genus for $E\left(K_{1}\right)$. So, if either B_{1}^{1} or B_{2}^{1} is a primitive annulus on W_{2}^{1} (which, in this case, is equal to V_{2}^{1} less a collar) we will treat an isotopic image of the primitive annulus B_{1}^{1} or B_{2}^{1} respectively on $\partial E\left(K_{1}\right)$ as a decomposing annulus. Now glue $E\left(K_{1}\right)$ to $E\left(K_{2}\right)$ along this annulus to obtain a Heegaard splitting of $E(K)$ which is of minimal genus (as that of $\left(V_{1}, V_{2}\right)$) and is weakly reducible by Theorem 4.2.

If, on the other hand, the disk Δ is contained in $E\left(K_{1}\right)$ then recall that we obtain V_{2}^{1} from W_{2}^{1} by identifying together the two "traces" (copies) of the disk Δ on W_{2}^{1}, i.e., adding a 1-handle to these traces. These traces intersect both of ∂B_{1}^{1} and ∂B_{2}^{1} in a single arc each. Hence if one of B_{1}^{1} or B_{2}^{1} is primitive in W_{2}^{1} it would also be primitive in V_{2}^{1}, regardless of whether B_{1}^{1} and B_{2}^{1} are separating or not. We now use the same argument as above to obtain a weakly reducible Heegaard splitting of the same genus as that of $\left(V_{1}, V_{2}\right)$ of $E(K)$.

Thus we can assume that both of the annuli B_{1}^{1} and B_{2}^{1} are not primitive in $W_{2}^{1} \subset E\left(K_{1}\right)$. Since $V_{2}=W_{2}^{2} \cup_{B_{1}^{2}=B_{1}^{1}, B_{2}^{2}=B_{2}^{1}} W_{2}^{1}$ is a handlebody it follows that B_{1}^{2} and B_{2}^{2} must be primitive in W_{2}^{2} : By setting $B_{1}=B_{1}^{2}, B_{2}=B_{2}^{2}$ and $C_{1}=B_{1}^{1}, C_{2}=B_{2}^{1}$ we satisfy the conditions of Theorem 5.5 and can conclude that B_{1}^{2} and B_{2}^{2} are simultaneously primitive in W_{2}^{2}. If it happens that W_{2}^{2} has more than one component we certainly have disjoint
annuli intersecting disjoint disks in a single arc. We will refer to this situation as the annuli being extended simultaneously primitive.

Claim 2. If B_{1}^{2}, B_{2}^{2} are simultaneously primitive or extended simultaneously primitive on $W_{2}^{2} \subset E\left(K_{2}\right)$ the complement with the non-minimal genus Heegaard splitting, then $E(K)$ is a weakly reducible Heegaard splitting of minimal genus.

Proof of Claim 2. The induced Heegaard splitting of $E\left(K_{2}\right)$ is not of minimal genus, thus it is of genus at least three (It is induced by a tunnel system containing at least two tunnels, i.e., one "interior tunnel" (by Corollary 3.3) and the "half" tunnel coming from the split tunnel crossing A). Assume that the disk Δ is contained in $E\left(K_{2}\right)$ so after cutting V_{2}^{2} along Δ we obtain either a handlebody of genus at least two with two simultaneously primitive annuli on it or a disjoint union of two handlebodies one of which has at least genus two with two extended simultaneously primitive annuli on them.

Thus in both cases there is at least one essential disk D_{2} in W_{2}^{2} (a separating disk in the first case), which is disjoint from B_{1}^{2} and B_{2}^{2} and hence from A. Since $V_{2}=$ $W_{2}^{2} \cup_{B_{1}^{2}=B_{1}^{1}, B_{2}^{2}=B_{2}^{1}} W_{2}^{1}$, as before, the disk D_{2} is an essential disk in V_{2} which is disjoint from A and hence from the essential disk $D_{1}^{*} \subset V_{1}$ which is the image of the disk D_{1} pushed slightly into $E\left(K_{1}\right)$. Thus the Heegaard splitting (V_{1}, V_{2}) of $E(K)$ is weakly reducible and we are done (see Fig. 5).

