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Abstract

This paper studies the question of whether minimal genus Heegaard splittings of exterior spaces
of knots which are connected sums are weakly reducible or not. Furthermore it is shown that the
Heegaard splittingsf the knots used by Morimoto to shoWat tunnel number can be sub-additive
are all strongly irreducible. These are the first examples of strongly irreducible minimal genus
Heegaard splittingef composite knots. We also give a chagization of when is a set of primitive
annuli on a handlebody simultaneously primitive. This characterization is different from that given
in [Gordon, Topology Appl. 27 (1997) 285].
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1. Introduction

For some time it is known that there is armection between the existence of closed
incompressible surfaces in a 3-manifold and the nature of its Heegaard splittings. See
for example [1,3,5,7,11,12,14,16]. In this paper we begin to explore this connection with
respect to essential surfaces with boundary and as a first step study spaces containing
essential annuli. A special case of manifolds which contain essential (i.e., incompressible
non-boundary parallel) annuli are extrspaces of connected sums of knot§¥ These
manifolds are obtained from two knot ext@rispaces by gluing them together along a
meridional annulust.
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Given a Heegaard splitting for a manifold (i.e., a decompositiod? = V1 U V5>,
VinVy, =X, whereV;, i = 1,2, are compression bodies and = dV1 = 9V> is
the Heegaard surface) 1€t denote the set of all essential simple curvesXrwhich
bound disks inV;. Define:d(Vi1, V2) = min{d(C1, C2) | C; € C;(X)}, whered(Cy, C2)
is measured in the curve compléxof X. In particular a Heegaard splitting will be
reducible ifd(V1, V2) = 0, weakly reducible itZ(V1, V2) < 1 and strongly irreducible if
d(V1, V2) > 2. Note that any knot exterior of a knot which is a connected sum, contains at
least two essential tori. It is a result of Hempel [4] and Thompson [17] that if a manifold
contains an essential torus then any Heegaard splitifigV>) hasd(V1, V2) < 2. In
general we have a result by Hartshorn [Ha] that if an irreducible 3-manMottbntains a
closed incompressible surface of geguthe distance of any Heegaard splittiti, V)
of M is less than or equal tog2

As the Euler characteristic of an annulus is 0, just like that of a torus, and it is also
a twice punctured 2-sphere one might “hopbét the theorem of Hartshorn might be
extended to say that an essential annulus in a 3-manifold with torus boundary will imply
that d(Vi, V2) < 1. In other words: Any Heegaard splitting of such a manifold will be
weakly reducible. Evidence in this direction is in [5] where the authors describe a very large
class of knots ins® for which the connected sum yields manifolds with a minimal genus
Heegaard splitting which are weakly reducible. In this direction we prove the following
theorems:

Theorem 4.1. Given knotsk1, K2 and K = K1#K> in 2 for which the tunnel number
satisfiesr (K) = 1(K1) + t(K2) + 1, i.e.,t(K) is super additive, then there is a minimal
genus Heegaalrsplitting of £ (K) which is weakly reducible.

Theorem 4.2. Let K1, K> and K = K1#K> be knots inS® and (V{, V}), i = 1,2, be
Heegaard splittings forE (K;). If (V}, V) and (V2, V2) induce a Hegaard spitting
(V1, Vo) of E(K) then(Vy, Vo) is a weakly reducible Heegaard splitting.

In particular this theorem says that if onefofK1) or E(K?2) has gu-primitive minimal
genus Heegaard splitting théh K1 # K2) will have a weakly reducible Heegaard splitting
of genusg1 + g2 — 1, whereg; = genusE(K;)).

Theorem 5.3. Let K = K1 #K» C S° be a knot. Any Heegaard surfaggfor E(K) which
does not contain any horizontal surfaces is weakly reducible.

Finally:

Theorem 5.6. Let K1, K2 be prime knots ins3 and K = K1#K». Assume that(K) =
t(K1) + t(K2) andz(K;) < 2. Furthermore, assume that a minimal tunnel systemkfor
minimaly intersects a decomposing annulug a single point, then there is a Heegaard
splitting of E(K) of minimal genus which is weakly reducible.
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However the connection between the distance of Heegaard splittings and the existence
of an essential annulus is more complicated as shown by the following theorer&, Let
denote the knots as in [10]:

Theorem 6.1. Let K, c $2 be the knot as in Figé and K c $3 a 2-bridge knot
determined by% C Q. Let K denote the connected suki, #K(%), then the Heegaard
splitting of E(K) determined by the minimal tunnel system kofas in Fig.6) is strongly

irreducible.

