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Abstract

This paper studies the question of whether minimal genus Heegaard splittings of exterior
of knots which are connected sums are weakly reducible or not. Furthermore it is shown t
Heegaard splittingsof the knots used by Morimoto to show that tunnel number can be sub-additi
are all strongly irreducible. These are the first examples of strongly irreducible minimal
Heegaard splittingsof composite knots. We also give a characterization of when is a set of primitiv
annuli on a handlebody simultaneously primitive. This characterization is different from that
in [Gordon, Topology Appl. 27 (1997) 285].
 2003 Published by Elsevier B.V.
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1. Introduction

For some time it is known that there is a connection between the existence of clos
incompressible surfaces in a 3-manifold and the nature of its Heegaard splitting
for example [1,3,5,7,11,12,14,16]. In this paper we begin to explore this connection
respect to essential surfaces with boundary and as a first step study spaces co
essential annuli. A special case of manifolds which contain essential (i.e., incompre
non-boundary parallel) annuli are exterior spaces of connected sums of knots inS3. These
manifolds are obtained from two knot exterior spaces by gluing them together along
meridional annulusA.
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Given a Heegaard splitting for a manifoldM (i.e., a decompositionM = V1 ∪ V2,
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V1 ∩ V2 = Σ , where Vi , i = 1,2, are compression bodies andΣ = ∂V1 = ∂V2 is
the Heegaard surface) letCi denote the set of all essential simple curves onΣ which
bound disks inVi . Define:d(V1,V2) = min{d(C1,C2) | Ci ∈ Ci (Σ)}, whered(C1,C2)

is measured in the curve complexC of Σ . In particular a Heegaard splitting will b
reducible ifd(V1,V2) = 0, weakly reducible ifd(V1,V2) � 1 and strongly irreducible i
d(V1,V2) � 2. Note that any knot exterior of a knot which is a connected sum, conta
least two essential tori. It is a result of Hempel [4] and Thompson [17] that if a man
contains an essential torus then any Heegaard splitting(V1,V2) hasd(V1,V2) � 2. In
general we have a result by Hartshorn [Ha] that if an irreducible 3-manifoldM contains a
closed incompressible surface of genusg the distance of any Heegaard splitting(V1,V2)

of M is less than or equal to 2g.
As the Euler characteristic of an annulus is 0, just like that of a torus, and it is

a twice punctured 2-sphere one might “hope” that the theorem of Hartshorn might b
extended to say that an essential annulus in a 3-manifold with torus boundary will
that d(V1,V2) � 1. In other words: Any Heegaard splitting of such a manifold will
weakly reducible. Evidence in this direction is in [5] where the authors describe a very
class of knots inS3 for which the connected sum yields manifolds with a minimal ge
Heegaard splitting which are weakly reducible. In this direction we prove the follo
theorems:

Theorem 4.1. Given knotsK1,K2 andK = K1 #K2 in S3 for which the tunnel numbe
satisfiest (K) = t (K1) + t (K2) + 1, i.e., t (K) is super additive, then there is a minim
genus Heegaard splitting ofE(K) which is weakly reducible.

Theorem 4.2. Let K1,K2 and K = K1 #K2 be knots inS3 and (V i
1,V i

2), i = 1,2, be
Heegaard splittings forE(Ki). If (V 1

1 ,V 1
2 ) and (V 2

1 ,V 2
2 ) induce a Heegaard splitting

(V1,V2) of E(K) then(V1,V2) is a weakly reducible Heegaard splitting.

In particular this theorem says that if one ofE(K1) or E(K2) has aµ-primitive minimal
genus Heegaard splitting thenE(K1 #K2) will have a weakly reducible Heegaard splittin
of genusg1 + g2 − 1, wheregi = genus(E(Ki)).

Theorem 5.3. LetK = K1 #K2 ⊂ S3 be a knot. Any Heegaard surfaceΣ for E(K) which
does not contain anyΣ horizontal surfaces is weakly reducible.

Finally:

Theorem 5.6. Let K1,K2 be prime knots inS3 and K = K1 #K2. Assume thatt (K) =
t (K1) + t (K2) and t (Ki) � 2. Furthermore, assume that a minimal tunnel system foK

minimaly intersects a decomposing annulusA in a single point, then there is a Heegaa
splitting ofE(K) of minimal genus which is weakly reducible.
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However the connection between the distance of Heegaard splittings and the existence
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of an essential annulus is more complicated as shown by the following theorem. LKn

denote the knots as in [10]:

Theorem 6.1. Let Kn ⊂ S3 be the knot as in Fig.6 and K(α
β
) ⊂ S3 a 2-bridge knot

determined byα
β

⊂ Q. Let K denote the connected sumKn #K(α
β
), then the Heegaard

splitting ofE(K) determined by the minimal tunnel system forK (as in Fig.6) is strongly
irreducible.

These are the first examples of strongly irreducible Heegaard splittings of ext
of connected sums. These knots have the property thatg(E(K1 #K2)) = g(E(K1)) +
g(E(K2)) − 2, whereg( ) denotes the genus of the manifold in brackets. Hence a min
genus Heegaard splitting ofE(K1 #K2) cannot possibly be inducedby Heegaard splitting
of the two knot spaces.

In light of the above I would like to propose the following conjecture:

Conjecture 1.1. Given two knotsK1,K2 in S3 for which the tunnel numbert (K) satisfies
t (K1 #K2) = t (K1) + t (K2), then there is a minimalgenus Heegaard splitting ofE(K)

which is weakly reducible.

The situation is further complicated by the possibility of a positive answer to
following open question:

Question 1.2. Can a3-manifoldM have both weakly reducible and strongly irreducib
minimal genus Heegaard splittings?

For definitions of the above terminology see Sections 2 and 4.

2. Preliminaries

Throughout the paperK1 andK2 will be knots inS3 andK = K1 #K2 will denote the
connected sum ofK1 andK2. The knotsKi will be called thesummandsof thecomposite
knot K. Let N() denote an open regular neighborhood inS3. An incompressible surfac
in a knot complementE(K),K ⊂ S3 is calledmeridionalif it has boundary componen
which are meridian curves of∂E(K).