Assume therefore that the disk Δ is contained in $E\left(K_{1}\right)$. If $t\left(K_{1}\right)=1$ then V_{2}^{1} is a genus two handlebody and after cutting V_{2}^{1} along Δ we obtain either one or two solid tori (depending if Δ is separating or not) embedded in S^{3} with non-primitive annuli on their boundary. Extend these annuli into V_{1}^{1} so that one boundary component of each annulus is a meridian curve on $\partial E\left(K_{1}\right)$. When attaching disks to these meridional curves one obtains a Lens space contained in S^{3}, which is a contradiction.

If $t\left(K_{1}\right)=2$ then V_{2}^{1} is a genus three handlebody and after cutting V_{2}^{1} along Δ we obtain either one solid torus component with one or two non-primitive annuli on its

Fig. 5.
boundary (if Δ is separating) or a genus two handlebody with two non-primitive annuli on its boundary (if Δ is non-separating). In both cases the components are embedded in S^{3}. The first case is dealt with as in the previous paragraph. In the second case, first note that the genus three Heegaard splitting $\left(V_{1}^{1}, V_{2}^{1}\right)$ for $E\left(K_{1}\right)$ induces, by filling meridional disks, a Heegaard splitting for S^{3}. Now after adding to V_{2} two meridional disks along the annuli and cutting along Δ we obtain a 2 -sphere $S \subset\left(S^{3}, K_{1}\right)$ which intersects K_{1} in four points. In particular S bounds a 3-ball on both sides. If we change the order of cutting along Δ and adding disks by first adding the two meridional disks to the meridional annuli on V_{2}^{1} we obtain a solid torus W_{2} with Δ as its unique meridional disk.

The complement $W_{1}=S^{3}-W_{2}$ can be obtained from the genus three compression body V_{1}^{1} as follows: Fill $\partial_{-} V_{1}^{1}$ with $N\left(K_{1}\right)$ to get a pair $\left(V, K_{1}\right)$. Now cut the pair $\left(V, K_{1}\right)$ along meridional disks corresponding to the meridional annuli on $\partial V_{1}{ }^{1}$. These annuli are not parallel on ∂V_{1}^{1} so we get a solid torus W_{1} whose unique meridian disk Δ^{\prime} is a cocore disk of one of the 1-handles of V_{1}^{1} and is therefore disjoint from K_{1}.

Now since we obtained S from W_{1} and W_{2} the disks Δ and Δ^{\prime} are a canceling pair. But this implies that the minimal genus Heegaard splitting (V_{1}^{1}, V_{2}^{1}) is reducible in contradiction. Hence this case cannot happen and the proof of Claim 2 is complete.

This completes the proof of the theorem.

6. Sub-additive knots

In this section we consider connected sums of knots $K_{n} \subset S^{3}$ as in Fig. 6 and 2-bridge knots $K\left(\frac{\alpha}{\beta}\right) \subset S^{3}$ determined by $\frac{\alpha}{\beta} \subset \mathbb{Q}$. These are the only examples so far of prime knots $K_{1}, K_{2} \subset S^{3}$ so that $t(K)=t\left(K_{1}\right)+t\left(K_{2}\right)-1$. For these examples we have:

Theorem 6.1. Let $K_{n} \subset S^{3}$ be the knot as in Fig. 6 and $K\left(\frac{\alpha}{\beta}\right) \subset S^{3}$ a 2-bridge knot determined by $\frac{\alpha}{\beta} \subset \mathbb{Q}$. Let K denote the connected sum $K_{n} \# K\left(\frac{\alpha}{\beta}\right)$, then the Heegaard splitting of $E(K)$ determined by the minimal tunnel system for K (as in Fig. 6) is strongly irreducible.

Fig. 6.

In Fig. 6, A denotes the decomposing annulus and t_{1}, t_{2} denote the unknotting tunnels.
Proof. Since $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$ has a genus two Heegaard splitting (as $K\left(\frac{\alpha}{\beta}\right)$ is a tunnel number one knot) and is irreducible, the Heegaard splitting is strongly irreducible. Otherwise we could compress the Heegaard surface to both sides and obtain an essential 2 -sphere in contradiction. Similarly any Heegaard splitting of minimal genus three of a hyperbolic knot is strongly irreducible: As the knot complement is irreducible we can compress at most twice (once to each side). But then, by compressing the Heegaard surface we obtain an incompressible non-boundary parallel torus in contradiction to the fact that the knot is hyperbolic (see [8]). The knots K_{n} are alternating knots and not torus knots so by Corollary 1 of [6] they do no contain incompressible non-boundary parallel tori and hence are hyperbolic.