These are the first examples of strongly irreducible Heegaard splittings of exteriors
of connected sums. These knots have the propertygb@tK,#K2)) = g(E(K1)) +
g(E(K2)) — 2, whereg( ) denotes the genus of the manifold in brackets. Hence a minimal
genus Heegaard splitting &f( K1 # K») cannot possibly be inducdxy Heegaard splittings
of the two knot spaces.

In light of the above | would like to propose the following conjecture:

Conjecture 1.1. Given two knot1, K2 in $2 for which the tunnel numbexK) satisfies
t(K1#K2) = t(K1) + t(K?2), then there is a minimajenus Heegaal splitting of £ (K)
which is weakly reducible.

The situation is further complicated by the possibility of a positive answer to the
following open question:

Question 1.2. Can a3-manifold M have both weakly reducible and strongly irreducible
minimal genus Heegaard splittings

For definitions of the above terminology see Sections 2 and 4.

2. Preliminaries

Throughout the papek’; and K> will be knots inS® andK = K1 # K> will denote the
connected sum oK, andK». The knotsK; will be called thesummandsf thecomposite
knot K. Let N() denote an open regular neighborhoodsth An incompressible surface
in a knot complemenE (K), K c S is calledmeridionalif it has boundary components
which are meridian curves 6fE (K).

Recall that($3, K) is obtained by removing from each spa@é, K;), i = 1, 2, a small
3-ball intersectingK; in a short unknotted arc and gluing the two remaining 3-balls along
the 2-sphere boundary so that the pair of point& pbn the 2-sphere are identified with the
pair of points ofK>. If we denoteS® — N (K) by E(K) thenE(K) is obtained fromE (K;),

i =1, 2, by identifying a meridional annulus1 on 3 E (K1) with a meridional annulud
ondE(K>). Aknot K c S3is primeif it is not a connected sum of two non-trivial knots.
The annulusA; = A will be denoted byA and called thelecomposing annulu$f both
knotsKi, Ko are prime then the decomposing annulus is unique up to isotopy



4 Y. Moriah / Topology and its Applications 141 (2004) 1-20

A tunnel systerfor an arbitrary kno c $2 is a collection of properly embedded arcs
{t1,...,1,}in $3— N(K) so thatS® — N(K Ut U---Ut,) is a handlebody.

Given a tunnel system for a kndt c S note that the closure @¥ (K U, U --- U t,)
is always a handlebody denoted By and the handlebody® — N(K Ut U --- U t,) will
be denoted by,. For a given knotk c $2 the smallest cardinality of any tunnel system
is called theunnel numbenf K and is denoted by(K).

A compression body is a compact orientable and connected 3-manifold with a
preferred boundary componesit V and is obtained from a collar @f.V by attaching
2-handles and 3-handles, so that the connected componentd’cf 9V — 9.V are all
distinct from 52. The extreme cases, wheVeis a handlebody, i.ed_V = @, or where
V =094V x I, are allowed. Alternatively we can think &f as obtained frongo_V) x I
by attaching 1-handles {@_V) x {1}. An annulus in a compression body will be called a
spanningor vertical) annulusif it has one boundary component 6nV and the other on
_V.

Given a knotK c $° a Heegaard plitting for E(K) is a decomposition of (K)
into a compression body; and a handlebody, = $2 — int(V1). Hence, a tunnel system
{r1,....1,}in $% — N(K) for K determines a Heegaard splitting of genus 1 for E(K).

When considering knot complements the operation of connected sum is well defined
and not dependent on the choice of the removed trivial ball (#&ir) as any two such
ball pairs are isotopic itk (K ). However when we are studying the additional structure of
Heegaard splittings of composite knot complements we must be careful as it is not clear
that an isotopy of the ball pairs can induce an isotopy of the meridional annulus preserving
the Heegaard surface.

Given a Heegaard splitting/1, V>) for S — N (K1 #K2) we will choose a decomposing
annulusA which intersects the compression bodly in two spanning annulid}, A3
and aminimal collection of disksD = {Ds, ..., D;}. Note also thatA intersectsV, in
a connected incompressible planar surface.

Let £ ={E1,..., Exx)+1} be a complete meridian disk system fgp, chosen to
minimize the intersectiod@ N A. Since V> is a handlebody it is irreducible and we can
assume that no component®h A is a simple closed curve.