Recall that(S3,K) is obtained by removing from each space(S3,Ki), i = 1,2, a small
3-ball intersectingKi in a short unknotted arc and gluing the two remaining 3-balls a
the 2-sphere boundary so that the pair of points ofK1 on the 2-sphere are identified with th
pair of points ofK2. If we denoteS3−N(K) by E(K) thenE(K) is obtained fromE(Ki),
i = 1,2, by identifying a meridional annulusA1 on∂E(K1) with a meridional annulusA2
on ∂E(K2). A knot K ⊂ S3 is prime if it is not a connected sum of two non-trivial knot
The annulusA1 = A2 will be denoted byA and called thedecomposing annulus. If both
knotsK1,K2 are prime then the decomposing annulus is unique up to isotopy
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A tunnel systemfor an arbitrary knotK ⊂ S3 is a collection of properly embedded arcs

m

h a

a

efined

e of
t clear
erving

g

an

an
isks.

h

e

{t1, . . . , tn} in S3 − N(K) so thatS3 − N(K ∪ t1 ∪ · · · ∪ tn) is a handlebody.
Given a tunnel system for a knotK ⊂ S3 note that the closure ofN(K ∪ t1 ∪ · · · ∪ tn)

is always a handlebody denoted byV1 and the handlebodyS3 − N(K ∪ t1 ∪ · · · ∪ tn) will
be denoted byV2. For a given knotK ⊂ S3 the smallest cardinality of any tunnel syste
is called thetunnel numberof K and is denoted byt (K).

A compression bodyV is a compact orientable and connected 3-manifold wit
preferred boundary component∂+V and is obtained from a collar of∂+V by attaching
2-handles and 3-handles, so that the connected components of∂−V = ∂V − ∂+V are all
distinct fromS2. The extreme cases, whereV is a handlebody, i.e.,∂−V = ∅, or where
V = ∂+V × I , are allowed. Alternatively we can think ofV as obtained from(∂−V ) × I

by attaching 1-handles to(∂−V ) × {1}. An annulus in a compression body will be called
spanning(or vertical) annulusif it has one boundary component on∂+V and the other on
∂−V .

Given a knotK ⊂ S3 a Heegaard splitting for E(K) is a decomposition ofE(K)

into a compression bodyV1 and a handlebodyV2 = S3 − int(V1). Hence, a tunnel system
{t1, . . . , tn} in S3 −N(K) for K determines a Heegaard splitting of genusn+ 1 for E(K).

When considering knot complements the operation of connected sum is well d
and not dependent on the choice of the removed trivial ball pair(B, t) as any two such
ball pairs are isotopic inE(K). However when we are studying the additional structur
Heegaard splittings of composite knot complements we must be careful as it is no
that an isotopy of the ball pairs can induce an isotopy of the meridional annulus pres
the Heegaard surface.

Given a Heegaard splitting(V1,V2) for S3−N(K1 #K2) we will choose a decomposin
annulusA which intersects the compression bodyV1 in two spanning annuliA∗

1,A
∗
2

and aminimal collection of disksD = {D1, . . . ,Dl}. Note also thatA intersectsV2 in
a connected incompressible planar surface.

Let E = {E1, . . . ,Et(K)+1} be a complete meridian disk system forV2, chosen to
minimize the intersectionE ∩ A. SinceV2 is a handlebody it is irreducible and we c
assume that no component ofE ∩ A is a simple closed curve.

When we cutE(K) along a decomposing annulusA any Heegaard splitting(V1,V2)

of E(K) induces Heegaard splittings on both ofE(K1) and E(K2), as follows: Set
V i

1 = (V1 ∩ E(Ki)) ∪D∪A∗
1∪A∗

2
N(A), it is a compression body as it is a union of

annulus× I and some 1-handles along the two vertical annuli and a collection of d
Now set V i

2 = V2 − N(A), it is a handlebody since the annulusA meetsV2 in an
incompressible connected planar surfaceP which separatesV2 into two components eac
of which is a handlebody. Hence the pair(V i

1,V i
2) is a Heegaard splitting forE(Ki) and

will be referred to as theinduced Heegaard splitting of E(Ki).
We say that a curve on a handlebody isprimitive if there is an essential disk in th

handlebody intersecting the curve in a single point. An annulusA on H is primitive if
its core curve is primitive. A Heegaard splitting(V1,V2) for S3 − N(K) will be calledµ-
primitive if there is a spanning annulusA ⊂ V1 such that∂A = µ∪α whereµ is a meridian
andα is a primitive curve on∂V2. Note that a curve on a handlebodyH is primitive if it
represents a primitive element in the free groupπ1(H).
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Two Heegaard splittings(V i,V i) for E(Ki), respectively, induce a decomposition of
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E(K) into (V1,V2). We can think ofV i

1 as a union of(∂E(Ki) × I) ∪ 1-handles, hence
if we consider the ball pair(Bi,N(ti )) and remove it fromE(Ki) we can think of the
decomposing annulusAi = ∂Bi − N(∂ti ) as the union of two vertical annuliA∗i

1 ,A∗i
2

and a meridional annulusAi ⊂ ∂E(Ki) × {1} ⊂ ∂V i
1 = ∂V i

2. We obtainV1 by gluing the
compression bodiesV 1

1 andV 2
1 along the two vertical annuli andV2 by gluingV 1

2 andV 2
2

along a meridional annulus. HenceV1 is always a compression body butV2 is a handlebody
if and only if the meridional annulus is a primitive annulus inV i

2 for one ofi = 1 or i = 2.
In this case we will say that(V1,V2) is the induced Heegaard splitting ofE(K) induced
by (V i

1,V i
2), i = 1,2.

3. Interior tunnels

Consider now a Heegaard splitting(V1,V2) for E(K) the exterior ofK = K1 #K2,
where∂E(K) ⊂ V1 and in which the decomposing annulusA meetsV1 in disks and two
vertical annuli. Since the annulusA meetsV2 in a connected planar surfaceP it separates
V2 into two components each of which is a handlebody. We will denote the handlebodie
cl(V2 − A) ∩ E(Ki) by V i

2, respectively. HoweverV1 − A might have many components

Definition 3.1. A component of cl(V1 − A) which is disjoint from∂E(Ki) and intersects
A in n disks will be called ann-float(see Fig. 2).

Remark. Note that a n-float is either a 3-ball or a handlebody if its spine is not a
Furthermore there are always exactly two components of cl(V1 − A) not disjoint from
∂E(Ki) (one in each ofE(K1) andE(K2)) and each one is a handlebody of genus at l
one asV1 is a compression body with aT 2 boundary. We denote these special compon
by N1 andN2 depending on whether they are contained inE(K1) or E(K2), respectively.