Note that $E(K)$ induces minimal genus Heegaard splittings, of genus two and three respectively, on both of $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$ and $E\left(K_{n}\right)$. By slightly abusing notation we will denote the components of $E(K)-A$ by $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$ and $E\left(K_{n}\right)$.

As in Fig. 7 let D denote the cocore disk of the tunnel t_{1} which intersects the decomposing annulus A and let D^{\prime} denote the cocore disk of t_{2} the tunnel interior to $E\left(K_{n}\right)$. We can choose the disks $\mathcal{E}=\left\{D, D^{\prime}\right\}$ as a meridional system of disks for the compression body V_{1}. Note also that A minimizes the intersection with V_{1} as if $A \cap V_{1}=\emptyset$ the Heegaard genus of $E(K)$ would be additive and equal to three.

Let F be the Heegaard splitting surface $\partial V_{1}=\partial V_{2}$, and let $F_{1}=F \cap E\left(K\left(\frac{\alpha}{\beta}\right)\right)$, and $F_{2}=F \cap E\left(K_{n}\right)$. For each essential disk $\mathcal{D}_{1}, \mathcal{D}_{2}$ in V_{1} and V_{2} respectively, we choose a representative in their isotopy class so that $\mathcal{D}_{i} \cap A$ is minimal; in particular, each component of $\partial \mathcal{D}_{i} \cap F_{j}, i, j \in\{1,2\}$, is an essential circle or essential arc on F_{j}, and each component of $\mathcal{D}_{i} \cap A$ is an arc.

Fig. 7.

Claim. Let E be an essential disk in V_{1} minimizing the intersection with A in its isotopy class. Then:
(a) If $E \cap A \neq \emptyset$ then the outermost sub-disk $E^{\#}$ of $E-A$ is an essential disk in the components $V_{1}^{2} \subset E\left(K_{n}\right)$ or $V_{1}^{1} \subset E\left(K\left(\frac{\alpha}{\beta}\right)\right)$ of $V_{1}-A$, depending on which side of A contains $E^{\#}$. If it is in $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$ then $\partial E^{\#}=\gamma \cup \delta$ where γ is an inessential arc on one of the vertical annuli A_{i}^{*} and δ is an arc on $\partial V_{1}-A$ as indicated in Fig. 7.
(b) If $E \cap A=\emptyset$ and E is contained in the $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$ component then E is parallel to D.

Proof. (a) Note that $\partial E^{\#}$ is the union of two $\operatorname{arcs} \gamma \subset A$ and δ. If $E^{\#}$ is inessential we could isotope $E^{\#}$ off A. This is a contradiction to the choice of E.

Assume now that $E^{\#}$ is contained in $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$. Note that $V_{1} \cap E\left(K\left(\frac{\alpha}{\beta}\right)\right)$ is a solid torus whose fundamental group is generated by a meridian of $E(K)$. If the curve γ is also contained in the disk D then $\partial E^{\#}$ is isotopic to a curve which represents a power of the meridian in $\pi_{1}(E(K))$ which is a contradiction as the meridian has infinite order in $\pi_{1}(E(K))$. So $E^{\#} \cap D=\emptyset$. Consider now the disk D_{0} which is the intersection of $N\left(t_{1}\right)$ with the component of $N(\partial E(K))-A$ contained in $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$. If $E^{\#} \cap D_{0}=\emptyset$ then since $E^{\#} \cap \partial E(K)=\emptyset$ the disk $E^{\#}$ is an inessential disk in this component of $V_{1}-A$ which is a solid torus. If $E^{\#} \cap D_{0} \neq \emptyset$ then since this solid torus is irreducible we can reduce the intersection by isotoping $E^{\#}$ off the neighborhood of the half tunnel until $E^{\#}$ is isotopic to D_{0}.
(b) If E is contained in the component $E\left(K\left(\frac{\alpha}{\beta}\right)\right) \cap V_{1}$ then, as above, since it is in the component of $V_{1}-A$ which is a solid torus and cannot intersect A it is isotopic to D_{0} which is parallel to D.