When we cutE(K) along a decomposing annuldsany Heegaard splittingvs, V)
of E(K) induces Heegaard splittings on both B{K1) and E(K>), as follows: Set
Vl" = (V1N E(K3)) Upuaruaz N(A), it is a compression body as it is a union of an
annulusx I and some 1-handles along the two vertical annuli and a collection of disks.
Now set Vzi = Vo — N(A), it is a handlebody since the annulds meetsV, in an
incompressible connected planar surfa&which separate®, into two components each
of which is a handlebody. Hence the péi/, Vzi) is a Heegaard splitting foE (K;) and
will be referred to as thinduced Hegaard spitting of E(K;).

We say that a curve on a handlebodypramitive if there is an essential disk in the
handlebody intersecting the curve in a single point. An anndluen H is primitive if
its core curve is primitive. A Heegaard splittiti§j1, V) for 3 — N(K) will be called -
primitiveif there is a spanning annulusc V1 such thab A = u Ua wherep is a meridian
anda is a primitive curve orb V,. Note that a curve on a handlebo#yis primitive if it
represents a primitive element in the free graupH).
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Two Heegaard splittingsvl", Vzi) for E(K;), respectively, induce a decomposition of
E(K) into (V1, V2). We can think ofV{ as a union of E(K;) x I) U 1-handles hence
if we consider the ball paitB;, N(¢;)) and remove it fromE(K;) we can think of the
decomposing annulug; = 3B; — N(31;) as the union of two vertical annui’, A;"
and a meridional annulus; C dE(K;) x {1} C V] = dVj. We obtainVy by gluing the
compression bodieg! andV?Z along the two vertical annuli an, by gluing V. and V.2
along a meridional annulus. Henkgis always a compression body gt is a handlebody
if and only if the meridional annulus is a primitive annulug/gﬁfor oneofi=1ori =2.
In this case we will say thatVy, V») is theinduced Heegaar splitting of E(K) induced
by (Vi,V)),i=12.

3. Interior tunnels

Consider now a Heegaard splittir{d/1, Vo) for E(K) the exterior ofK = K1#K>,
whered E(K) c Vq and in which the decomposing annuldsmeetsV; in disks and two
vertical annuli. Since the annulusmeetsVs in a connected planar surfag¢eit separates
V> into two components each of which is anfatbebody. We will dena the handlebodies
cl(Vo — A) N E(K;) by VZ", respectively. Howeve¥; — A might have many components.

Definition 3.1. A component of alV1 — A) which is disjoint fromd E(K;) and intersects
A in n disks will be called am-float(see Fig. 2).

Remark. Note that a n-float is either a 3-ball or a handlebody if its spine is not a tree.
Furthermore there are always exactly two components @fict A) not disjoint from
dE(K;) (onein each oF (K1) andE(K>2)) and each one is a handlebody of genus at least
one asV1 is a compression body with&2 boundary. We denote these special components
by N1 and N2 depending on whether they are containe@ K1) or E(K>2), respectively.

Consider now any one of the meridian disksc £ of V2. On E; we have a collection
of arcs corresponding to the intersection with the decomposing annulus. These arcs, as
indicated in Fig. 1, separatg; into sub-disks where disks on opposite sides of arcs are
contained in opposite sides df, i.e., in E(K1) or E(K>), respectively. So each sub-disk
is contained in eitheE (K1) or E(K2). The boundary of these sub-disks is a collection of
alternating arc$ J(o; U B;) whereq; are arcs o andg; are arcs on some component of
cl(vy — A).

Proposition 3.2. Let K1 and K> be knots in§® and letK, A, £ be the connected sum, a
minimal intersection decomposing annulus and a meridional system for some Heegaard
splitting of E(K) as above. Then

(a) the B arc part of the boundary of an outermost sub-disl€icannot be contained in a
n-float of genu$.
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(b) if the g arc part of the boundary of an outermost sub-disl&inis contained in anv;
component; =1 or 2, and ifK;, i =1, 2, are prime the genus ad¥; is greater than
one.

Proof. Denote an outermost sub-disk of soigby A and suppose it is cut off by an arc
a on A. By the “Facts” proved in [9, pp. 41-42], any such outermostantust have both
end points on a single disk; C A which belongs to some n-float of genus 0. Furthermore
a U D; C A must separate the boundary component$.dkssume further thafA = o U B
whereg is an arc on the-float meetingD; in exactly two point$8 = d«x. Ond D; there
is a small arcy so thaty U 8 is a simple closed curve on thefloat bounding a diskD
there, since the-float has no genus (see Fig. 2 below). Furthermote« is a simple
closed curve oM which together with a boundary componentobounds a sub-annulus
of A. Hencey U« bounds a diskD’ on the decomposing 2-sphere Kfintersectingk

in a single point. Thus we obtain a 2-sphéré&J A U D’ which intersects the kndt in a
single point. This is a contradiction finishing case (a).