Consider now any one of the meridian disksEi ⊂ E of V2. OnEi we have a collection
of arcs corresponding to the intersection with the decomposing annulus. These a
indicated in Fig. 1, separateEi into sub-disks where disks on opposite sides of arcs
contained in opposite sides ofA, i.e., inE(K1) or E(K2), respectively. So each sub-di
is contained in eitherE(K1) or E(K2). The boundary of these sub-disks is a collection
alternating arcs

⋃
(αi ∪ βi) whereαi are arcs onA andβi are arcs on some component

cl(V1 − A).

Proposition 3.2. Let K1 andK2 be knots inS3 and letK,A,E be the connected sum,
minimal intersection decomposing annulus and a meridional system for some Hee
splitting ofE(K) as above. Then

(a) theβ arc part of the boundary of an outermost sub-disk inE cannot be contained in
n-float of genus0.
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Fig. 1.

(b) if the β arc part of the boundary of an outermost sub-disk inE is contained in anNi

component,i = 1 or 2, and if Ki , i = 1,2, are prime the genus ofNi is greater than
one.

Proof. Denote an outermost sub-disk of someEj by ∆ and suppose it is cut off by an a
α onA. By the “Facts” proved in [9, pp. 41–42], any such outermost arcα must have both
end points on a single diskDi ⊂ A which belongs to some n-float of genus 0. Furtherm
α∪Di ⊂ A must separate the boundary components ofA. Assume further that∂∆ = α ∪β

whereβ is an arc on then-float meetingDi in exactly two points∂β = ∂α. On∂Di there
is a small arcγ so thatγ ∪ β is a simple closed curve on then-float bounding a diskD
there, since then-float has no genus (see Fig. 2 below). Furthermoreγ ∪ α is a simple
closed curve onA which together with a boundary component ofA bounds a sub-annulu
of A. Henceγ ∪ α bounds a diskD′ on the decomposing 2-sphere ofK intersectingK
in a single point. Thus we obtain a 2-sphereD ∪ ∆ ∪ D′ which intersects the knotK in a
single point. This is a contradiction finishing case (a).

For case (b), assume that the outermost disk∆ is contained inN1, say, and that genu
of N1 is one (coming from the fact that it is pierced by the knot). As before we
∂∆ = α∪β whereβ is an arc onN1 and a small arcγ so thatγ ∪β is a simple closed curv
on N1. If γ ∪ β bounds a disk inN1 we have the same proof as in case (a). Ifγ ∪ β does
not bound a disk onN1 we consider small sub-arcsβ1 andβ2 of β which are respective
closed neighborhoods of∂β . These arcs together with a small arcδ on∂N1 − ∂E(K1) and
γ bound a small bandb on ∂N1. Notice thatb ∪β1,β2 ∆ is an annulusA′. The annulusA′
together with the sub-annulusA′′ of A cut off by α ∪ γ defines an annulusA′ ∪α∪γ A′′
which determines an isotopy of a meridian curve in∂A to a simple closed curveλ on
∂N1. Note thatN1 is a solid torus andπ1(N1) = Z which is generated by a meridianµ
of E(K1). Adding a meridian disk toN1 to obtainN ′

1 and using the loop theorem onN ′
1

we can conclude that[λ] = µn ∈ π1(E(K1)). However[λ] andµ cobound an annulus i
E(K1). Hence[λ] = µ ∈ π1(N1) (see Fig. 3).

Now we can consider the annulus(A−A′′)∪A′. If it is non-boundaryparallel then sinc
both knotsK1,K2 are prime it must be a decomposing annulus which has at least on
disk component intersection thanA in contradiction to the choice ofA. If it is boundary
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Fig. 3.
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of disks. Again in contradiction to the choice ofA. So genusN1 cannot be one and th
finishes case (b). �
Corollary 3.3. Let K1,K2 ⊂ S3 be prime knots. Then every minimal genus Heega
splitting (V1,V2) for E(K), K = K1 #K2 has a spine which contains a circle disjoi
from a minimal intersection decomposing annulusA for K.

Proof. Consider a meridional system and a decomposing annulus as in Propositio
Since theβ part of an outer-most disk must be contained in a float of genus grea
equal to one if it is not onNi or greater or equal to two if it isNi we must have a 1-handle
on the float to create the genus. The core arc of this 1-handle genetares the circle
spine disjoint from the decomposing annulusA. �

4. Super additive and additive knots I

Given knotsK1,K2 ⊂ S3 then the knotK = K1 #K2 falls into one of three possibilities

(i) t (K) = t (K1) + t (K2) + 1,
(ii) t (K) = t (K1) + t (K2),
(iii) t (K) � t (K1) + t (K2) − 1.

Recall that Heegaard splittings(V i
1,V i

2), i = 1,2, of E(Ki) induce a Heegaard splittin
(V1,V2) of E(K1 #K2) if and only if one of(V i

1,V i
2), i = 1,2, has a primitive meridian

If (V1,V2) is induced then we havet (K) � t (K1) + t (K2). Therefore Case (ii) splits int
two subcases: (a)(V1,V2) is induced by(V i

1,V i
2), i = 1,2, and (b)(V1,V2) is not induced

by (V i
1,V i

2), i = 1,2. In this section we will deal with Case (i) and Case (ii)(a). Case (ii
will be discussed in the next section. In Case (i) we have:

Theorem 4.1. Given knotsK1,K2 andK = K1 #K2 in S3 for which the tunnel numbe
satisfiest (K) = t (K1) + t (K2) + 1, i.e., t (K) is super additive, then there is a minim
genus Heegaard splitting ofE(K) which is weakly reducible.

Proof. No one of the two knots has a Heegaard splitting where the meridian is a primitive
element sincet (K) = t (K1) + t (K2) + 1. A primitive meridian would mean that th
Heegaard splittings of the knots will induce aHeegaard splitting of the connected su
which would make the tunnel number additive or less. Now drill a tunnel inV i

2 with end
points on opposite sides of the meridian curve on∂V i

2 for one of the knotsKi and add it as
a 1-handle toV i

1 thus making the meridian primitive at the expense of increasing the g
by 1. The two Heegaard splittings will now induce a Heegaard splitting on the connecte
sum which is of genust (K) + 1. It is minimal sincet (K) = g − 1 and weakly reducible
by Proposition 4.2. �

For Case (ii)(a) we have the following theorem:
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Theorem 4.2. Let K1,K2 and K = K1 #K2 be knots inS3 and (V i,V i), i = 1,2, be
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Heegaard splittings forE(Ki). If (V 1

1 ,V 1
2 ) and (V 2

1 ,V 2
2 ) induce a Heegaard splitting

(V1,V2) of E(K) then(V1,V2) is a weakly reducible Heegaard splitting.