Assume in contradiction that the Heegaard splitting (V_{1}, V_{2}) is weakly reducible and let $\mathcal{D}_{1}, \mathcal{D}_{2}$ be a pair of essential disks in V_{1} and V_{2} respectively, so that $\mathcal{D}_{1} \cap \mathcal{D}_{2}=\emptyset$. As the single component of $E\left(K\left(\frac{\alpha}{\beta}\right) \cap V_{1}\right)$ is of type $N_{K\left(\frac{\alpha}{\beta}\right)}$, in the terminology of Proposition 3.2(b), of genus one it follows from Proposition 3.2 that all outermost disks of $\mathcal{D}_{2} \cap A$ are in $E\left(K_{n}\right)$. Note, further, that $\left(V_{1}, V_{2}\right)$ induces the original Heegaard splitting on $E\left(K_{n}\right)$ which is strongly irreducible by the first paragraph of the proof.

If the disk $\mathcal{D}_{1} \cap A=\emptyset$ then it is either contained in $E\left(K_{n}\right)$ or parallel to the disk D : As if it is not in $E\left(K_{n}\right)$ it must be a non-essential disk in the solid torus V_{1}^{1} and these are parallel to D. In the first case it is essential in the strongly irreducible induced Heegaard splitting on $E\left(K_{n}\right)$ and so must intersect the outermost sub-disks of any essential disk $\mathcal{D}_{2} \subset V_{2}$: Note that all outermost sub-disks of V_{2} which are contained in $E\left(K_{n}\right)$ are essential disks in the strongly irreducible Heegaard splitting induced on $E\left(K_{n}\right)$. In the second, case as all outermost sub-disks of V_{2} intersect the parallel copy of $D \subset E\left(K_{n}\right)$ it follows that the corresponding disks of V_{2} must run through the annulus A and intersect $D=\mathcal{D}_{1}$.

If the disk $\mathcal{D}_{1} \cap A \neq \emptyset$ then assume first, that the outermost sub-disk $\mathcal{D}^{\#} \subset \mathcal{D}_{1}$ is in the $E\left(K_{n}\right)$ component of $E(K)-A$. By the above claim $\mathcal{D}^{\#}$ is an essential disk there. Since the induced Heegaard splitting on $E\left(K_{n}\right)$ is strongly irreducible any two outermost sub-disks of \mathcal{D}_{1} and \mathcal{D}_{2} in $E\left(K_{n}\right)$ must intersect.

Fig. 8.

If the outermost sub-disks of \mathcal{D}_{1} are in $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$ then by the claim above if we cut this component of V_{1} along $\mathcal{D}^{\#}$ we obtain two components one of which is a solid torus and the other is a 3-ball \mathcal{B} (see Fig. 8(a) and (b)).

Consider now an essential disk \mathcal{D}_{2} in V_{2}. If $\mathcal{D}_{2} \cap A=\emptyset$ then \mathcal{D}_{2} is an essential disk in V_{2}^{1} or V_{2}^{2}, the two components of $V_{2}-A$, depending on which side of A the disk \mathcal{D}_{2} is. Hence \mathcal{D}_{2} is an essential disk in the handlebody part of the induced Heegaard splitting on either $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$ or $E\left(K_{n}\right)$. However these Heegaard splittings are strongly irreducible so \mathcal{D}_{2} must intersect D the cocore disk of t_{1} as it is an essential disk in the corresponding V_{1}^{1} or V_{1}^{2}. This implies that \mathcal{D}_{2} must intersect the decomposing annulus which is a contradiction. Hence $\mathcal{D}_{2} \cap A$ is non-empty.

Let $\mathcal{D}^{*} \subset \mathcal{D}_{2}$ be a sub-disk, which is outermost among all sub-disks of $\mathcal{D}_{2}-A$ which are contained in the $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$ component of $E(K)-A$. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the components of $\mathcal{D}^{*} \cap A$, then for all but one, say α_{1}, the $\operatorname{arcs} \alpha_{i}$ are ourtermost arcs of D_{2} and hence are

Fig. 9.
of type II (as in the proof of Theorem 5.6). Hence $\alpha_{2}, \ldots, \alpha_{n}$ have both end points on D, the cocore disk of the tunnel t_{1}. The arc α_{1} may be of type II or type I in which case it has one end point on one of ∂A_{1}^{*} or ∂A_{2}^{*}, and one on ∂D.