For case (b), assume that the outermost disk contained inV1, say, and that genus
of N1 is one (coming from the fact that it is pierced by the knot). As before we have
dA =aUpB whereg is an arc onVy and a small arg so thaty U 8 is a simple closed curve
on N1. If y U B8 bounds a disk inV; we have the same proof as in case (a). b 8 does
not bound a disk oV, we consider small sub-argh and 8, of 8 which are respective
closed neighborhoods 6f8. These arcs together with a small &rond N1 — d E(K1) and
y bound a small banél on 9 N1. Notice thath Ug, g, A is an annulust’. The annulusA’
together with the sub-annulus’ of A cut off by « U y defines an annulug’ U,u, A”
which determines an isotopy of a meridian curvedi to a simple closed curvie on
dN1. Note thatN1 is a solid torus andr1(N1) = Z which is generated by a meridian
of E(K1). Adding a meridian disk taV; to obtainN; and using the loop theorem avy
we can conclude thdk] = u" € m1(E(K1)). However[A] andu cobound an annulus in
E(K1). Hence[A] = u € m1(N1) (see Fig. 3).

Now we can consider the annulgs— A”) U A’. If itis non-boundary parallel then since
both knotsK1, K2 are prime it must be a decomposing annulus which has at least one less
disk component intersection thanin contradiction to the choice of. If it is boundary
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parallel, then as above, we ha€ U A’ as a decomposing annulus with a smaller number
of disks. Again in contradiction to the choice af So genusV; cannot be one and this
finishes case (b). O

Corollary 3.3. Let K1, K» C S be prime knots. Then every minimal genus Heegaard
splitting (V1, V») for E(K), K = K1# K> has a spine which contains a circle disjoint
from a minimal intersection decomposing annuiufor K .

Proof. Consider a meridional system and a decomposing annulus as in Proposition 3.2.
Since theg part of an outer-most disk must be contained in a float of genus greater or
equal to one if it is not oV; or greater or equal to two if it i8/; we must have a handle

on the float to create the genus. The core arc of this 1-handle genetares the circle in the
spine disjoint from the decomposing annuiis O

4. Super additive and additive knots|
Given knotsk1, K> C S3 then the kno = K1#K> falls into one of three possibilities.

(i) 1(K)=1t(K1) +1t(K2)+1,
(i) #(K)=1t(K1) +1t(K2),
(iii) 1(K) <t(K1) +1(K2) — 1.

Recall that Heegaard splitting®;, V.)), i = 1, 2, of E(K;) induce a Heegaard splitting
(V1, Vo) of E(K1#K?>) if and only if one of(V], Vi), i = 1,2, has a primitive meridian.
If (V1, V) is induced then we havgK) < (K1) + ¢ (K2). Therefore Case (ii) splits into
two subcases: (aV1, Vz) is induced by(V}, V), i = 1,2, and (b)(V1, V») is notinduced
by (Vi, VJ), i =1, 2. In this section we will deal with Case (i) and Case (ii)(a). Case (ii)(b)
will be discussed in the next section. In Case (i) we have:

Theorem 4.1. Given knotsk1, K> and K = K1 #K> in $3 for which the tunnel number
satisfiest (K) =t(K1) +1(K>2) + 1, i.e.,1(K) is super additive, then there is a minimal
genus Heegaalrsplitting of E(K) which is weakly reducible.

Proof. No one of the two knots has a Heegaarlitspg where the mericn is a primitive
element since (K) = (K1) + t(K2) + 1. A primitive meridian would mean that the
Heegaard splittings of the knots will induceHeegaard splitting of the connected sum
which would make the tunnel number additive or less. Now drill a tunnétimvith end
points on opposite sides of the meridian curve)®y for one of the knot; and add it as

a 1-handle td/{ thus making the meridian primitive at the expense of increasing the genus
by 1. The two Heegaard splittings will nowduce a Heegaard splittiron the connected
sum which is of genus(K) + 1. It is minimal since (K) = g — 1 and weakly reducible

by Proposition 4.2. O

For Case (ii)(a) we have the following theorem:
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Theorem 4.2. Let K1, K2 and K = K1#K> be knots ins3 and (V{, V}), i = 1,2, be
Heegaard splittings forE (K;). If (V}, V3) and (V2, V2) induce a Hegaard spitting
(V1, Vo) of E(K) then(V1, V») is a weakly reducible Heegaard splitting.