Proof. We can assume that the decomposing annulusA intersects the Heegaard splittin
V1,V2 as follows: It intersectsV1 in two vertical annuli andV2 in one meridional annulus
(This is a consequence of the fact that(V1,V2) is induced by the respective Heegaa
splittings). Choose two essential disksD1

1 andD2
1 for V1 on both sides ofA, for example

cocore disks for tunnels. Note thatD1
1 ⊂ V 1

1 andD2
1 ⊂ V 2

1 . The handlebodyV2 is obtained
from V 1

2 andV 2
2 by gluing them along the meridional annulusA. SinceV2 turns out to be a

handlebodyA must be a primitive annulus in at least one ofV 1
2 or V 2

2 , sayV 1
2 . So there is

at least one essential diskD2 in V 1
2 which is disjoint fromA and hence is also an essent

disk inV2. But D2 is disjoint fromD2
1 asD2

1 is also disjoint fromA and is on the opposit
side. Hence the Heegaard splitting(V1,V2) is weakly reducible. �
Remark 4.3. Case (i)(a) is very common indeed, e.g., any two knots which reali
minimal Heegaard splitting in a 2n-plat projection with the canonical tunnel systems w
have a weakly reducible Heegaard splitting when composed (see [5]).

5. Additive knots II

In this section we consider Case (ii)(b): In this case both knots cannot have m
genus Heegaard splittings with primitive meridians. Knots with this property, called
fiendish knots, are very elusive and their existence was first proved in [13] and
examples were given in [15]. The knots considered in both [13] and [15] satisfyt (K) =
t (K1) + t (K2) + 1 so they fall into Case (i). For fiendish knots we have the follow
conjecture (see also [12, Conjecture 1.5]):

Conjecture 5.1. KnotsK1,K2 ⊂ S3 will satisfy t (K) = t (K1) + t (K2) + 1 if and only
if both E(K1) andE(K2) do not have minimal genus Heegaard splittings with primit
meridians.

Note that Conjecture 5.1 implies Conjecture 1.1. As if Conjecture 5.1 is true then
(ii)(b) cannot arise as all such knots will be in Case (i) and we are done. Conjectu
is known for knots which do not contain essential surfaces with meridian bounda
components [12, Theorem 1.6]. We have the following:

Definition 5.2. An incompressible meridional surfaceS in a knot complementE(K) will
be calledΣ horizontalif it is not an annulus and it is contained in a Heegaard surfaceΣ of
E(K) as a sub-surface, except for annuli collar neighborhoods of the meridian bou
components ofS. These annuli will have one boundary component on the surfaceΣ and
the other on∂E(K).



10 Y. Moriah / Topology and its Applications 141 (2004) 1–20

Theorem 5.3. LetK = K1 #K2 ⊂ S3 be a knot. Any Heegaard surfaceΣ for E(K) which
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does not contain anyΣ horizontal surfaces is weakly reducible.

Proof. Assume in contradiction that(V1,V2) is a strongly irreducible Heegaard splittin
for E(K1 #K2). LetΣ = ∂V1 = ∂V2 be the Heegaard surface and letA be the decomposin
annulus for the connected sum minimizing the intersection withΣ . We can assume (se
[11, Lemma 2.3]) that after an isotopy of the annulusA ∩ Σ is a collection of essentia
curves on bothA andΣ . Hence, as we assumed thatV1 is the compression body containin
∂E(K1 #K2) then V1 ∩ A is composed of two vertical annuliA∗

1,A
∗
2 and a minimal

collection of essential annuliA1, . . . ,Ad andV2∩A is composed of a minimal collection o
essential annuliB1, . . . ,Bd+1. By Lemma 2.1 of [11] we can find essential disksD1,D2 in
V1,V2, respectively, which are disjoint fromA1, . . . ,Ad andB1, . . . ,Bd+1. SinceA∗

1,A
∗
2

share a boundary component withB1 andBd+1 we can conclude that the disksD1,D2 are
disjoint fromA. The annulusA splits each ofV1 andV2 into two unions of handlebodie⋃

r V i
1,r and

⋃
s V i

2,s , respectively, wherei = 1,2 depending if the component is inE(K1)

or E(K2). If the disksD1,D2 are contained inV i
1,r andV

j

2,s , respectively,i, j ∈ {1,2}, for
different values ofi andj then∂D1 ∩ ∂D2 = ∅ as both ofD1 andD2 are disjoint from
A. Hence the Heegaard splitting(V1,V2) is weakly reducible in contradiction. So we c
assume that both ofD1 andD2 are contained inV i

1,r andV i
2,s for the samei, sayi = 1, i.e.,

on the same side ofA. Consider now the components ofΣ −A contained inV 2
1 andV 2

2 . An
innermost disk argument shows that each of these components must be incompressibl
V 2

1 andV 2
2 as otherwise we obtain a compressing diskD3 disjoint fromA which is disjoint

from bothD1 andD2 and hence the Heegaard splitting(V1,V2) is weakly reducible in
contradiction. The boundary curves of any component ofΣ − A contained inV 2

1 andV 2
2

are essential curves on the meridional decomposing annulusA and hence are isotopic t
meridian curves inE(K2). Therefore they are isotopic to meridian curves inE(K). Thus
these components ofΣ − A are horizontal surfaces. Since we assumed that such sur
do not exist inE(K) we obtain a contradiction to our assumption that(V1,V2) is a strongly
irreducible Heegaard splitting ofE(K). �
Remark 5.4. A result of similar nature is mentioned by Morimoto (see [11, Remark 4
If Ki ⊂ Mi are knots thenE(K1 #K2) always has a weakly reducible Heegaard splitting
minimal genus if none ofM1 andM2 have Lens space summands and none ofE(K1) and
E(K2) contains meridional essential surfaces. It seems that the conditions in Theorem
are weaker.

We will now specialized to the situation where there is a tunnel system forK with
a single tunnel minimally intersecting the decomposing annulus in a single point.
precisely:E(K) has a minimal genus Heegaard splitting so thatt (K) = t (K1) + t (K2)

andV1 ∩ A consists of two spanning annuli and a single disk. This is clearly a subs
Case (ii)(b). However to the best of my knowledge all examples of minimal tunnels sy
of composite knots which have tunnels intersecting the decomposing annulus ess
do so exactly once.
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Before we specialize we need the theorem below which is true in a more general setting.
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It is of independent interest as it gives a new characterization for when a set of pri
curves on a handlebody is simultaneously primitive (compare [2]).