Since we are assuming that $\mathcal{D}_{1} \cap \mathcal{D}_{2}=\emptyset$, in both cases $\partial \mathcal{D}^{*} \cap F_{1}$ is a set of arcs contained in the annular sub-surface of F_{1} depicted in Fig. 8(b) and Fig. 9 with all but at most one endpoint on ∂D. Since by assumption all these arcs must be essential in F_{1}, it follows that $n=1$ and α_{1} is of type I. But this contradicts the fact that an outermost arc of intersection cannot be of type I as then we can reduce the intersection of A with V_{1} in contradiction to the choice of A. Thus we have showed that any two essential disks in V_{1} and V_{2} must intersect and hence the Heegaard splitting $\left(V_{1}, V_{2}\right)$ is strongly irreducible.

Remark 6.2. The induced Heegaard splitting of genus three on $E\left(K_{n} \# K\left(\frac{\alpha}{\beta}\right)\right)$ is a stabilization of the minimal Heegaard splitting (V_{1}, V_{2}) discussed above. This can be seen as follows: Remove a regular neighborhood of a short arc τ on A connecting ∂D to one of the vertical annuli, say A_{1}^{*} from V_{2} and add it as a 1 -handle to V_{1}. The $\operatorname{arc} \tau$ is of type I on some meridional disk E of V_{2} and since there is only one tunnel crossing A it bounds a subdisk Δ on E. Hence the cocore disk of $N(\tau)$ intersects Δ in a single point and therefore the pair $\left(V_{1} \cup N(\tau), V_{2}-N(\tau)\right)$ is a stabilized Heegaard splitting for $E\left(K_{n} \# K\left(\frac{\alpha}{\beta}\right)\right)$. However we can slide the tunnel off A by splitting it and sliding along $N(\tau)$. We obtain a isotopic Heegaard splitting with no tunnels crossing A which is isotopic to the Heegaard splitting of $E\left(K_{n} \# K\left(\frac{\alpha}{\beta}\right)\right)$ which is induced by the two "standard" Heegaard splittings of $E\left(K_{n}\right)$ and $E\left(K\left(\frac{\alpha}{\beta}\right)\right)$.

Acknowledgement

I would like to thank Ying-Qing Wu for suggesting the current proof of Theorem 5.5. and other helpful remarks.

References

[1] A. Casson, C. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275-283.
[2] C. Gordon, On primitive sets of loops in the boundary of a handlebody, Topology Appl. 27 (1987) 285-299.
[3] K. Hartshorn, Heegaard splittings of Haken manifolds have bounded distance, Preprint.
[4] J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001) 631-657.
[5] M. Lustig, Y. Moriah, Closed incompressible surfaces in complements of wide knots and links, Topology Appl. 92 (1999) 1-13.
[6] W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984) 37-44.
[7] Y. Moriah, Incompressible surfaces and connected sum of knots, J. Knot Theory Ramifications 7 (1998) 955-965.
[8] Y. Moriah, On boundary primitive manifolds and a theorem of Casson-Gordon, Topology Appl. 125 (3) (2002) 571-579.
[9] K. Morimoto, On the additivity of tunnel number of knots, Topology Appl. 53 (1993) 37-66.
[10] K. Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. 123 (1995) 3527-3532.
[11] K. Morimoto, Tunnel number, connected sum and meridional essential surfaces, Topology 39 (2000) 469487.
[12] K. Morimoto, On the super additivity of tunnel number of knots, Math. Ann. 317 (2000) 489-508.
[13] Y. Moriah, H. Rubinstein, Heegaard Structures of negatively curved 3-manifolds, Comm. Anal. Geom. 5 (1997) 375-412.
[14] K. Morimoto, J. Schultens, Tunnel numbers of small knots do not go down under connected sum, Proc. Amer. Math. Soc. 128 (1) (2000) 269-278.
[15] K. Morimoto, M. Sakuma, Yokota, Examples of tunnel number one knots which have the property " $1+1=$ 3", Math. Proc. Cambridge Philos. Soc. 119 (1996) 113-118.
[16] J. Schultens, Additivity of tunnel number for small knots, Preprint.
[17] A. Thompson, The disjoint curve property and genus 2 manifolds, Topology Appl. 97 (1999) 273-279.

[^0]: ${ }^{*}$ Supported by The Fund for Promoting Research at the Technion grant 100-053.
 E-mail address: ymoraih@tx.technion.ac.il (Y. Moriah).