Proof. We can assume that the decomposing annAlirgtersects the Heegaard splitting
Vi, V2 as follows: It intersectd; in two vertical annuli and’z in one meridional annulus.
(This is a consequence of the fact th@k, V») is induced by the respective Heegaard
splittings). Choose two essential dis@% and Df for V1 on both sides ofi, for example
cocore disks for tunnels. Note tha ¢ Vi andD? c V2. The handlebody? is obtained
from Vzl andV22 by gluing them along the meridional annuldsSinceV> turns out to be a
handlebodyA must be a primitive annulus in at least one@f or V22, saszl. So there is
at least one essential digk in V2l which is disjoint fromA and hence is also an essential
disk in V,. But D is disjoint from D? as D2 is also disjoint fromA and is on the opposite
side. Hence the Heegaard splittii, V») is weakly reducible. O

Remark 4.3. Case (i)(a) is very common indeed, e.g., any two knots which realize a
minimal Heegaard splitting in an2plat projection with the canonical tunnel systems will
have a weakly reducible Heegaard splitting when composed (see [5]).

5. Additiveknots|I

In this section we consider Case (ii)(b): In this case both knots cannot have minimal
genus Heegaard splittings with primitive meridians. Knots with this property, called also
fiendish knotsare very elusive and their existence was first proved in [13] and first
examples were given in [15]. The knots considered in both [13] and [15] sati&fy =
t(K1) + t(K2) + 1 so they fall into Case (i). For fiendish knots we have the following
conjecture (see also [12, Conjecture 1.5]):

Conjecture 5.1. Knots K1, Ko ¢ $2 will satisfy7(K) = t(K1) + 1(K>2) + 1 if and only
if both E(K1) and E(K2) do not have minimal genus Heegaard splittings with primitive
meridians.

Note that Conjecture 5.1 implies Conjecture 1.1. As if Conjecture 5.1 is true then Case
(ii)(b) cannot arise as all such knots will be in Case (i) and we are done. Conjecture 5.1
is known for knots which do not contairsgential surfaces with meridian boundary
components [12, Theorem 1.6]. We have the following:

Definition 5.2. An incompressible meridional surfadein a knot complemenk (K) will

be calledX horizontalif it is not an annulus and it is contained in a Heegaard surfacd

E(K) as a sub-surface, except for annuli collar neighborhoods of the meridian boundary
components of. These annuli will have one boundary component on the sufaead

the other oM E (K).
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Theorem 5.3. Let K = K1 #K» C S° be a knot. Any Heegaard surfaggfor E(K) which
does not contain any' horizontal surfaces is weakly reducible.

Proof. Assume in contradiction thal/1, V») is a strongly irreducible Heegaard splitting
for E(K1#K>2).Let ¥ =9V, = 9V> be the Heegaard surface andAdbe the decomposing
annulus for the connected sum minimizing the intersection &itiVe can assume (see
[11, Lemma 2.3]) that after an isotopy of the annulug) X is a collection of essential
curves on botld andX'. Hence, as we assumed thatis the compression body containing
JE(K1#K>) then Vi N A is composed of two vertical annuij, A5 and a minimal
collection of essential annudiy, ..., A; andV2N A is composed of a minimal collection of
essential annulBy, ..., By+1. By Lemma 2.1 of [11] we can find essential digks, D> in
Vi1, V2, respectively, which are disjoint fromy, ..., A; andBa, ..., By+1. SinceAj, A3
share a boundary component with and B;1 we can conclude that the disky, D; are
disjoint from A. The annulusA splits each of¥; and V» into two unions of handlebodies
U, Vl"’r and(J; Vzi,s- respectively, wheré= 1, 2 depending if the component is K K3)

or E(K>). If the disksD1, D, are contained ier",r and Vis, respectivelyi, j € {1, 2}, for
different values of and; thendoD; N dD, =@ as both of D1 and D, are disjoint from
A. Hence the Heegaard splittiri§f1, V2) is weakly reducible in contradiction. So we can
assume that both d@b; and D are contained irVir andVis forthe sameé, sayi =1, i.e.,

on the same side of. Consider now the componentsbf— A contained invV2 andV.2. An
innermost disk argument shows that each esthcomponents must be incompressible in
V12 andV22 as otherwise we obtain a compressing diskdisjoint from A which is disjoint

from both D1 and D2 and hence the Heegaard splitting, V2) is weakly reducible in
contradiction. The boundary curves of any componentef A contained inVl2 and V22

are essential curves on the meridional decomposing anaulrsd hence are isotopic to
meridian curves irE (K2). Therefore they are isotopic to meridian curvesi(k ). Thus
these components & — A are horizontal surfaces. Since we assumed that such surfaces
do not exist inE (K) we obtain a contradiction to our assumption t{iat, V>) is a strongly
irreducible Heegaard splitting 8 K). O