Given a collection of annuliA1, . . . ,An on the boundary of a handlebodyH we say
that they aresimultaneously primitiveif there exists a collectionD1, . . . ,Dn of disjoint
essential disks so thatDi ∩Ai is a single essential arc inAi and if i �= j thenDi ∩Aj = ∅.

Theorem 5.5. Let H1 andH2 be two handlebodies and letB1, . . . ,Bn be a set of disjoin
mutually non-parallel incompressible primitive annuli in∂H1. Let C1, . . . ,Cn be any
collection of incompressible non-primitive disjoint annuli in∂H2. ThenB1, . . . ,Bn are
simultaneously primitive inH1 if and only ifH1 ∪{B1=C1,...,Bn=Cn} H2 is a handlebody.

Proof. Assume first that the annuliB1, . . . ,Bn are simultaneously primitive inH1. The
proof will be by induction onn. For n = 1 we can glueH1 to H2 along B1 and C1
to obtain a manifoldN1. Since the annuliB1 and C1 are incompressible we have th
π1(N1) = π1(H1) ∗Z π1(H2). The generator of theZ is a primitive element in the fre
group π1(H1) so π1(N1) is a free group. It now follows from the Loop Theorem th
N1 is a handlebody. Assume by induction thatNn−1 = H1 ∪{B1=C1,...,Bn−1=Cn−1} H2 is a
handlebody. The annulusBn is disjoint from the annuliB1, . . . ,Bn−1 andC1, . . . ,Cn and
is still primitive in Nn−1 as the annuliB1, . . . ,Bn are simultaneously primitive and no
parallel and hence there is an essential diskD in Nn−1 which is disjoint fromB1, . . . ,Bn−1
andC1, . . . ,Cn and which intersectsBn in a single arc. NowNn is obtained fromNn−1
by gluing the primitive annulusBn to the annulusCn. Henceπ1(Nn) = π1(Hn−1)∗Z is an
HNN extension of the free groupπ1(Hn−1) where twoZ-subgroups are identified and th
generator of one of them is a primitive element. It follows thatπ1(Nn) is a free group and
again by the Loop TheoremNn = H1 ∪{B1=C1,...,Bn=Cn} H2 is a handlebody.

For the proof in the other direction: Assume thatH1 ∪{B1=C1,...,Bn=Cn} H2 is a
handlebodyH and letB = {B1, . . . ,Bn} andC = {C1, . . . ,Cn} be as in the theorem. Le
H ′

1 be the result of cuttingH1 along a maximal set of compression disks of∂H1 − ⋃
Bi .

Note that gluingH ′
1 to H2 alongB andC yields a handlebody. As it is obtained from t

handlebodyH by cutting it along disks which are disjoint from both ofB andC. Up to
relabeling we may assume thatB ′ = {B1, . . . ,Bk} is the set of annuli inB which are a
longitudinal annulus of some solid torus componentVi , i = 1, . . . , k, of H ′

1 containing no
otherBj . Denote byH ′′

1 = H ′
1 −⋃

Vi , and letB ′′ = B −B ′. There is no compressing dis
in H ′′

1 intersectingB ′′ in a single essential arc. As any such disk would define another
componentsVj containing some annulusBj , j /∈ {1, . . . , k}, and no other annulus.

Let C′ andC′′ be the corresponding subsets ofC. ThenH ′
1 ∪B=C H2 can be obtained

by gluing V1, . . . , Vk to H2 alongB ′ andC′ to obtain a manifoldH ′
2, and then gluing

H ′′
1 to H ′

2 alongB ′′ andC′′. The manifoldH ′
2 is a handlebody and is homeomorphic

H2 by the definition ofB ′ and the first part of the theorem. Hence the annuliC′′ are still
non-primitive annuli on∂H ′

2. If B is not simultaneously primitive thenB ′′ is non-empty,
hence after gluing the remaining components ofH ′

1 to H ′
2, the surfaceB ′′ = C′′ is an

essential surface in the handlebodyH ′
1 ∪ H2 = H ′′

1 ∪ H ′
2 because there is no compress

or boundary compressing disk for this surface, which contradicts the fact that there are
essential non-disk surfaces in a handlebody.�
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Further evidence in the direction of Conjecture 1.1 is the following:
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Theorem 5.6. Let K1,K2 be prime knots inS3 and K = K1 #K2. Assume thatt (K) =
t (K1) + t (K2) and t (Ki) � 2. Furthermore, assume that a minimal tunnel system foK

minimaly intersects a decomposing annulusA in a single point, then there is a Heegaa
splitting ofE(K) of minimal genus which is weakly reducible.

Proof. Let (V1,V2) be the Heegaard splitting ofE(K) determined by the minimal tunne
system which intersects the decomposing annulusA in a single point. We can therefo
assume thatV1∩A = A∗

1 ∪A∗
2 ∪D1. The once punctured annulusA∩V2 has two boundary

components coming from the vertical annuliA∗
1,A

∗
2 and denoted byC∗

1,C∗
2, respectively,

and one boundary component∂D1 coming from the tunnel. AsA intersectsV1 minimally
A − D1 is an incompressible planar surface in a handlebody and hence is bou
compressible. A boundary compression cannot be on an arc connectingC∗

i , i = 1,2,

to ∂D1 as then we could use the compressing disk to isotope the tunnel offA. Such an
arc will be called oftype I. Furthermore a boundary compression cannot be on an
connectingC∗

1 to C∗
2 as thenA will be boundary parallel in contradiction. Hence t

boundary compressing arc will connect∂D1 to itself and since it is non-trivial it mus
separateC∗

1 andC∗
2. Such an arc will be called oftype II (Compare also [9]).

Choose a meridional system of disksE = E1, . . . ,Et(K)+1 for V2. Each disk inE must
intersectD1 as otherwise the Heegaard splitting willbe weakly reducible and we are don
An outermost arc of intersectionα on someEi separates a boundary compressing sub-
∆ ⊂ Ei and from the previous paragraphα is an arc of type II onA.

We can boundary compressA along∆ or alternatively isotope∂V1 = ∂V2 along∆.
Doing the second operation does not changeA or the isotopy class of the Heegaard splitti
(V1,V2), but does change the intersection of the “new” Heegaard surface, also deno
∂V1 = ∂V2, with A. The result is that nowA∩V1 = A∗

1 ∪A∗
2 ∪A1, whereA1 is an essentia

sub-annulus ofA which contains the diskD1. The intersectionA ∩ V2 = B1 ∪ B2, where
B1,B2 are also essential sub-annuli ofA (as in Fig. 4).

Let V i
1 denote the components ofV1 − A andV i

2 denote the components ofV2 − A.
Assume that the disk∆ is contained inE(Kk), k = 1 or k = 2. Note that isotoping th
Heegaard surface∂V1 along∆ changes theinducedHeegaard splitting only on the knot
complement containing∆ (i.e., onE(Kk) only!). On the induced Heegaard splitting
E(Kk) this isotopy is equivalent to cuttingV k

2 along ∆ to obtainWk
2 and adding the

2-handleN(∆) to V k
1 to obtainWk

1 . It is possible that in this caseWk
1 might not be a

handlebody. It is also possible that∆ is a separating disk inV k
2 and in this case,Wk

2 might

have two componentsWk,1
2 andW

k,2
2 .

The annuliB1,B2 are essential annuli contained inV2 which together separateV2.
Hence, when we cutV2 along them we obtain a handlebodyW

j

2 , j �= k, and if neither of
B1 or B2 is separating a handlebodyWk

2 . If one ofB1 or B2 is separating thenV2 ∩ E(Kk)

splits into two handlebodiesWk,1
2 andW

k,2
2 This is the situation corresponding to the d

∆ being a separating disk inV k
2 . Denote the “traces” ofB1 and B2 on Wi

2 by Bi
1,B

i
2,

i = 1,2.
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Fig. 4.

Sincet (K) = t (K1)+ t (K2) and only one tunnel gets split into two arcs by cutting alo
A it follows that after cutting(V1,V2) alongA there are two possibilities: The induced
Heegaard splitting(V 1

1 ,V 1
2 ) of E(K1) is of minimal genus and(V 2

1 ,V 2
2 ) of E(K2) is of

minimal genus plus one or vice versa. Up to relabeling the knots we assume thatE(K1) is
of minimal genus.

Claim 1. If one ofB1
1 or B1

2 is primitive inW1
2 ⊂ E(K1) thenE(K) has a weakly reducible

Heegaard splitting of minimal genus.

Proof of Claim 1. If the disk ∆ is contained inE(K2) then (W1
1 ,W1

2 ) is a Heegaard
splitting of minimal genus forE(K1). So, if eitherB1

1 or B1
2 is a primitive annulus onW1

2
(which, in this case, is equal toV 1

2 less a collar ) we will treat an isotopic image of t
primitive annulusB1

1 or B1
2 respectively on∂E(K1) as a decomposing annulus. Now gl

E(K1) to E(K2) along this annulus to obtain a Heegaard splitting ofE(K) which is of
minimal genus (as that of(V1,V2)) and is weakly reducible by Theorem 4.2.

If, on the other hand, the disk∆ is contained inE(K1) then recall that we obtainV 1
2

from W1
2 by identifying together the two“traces” (copies) of the disk∆ onW1

2 , i.e., adding
a 1-handle to these traces. These traces intersect both of∂B1

1 and∂B1
2 in a single arc each

Hence if one ofB1
1 or B1

2 is primitive inW1
2 it would also be primitive inV 1

2 , regardless o
whetherB1

1 andB1
2 are separating or not. We now use the same argument as above to

a weakly reducible Heegaard splitting of the same genus as that of(V1,V2) of E(K). �
Thus we can assume that both of the annuliB1

1 andB1
2 are not primitive inW1

2 ⊂ E(K1).
SinceV2 = W2

2 ∪B2
1=B1

1 ,B2
2=B1

2
W1

2 is a handlebody it follows thatB2
1 and B2

2 must be

primitive in W2
2 : By settingB1 = B2

1, B2 = B2
2 and C1 = B1

1, C2 = B1
2 we satisfy the

conditions of Theorem 5.5 and can conclude thatB2
1 andB2

2 are simultaneously primitiv
in W2

2 . If it happens thatW2
2 has more than one component we certainly have dis
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annuli intersecting disjoint disks in a single arc. We will refer to this situation as the annuli
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Claim 2. If B2
1,B2

2 are simultaneously primitive or extended simultaneously primitive
W2

2 ⊂ E(K2) the complement with the non-minimal genus Heegaard splitting, thenE(K)

is a weakly reducible Heegaard splitting of minimal genus.

Proof of Claim 2. The induced Heegaard splitting ofE(K2) is not of minimal genus, thu
it is of genus at least three (It is induced by a tunnel system containing at least two tu
i.e., one “interior tunnel” (by Corollary 3.3) and the “half” tunnel coming from the s
tunnel crossingA). Assume that the disk∆ is contained inE(K2) so after cuttingV 2

2 along
∆ we obtain either a handlebody of genus at least two with two simultaneously prim
annuli on it or a disjoint union of two handlebodies one of which has at least genu
with two extended simultaneously primitive annuli on them.

Thus in both cases there is at least one essential diskD2 in W2
2 (a separating disk

in the first case), which is disjoint fromB2
1 and B2

2 and hence fromA. SinceV2 =
W2

2 ∪B2
1=B1

1,B2
2=B1

2
W1

2 , as before, the diskD2 is an essential disk inV2 which is disjoint

from A and hence from the essential diskD∗
1 ⊂ V1 which is the image of the diskD1

pushed slightly intoE(K1). Thus the Heegaard splitting(V1,V2) of E(K) is weakly
reducible and we are done (see Fig. 5).

Assume therefore that the disk∆ is contained inE(K1). If t (K1) = 1 thenV 1
2 is a

genus two handlebody and after cuttingV 1
2 along∆ we obtain either one or two solid to

(depending if∆ is separating or not) embedded inS3 with non-primitive annuli on their
boundary. Extend these annuli intoV 1

1 so that one boundary component of each annulu
a meridian curve on∂E(K1). When attaching disks to these meridional curves one ob
a Lens space contained inS3, which is a contradiction.