Remark 5.4. A result of similar nature is mentioned by Morimoto (see [11, Remark 4.3]):
If K; C M; are knots therE (K1 # K») always has a weakly reducible Heegaard splitting of
minimal genus if none oM1 and M> have Lens space summands and nong@+1) and

E (K>) contains meridional essential surfacésdems that the conditions in Theorem 5.3

are weaker.

We will now specialized to the situation where there is a tunnel systenk favith
a single tunnel minimally intersecting the decomposing annulus in a single point. More
precisely:E(K) has a minimal genus Heegaard splitting so tha&f) = ¢ (K1) + 1 (K2)
and Vi N A consists of two spanning annuli and a single disk. This is clearly a subset of
Case (ii)(b). However to the best of my knowledge all examples of minimal tunnels systems
of composite knots which have tunnels intersecting the decomposing annulus essentially
do so exactly once.
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Before we specialize we need the theorem below which is true in a more general setting.
It is of independent interest as it gives a new characterization for when a set of primitive
curves on a handlebody is simultaneously primitive (compare [2]).

Given a collection of annuliy, ..., A, on the boundary of a handlebody we say
that they aresimultaneously primitivéf there exists a collectiomDy, ..., D, of disjoint
essential disks so thdl; N A; is a single essential arc ; and ifi # j thenD; NA; = 0.

Theorem 5.5. Let H; and H> be two handlebodies and 18, ..., B, be a set of disjoint
mutually non-parallel incomgssible primitive annuli in0H1. Let Cy,...,C, be any
collection of incompressible nggrimitive disjoint annuli ind H,. Then By, ..., B, are

simultaneously primitive ity if and only if H1 Uip,—c,,... B,=c,} H2 is a handlebody.

Proof. Assume first that the annuB, ..., B, are simultaneously primitive iff1. The
proof will be by induction onz. Forn = 1 we can glueH; to H> along B1 and C

to obtain a manifoldv;. Since the annulB; and Cy are incompressible we have that
m1(N1) = m1(Hy) *z m1(H2). The generator of th& is a primitive element in the free
groupm1(H1) som1(N1) is a free group. It now follows from the Loop Theorem that
N1 is a handlebody. Assume by induction thét 1 = H1 Uig,=c;.....B,_1=C,_,} H2 IS a
handlebody. The annulug, is disjoint from the annulBy, ..., B,_1 andC1, ..., C, and

is still primitive in N,,_1 as the annulBy, ..., B, are simultaneously primitive and non-
parallel and hence there is an essential disk N,,_1 which is disjoint fromB1, ..., B,—1
andCy, ..., C, and which intersect®, in a single arc. NowV, is obtained fromv,,_1
by gluing the primitive annulug,, to the annulug”,,. Hencer1(N,) = w1(H,—1)*7 is an
HNN extension of the free group (H,—1) where twoZ-subgroups are identified and the
generator of one of them is a primitive element. It follows thatV,) is a free group and
again by the Loop Theoret, = Hy Up,—c;,.... B,=c,} H2 is a handlebody.

For the proof in the other direction: Assume th#t Uip,—c,,.. B,=c,} H2 IS a
handlebodyH and letB ={B1, ..., B,} andC ={C1, ..., C,} be as in the theorem. Let
Hj be the result of cutting?; along a maximal set of compression disksdéf, — ( B;.
Note that gluingH; to H> alongB andC yields a handlebody. As it is obtained from the
handlebodyH by cutting it along disks which are disjoint from both sfandC. Up to
relabeling we may assume thBt = {B1, ..., B;} is the set of annuli inB which are a
longitudinal annulus of some solid torus compongnt =1, ..., k, of H; containing no
otherB;. Denote byH; = H; —|J V;, and letB” = B — B’. There is no compressing disk
in Hy' intersectingB” in a single essential arc. As any such disk would define another torus
componentd/; containing some annulug;, j ¢ {1, ..., k}, and no other annulus.