If t (K1) = 2 thenV 1
2 is a genus three handlebody and after cuttingV 1

2 along∆ we
obtain either one solid torus component with one or two non-primitive annuli o

Fig. 5.
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boundary (if∆ is separating) or a genus two handlebody with two non-primitive annuli
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on its boundary (if∆ is non-separating). In both cases the components are embed
S3. The first case is dealt with as in the previous paragraph. In the second case, fir
that the genus three Heegaard splitting(V 1

1 ,V 1
2 ) for E(K1) induces, by filling meridiona

disks, a Heegaard splitting forS3. Now after adding toV2 two meridional disks along th
annuli and cutting along∆ we obtain a 2-sphereS ⊂ (S3,K1) which intersectsK1 in four
points. In particularS bounds a 3-ball on both sides. If we change the order of cu
along∆ and adding disks by first adding the two meridional disks to the meridional a
onV 1

2 we obtain a solid torusW2 with ∆ as its unique meridional disk.
The complementW1 = S3 − W2 can be obtained from the genus three compres

bodyV 1
1 as follows: Fill∂−V 1

1 with N(K1) to get a pair(V ,K1). Now cut the pair(V ,K1)

along meridional disks corresponding to the meridional annuli on∂V 1
1 . These annuli are

not parallel on∂V 1
1 so we get a solid torusW1 whose unique meridian disk∆′ is a cocore

disk of one of the 1-handles ofV 1
1 and is therefore disjoint fromK1.

Now since we obtainedS from W1 and W2 the disks∆ and ∆′ are a canceling
pair. But this implies that the minimal genus Heegaard splitting(V 1

1 ,V 1
2 ) is reducible in

contradiction. Hence this case cannot happen and the proof of Claim 2 is complete.�
This completes the proof of the theorem.�

6. Sub-additive knots

In this section we consider connected sums of knotsKn ⊂ S3 as in Fig. 6 and 2-bridg
knotsK(α

β
) ⊂ S3 determined byα

β
⊂ Q. These are the only examples so far of prime kn

K1,K2 ⊂ S3 so thatt (K) = t (K1) + t (K2) − 1. For these examples we have:

Theorem 6.1. Let Kn ⊂ S3 be the knot as in Fig.6 and K(α
β
) ⊂ S3 a 2-bridge knot

determined byα
β

⊂ Q. Let K denote the connected sumKn #K(α
β
), then the Heegaard

splitting ofE(K) determined by the minimal tunnel system forK (as in Fig.6) is strongly
irreducible.

Fig. 6.
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In Fig. 6,A denotes the decomposing annulus andt1, t2 denote the unknotting tunnels.
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Proof. SinceE(K(α
β
)) has a genus two Heegaard splitting (asK(α

β
) is a tunnel numbe

one knot) and is irreducible, the Heegaard splitting is strongly irreducible. Otherwise w
could compress the Heegaard surface to both sides and obtain an essential 2-s
contradiction. Similarly any Heegaard splitting of minimal genus three of a hyperbol
knot is strongly irreducible: As the knot complement is irreducible we can compre
most twice (once to each side). But then, by compressing the Heegaard surface we
an incompressible non-boundary parallel torus in contradiction to the fact that the
is hyperbolic (see [8]). The knotsKn are alternating knots and not torus knots so
Corollary 1 of [6] they do no contain incompressible non-boundary parallel tori and hen
are hyperbolic.

Note thatE(K) induces minimal genus Heegaard splittings, of genus two and
respectively, on both ofE(K(α

β
)) andE(Kn). By slightly abusing notation we will denot

the components ofE(K) − A by E(K(α
β
)) andE(Kn).

As in Fig. 7 let D denote the cocore disk of the tunnelt1 which intersects the
decomposing annulusA and letD′ denote the cocore disk oft2 the tunnel interior to
E(Kn). We can choose the disksE = {D,D′} as a meridional system of disks for th
compression bodyV1. Note also thatA minimizes the intersection withV1 as ifA∩V1 = ∅
the Heegaard genus ofE(K) would be additive and equal to three.

Let F be the Heegaard splitting surface∂V1 = ∂V2, and letF1 = F ∩ E(K(α
β
)), and

F2 = F ∩ E(Kn). For each essential diskD1, D2 in V1 andV2 respectively, we choose
representative in their isotopy class so thatDi ∩A is minimal; in particular, each compone
of ∂Di ∩ Fj , i, j ∈ {1,2}, is an essential circle or essential arc onFj , and each componen
of Di ∩ A is an arc.

Fig. 7.
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Claim. Let E be an essential disk inV1 minimizing the intersection withA in its isotopy
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class. Then:

(a) If E ∩ A �= ∅ then the outermost sub-diskE# of E − A is an essential disk in th
componentsV 2

1 ⊂ E(Kn) or V 1
1 ⊂ E(K(α

β
)) of V1 − A, depending on which side o

A containsE#. If it is in E(K(α
β
)) then∂E# = γ ∪ δ whereγ is an inessential arc on

one of the vertical annuliA∗
i andδ is an arc on∂V1 − A as indicated in Fig.7.

(b) If E ∩ A = ∅ andE is contained in theE(K(α
β
)) component thenE is parallel toD.

Proof. (a) Note that∂E# is the union of two arcsγ ⊂ A andδ. If E# is inessential we
could isotopeE# off A. This is a contradiction to the choice ofE.

Assume now thatE# is contained inE(K(α
β
)). Note thatV1 ∩ E(K(α

β
)) is a solid

torus whose fundamental group is generated by a meridian ofE(K). If the curveγ is
also contained in the diskD then∂E# is isotopic to a curve which represents a powe
the meridian inπ1(E(K)) which is a contradiction as the meridian has infinite orde
π1(E(K)). SoE# ∩ D = ∅. Consider now the diskD0 which is the intersection ofN(t1)

with the component ofN(∂E(K)) − A contained inE(K(α
β
)). If E# ∩ D0 = ∅ then since

E# ∩ ∂E(K) = ∅ the diskE# is an inessential disk in this component ofV1 − A which is
a solid torus. IfE# ∩ D0 �= ∅ then since this solid torus is irreducible we can reduce
intersection by isotopingE# off the neighborhood of the half tunnel untilE# is isotopic
to D0.

(b) If E is contained in the componentE(K(α
β
)) ∩ V1 then, as above, since it is in th

component ofV1 − A which is a solid torus and cannot intersectA it is isotopic toD0

which is parallel toD. �
Assume in contradiction that the Heegaard splitting(V1,V2) is weakly reducible and

let D1,D2 be a pair of essential disks inV1 andV2 respectively, so thatD1 ∩ D2 = ∅.
As the single component ofE(K(α

β
) ∩ V1) is of type NK( α

β ), in the terminology of
Proposition 3.2(b), of genus one it follows from Proposition 3.2 that all outermost disks
D2 ∩ A are inE(Kn). Note, further, that(V1,V2) induces the original Heegaard splittin
onE(Kn) which is strongly irreducible by the first paragraph of the proof.