Let C" andC” be the corresponding subsets@fThenH; Ugp—_c H> can be obtained
by gluing V1, ..., Vi to H> along B’ and C’ to obtain a manifold4;, and then gluing
Hj to Hj along B” andC”. The manifoldH, is a handlebody and is homeomorphic to
H> by the definition ofB’ and the first part of the theorem. Hence the analiare still
non-primitive annuli o H,. If B is not simultaneously primitive theB” is non-empty,
hence after gluing the remaining componentsHjfto H,, the surfaceB” = C” is an
essential surface in the handleballyU H, = H; U H;, because there is no compressing
or boundary compressing disk for this surfacejohicontradicts the fact that there are no
essential non-disk surfaces in a handlebody.
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Further evidence in the direction of Conjecture 1.1 is the following:

Theorem 5.6. Let K1, K2 be prime knots ins3 and K = K1#K». Assume that(K) =
t(K1) + t(K2) andz(K;) < 2. Furthermore, assume that a minimal tunnel systemkfor
minimaly intersects a decomposing annulug a single point, then there is a Heegaard
splitting of E(K) of minimal genus which is weakly reducible.

Proof. Let (V1, V2) be the Heegaard splitting @& (K) determined by the minimal tunnel
system which intersects the decomposing anndlus a single point. We can therefore
assume tha¥1 N A = A7 U A5 U D1. The once punctured annulds) v, has two boundary
components coming from the vertical anndlj, A5 and denoted by}, C3, respectively,

and one boundary componeiD; coming from the tunnel. Agl intersectsV; minimally

A — D; is an incompressible planar surface in a handlebody and hence is boundary
compressible. A boundary compression cannot be on an arc connégting=1, 2,

to D1 as then we could use the compressing disk to isotope the tunngl &tich an

arc will be called oftype | Furthermore a boundary compression cannot be on an arc
connectingCy to C5 as thenA will be boundary parallel in contradiction. Hence the
boundary compressing arc will connetb; to itself and since it is non-trivial it must
separate€”; andC3. Such an arc will be called aype Il (Compare also [9]).

Choose a meridional system of disks= E1, ..., E;(k)+1 for V. Each disk in€ must
intersectD; as otherwise the Heegaard splitting viaé weakly reducible and we are done.
An outermost arc of intersecti@non somekE; separates a boundary compressing sub-disk
A C E; and from the previous paragraphis an arc of type 1l om.

We can boundary compregs along A or alternatively isotop@ Vi = 9V» along A.
Doing the second operation does not chaAage the isotopy class of the Heegaard splitting
(V1, V2), but does change the intersection of the “new” Heegaard surface, also denoted by
dV1 =09V, with A. The resultis that nowt N V; = AJU AU A1, whereA; is an essential
sub-annulus ofA which contains the dislo1. The intersectiom N Vo = B1 U By, where
B1, By are also essential sub-annulisf(as in Fig. 4).

Let Vl" denote the components & — A and Vzi denote the components & — A.
Assume that the diski is contained inE(Ky),k = 1 or k = 2. Note that isotoping the
Heegaard surfacgVy along A changes thénducedHeegaard splittig only on the knot
complement containing\ (i.e., on E(Ky) only!). On the induced Heegaard splitting of
E(Ky) this isotopy is equivalent to cuttingz" along A to obtain Wé‘ and adding the
2-handleN(A) to V} to obtainWy. It is possible that in this cas#; might not be a
handlebody. It is also possible thatis a separating disk iibrz" and in this caseW§ might

have two component¥s™* and W5 2.

The annuliB;, B2 are essential annuli contained ¥» which together separaté.
Hence, when we cu» along them we obtain a handlebow{, J # k, and if neither of
B1 or By is separating a handlebowg. If one of By or By is separating theW, N E(Ky)
splits into two handlebodiewé"l and Wé"z This is the situation corresponding to the disk
A being a separating disk iify. Denote the “traces” oB; and B, on W} by Bi, B,
i=12.
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Fig. 4.

Sincer (K) =t(K1)+1(K2) and only one tunnel gets split into two arcs by cutting along
A it follows that after cutting(V1, V») along A there are two possilities: The induced
Heegaard splittingV, V) of E(K1) is of minimal genus andVZ, V2) of E(K>) is of
minimal genus plus one or vice versa. Up to relabeling the knots we assunte(#tigtis
of minimal genus.

Claim 1. If one ofBiL or le is primitive in W2l C E(K1) thenE(K) has a weakly reducible
Heegaard sfitting of minimal genus.