If the diskD1∩A = ∅ then it is either contained inE(Kn) or parallel to the diskD: As if
it is not inE(Kn) it must be a non-essential disk in the solid torusV 1

1 and these are paralle
to D. In the first case it is essential in the strongly irreducible induced Heegaard splittin
on E(Kn) and so must intersect the outermost sub-disks of any essential diskD2 ⊂ V2:
Note that all outermost sub-disks ofV2 which are contained inE(Kn) are essential disk
in the strongly irreducibleHeegaard splitting induced onE(Kn). In the second, case a
all outermost sub-disks ofV2 intersect the parallel copy ofD ⊂ E(Kn) it follows that the
corresponding disks ofV2 must run through the annulusA and intersectD =D1.

If the diskD1 ∩ A �= ∅ then assume first, that the outermost sub-diskD# ⊂ D1 is in
the E(Kn) component ofE(K) − A. By the above claimD# is an essential disk ther
Since the induced Heegaard splitting onE(Kn) is strongly irreducible any two outermo
sub-disks ofD1 andD2 in E(Kn) must intersect.
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Fig. 8.

If the outermost sub-disks ofD1 are inE(K(α
β
)) then by the claim above if we cut th

component ofV1 alongD# we obtain two components one of which is a solid torus
the other is a 3-ballB (see Fig. 8(a) and (b)).

Consider now an essential diskD2 in V2. If D2∩A = ∅ thenD2 is an essential disk inV 1
2

or V 2
2 , the two components ofV2 −A, depending on which side ofA the diskD2 is. Hence

D2 is an essential disk in the handlebody part of the induced Heegaard splitting on eithe
E(K(α

β
)) or E(Kn). However these Heegaard splittings are strongly irreducible soD2

must intersectD the cocore disk oft1 as it is an essential disk in the correspondingV 1
1 or

V 2
1 . This implies thatD2 must intersect the decomposing annulus which is a contradic

HenceD2 ∩ A is non-empty.
Let D∗ ⊂ D2 be a sub-disk, which is outermost among all sub-disks ofD2 − A which

are contained in theE(K(α
β
)) component ofE(K)−A. Letα1, . . . , αn be the component

of D∗ ∩A, then for all but one, sayα1, the arcsαi are ourtermost arcs ofD2 and hence are
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Fig. 9.

of type II (as in the proof of Theorem 5.6). Henceα2, . . . , αn have both end points onD,
the cocore disk of the tunnelt1. The arcα1 may be of type II or type I in which case it ha
one end point on one of∂A∗

1 or ∂A∗
2, and one on∂D.

Since we are assuming thatD1 ∩ D2 = ∅, in both cases∂D∗ ∩ F1 is a set of arcs
contained in the annular sub-surface ofF1 depicted in Fig. 8(b) and Fig. 9 with all bu
at most one endpoint on∂D. Since by assumption all these arcs must be essential inF1,
it follows thatn = 1 andα1 is of type I. But this contradicts the fact that an outermost
of intersection cannot be of type I as then we can reduce the intersection ofA with V1 in
contradiction to the choice ofA. Thus we have showed that any two essential disks inV1

andV2 must intersect and hence the Heegaard splitting(V1,V2) is strongly irreducible. �
Remark 6.2. The induced Heegaard splitting of genus three onE(Kn #K(α

β
)) is a

stabilization of the minimal Heegaard splitting(V1,V2) discussed above. This can be se
as follows: Remove a regular neighborhood of a short arcτ onA connecting∂D to one of
the vertical annuli, sayA∗

1 from V2 and add it as a 1-handle toV1. The arcτ is of typeI on
some meridional diskE of V2 and since there is only one tunnel crossingA it bounds a sub
disk∆ onE. Hence the cocore disk ofN(τ) intersects∆ in a single point and therefore th
pair(V1∪N(τ),V2−N(τ)) is a stabilized Heegaard splitting forE(Kn #K(α

β
)). However

we can slide the tunnel offA by splitting it and sliding alongN(τ). We obtain a isotopic
Heegaard splitting with no tunnels crossingA which is isotopic to the Heegaard splittin
of E(Kn #K(α

β
)) which is induced by the two “standard” Heegaard splittings ofE(Kn)

andE(K(α
β
)).



20 Y. Moriah / Topology and its Applications 141 (2004) 1–20

Acknowledgement

5.5.

.

gy

4)

8)

(3)

th.

69–

. 5

roc.
I would like to thank Ying-Qing Wu for suggesting the current proof of Theorem
and other helpful remarks.

References

[1] A. Casson, C. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275–283.
[2] C. Gordon, On primitive sets of loops in theboundary of a handlebody, Topology Appl. 27 (1987) 285–299
[3] K. Hartshorn, Heegaard splittings of Haken manifolds have bounded distance, Preprint.
[4] J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001) 631–657.
[5] M. Lustig, Y. Moriah, Closed incompressible surfaces in complements of wide knots and links, Topolo

Appl. 92 (1999) 1–13.
[6] W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (198

37–44.
[7] Y. Moriah, Incompressible surfaces and connected sum of knots, J. Knot Theory Ramifications 7 (199

955–965.
[8] Y. Moriah, On boundary primitive manifolds anda theorem of Casson–Gordon, Topology Appl. 125

(2002) 571–579.
[9] K. Morimoto, On the additivity of tunnel number of knots, Topology Appl. 53 (1993) 37–66.

[10] K. Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Ma
Soc. 123 (1995) 3527–3532.

[11] K. Morimoto, Tunnel number, connected sum andmeridional essential surfaces, Topology 39 (2000) 4
487.

[12] K. Morimoto, On the super additivity oftunnel number of knots, Math. Ann. 317 (2000) 489–508.
[13] Y. Moriah, H. Rubinstein, Heegaard Structures of negatively curved 3-manifolds, Comm. Anal. Geom

(1997) 375–412.
[14] K. Morimoto, J. Schultens, Tunnel numbers ofsmall knots do not go down under connected sum, P

Amer. Math. Soc. 128 (1) (2000) 269–278.
[15] K. Morimoto, M. Sakuma, Yokota, Examples of tunnel number one knots which have the property “1+ 1=

3”, Math. Proc. Cambridge Philos. Soc. 119 (1996) 113–118.
[16] J. Schultens, Additivity of tunnel number for small knots, Preprint.
[17] A. Thompson, The disjoint curve property and genus 2 manifolds, Topology Appl. 97 (1999) 273–279.