Proof of Claim 1. If the disk A is contained inE(K>) then (Wi, W3) is a Heegaard
splitting of minimal genus fo (K1). So, if eitherB} or B is a primitive annulus oV
(which, in this case, is equal ttzizl less a collar ) we will treat an isotopic image of the
primitive annulus.Bl1 or B% respectively ord E(K1) as a decomposing annulus. Now glue
E(K1) to E(K2) along this annulus to obtain a Heegaard splittinge@K ) which is of
minimal genus (as that @l/1, V2)) and is weakly reducible by Theorem 4.2.

If, on the other hand, the disk is contained inE(K1) then recall that we obtaiib(z1
from W21 by identifying together the twtiraces” (copies) of the disk on Wzl, i.e., adding
a 1-handle to these traces. These traces intersect bam}aindaB% in a single arc each.
Hence if one o1 or BL is primitive in W2 it would also be primitive inV3, regardless of
whetherBl1 andB% are separating or not. We now use the same argument as above to obtain
a weakly reducible Heegaard splitting of the same genus as tii&i of») of E(K). O

Thus we can assume that both of the anBgland B are not primitive inW2 c E (K1).
Since Vz = W} Ugz_g1 g2_p1 W is a handlebody it follows thaBf and B must be
primitive in W2: By setting By = B?, B, = B2 and C1 = B}, C»> = B} we satisfy the
conditions of Theorem 5.5 and can conclude tﬂfﬂanng are simultaneously primitive
in W22. If it happens thath2 has more than one component we certainly have disjoint
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annuli intersecting disjoint disks in a single arc. We will refer to this situation as the annuli
beingextended simultaneously primitive

Claim 2. If Bf, 322 are simultaneously primitive or extended simultaneously primitive on
W22 C E(K>) the complement with the non-mmmal genus Heegadrsplitting, thenE (K)
is a weakly reducible Heega@splitting of minmal genus.

Proof of Claim 2. The induced Heegaard splitting 8f K>») is not of minimal genus, thus

itis of genus at least three (It is induced by a tunnel system containing at least two tunnels,
i.e., one “interior tunnel” (by Corollary 3.3) and the “half” tunnel coming from the split
tunnel crossingt). Assume that the disM is contained inE (K>) so after cutting/22 along

A we obtain either a handlebody of genus at least two with two simultaneously primitive
annuli on it or a disjoint union of two handlebodies one of which has at least genus two
with two extended simultaneously primitive annuli on them.

Thus in both cases there is at least one essential Hiskn W22 (a separating disk
in the first case), which is disjoint fronﬂf and 322 and hence fromA. Since Vo =
W5 Ugz_p1 pz_p3 W3, as before, the disk; is an essential disk iz which is disjoint
from A and hence from the essential digK C V1 which is the image of the disk,
pushed slightly intoE(K1). Thus the Heegaard splittingl1, Vo) of E(K) is weakly
reducible and we are done (see Fig. 5).

Assume therefore that the disk is contained inE(K1). If (K1) = 1 then V21 is a
genus two handlebody and after cuttiv@ along A we obtain either one or two solid tori
(depending ifA is separating or not) embeddedSA with non-primitive annuli on their
boundary. Extend these annuli in\t’@ so that one boundary component of each annulus is
a meridian curve 08 E (K1). When attaching disks to these meridional curves one obtains
a Lens space contained $i%, which is a contradiction.

If (K1) =2 then Vzl is a genus three handlebody and after cuttwjgalongA we
obtain either one solid torus component with one or two non-primitive annuli on its

A

D
A N

—5

Fig. 5.



Y. Moriah / Topology and its Applications 141 (2004) 1-20 15

boundary (ifA is separating) or a genus two hagbdy with two non-primitive annuli
on its boundary (ifA is non-separating). In both cases the components are embedded in
$3. The first case is dealt with as in the previous paragraph. In the second case, first note
that the genus three Heegaard splitting, V) for E(K1) induces, by filling meridional
disks, a Heegaard splitting foi. Now after adding td/> two meridional disks along the
annuli and cutting alongt we obtain a 2-spherg& c ($2, K1) which intersectsK; in four
points. In particularS bounds a 3-ball on both sides. If we change the order of cutting
alongA and adding disks by first adding the two meridional disks to the meridional annuli
on V2l we obtain a solid toru®> with A as its unique meridional disk.

The complement; = S — W, can be obtained from the genus three compression
body Vv as follows: Filla_ V! with N (K1) to geta pairV, K1). Now cut the pai(V, K1)
along meridional disks corresponding to the meridional annuﬁﬁf’l. These annuli are
not parallel o V11 so we get a solid toru#/; whose unique meridian disk’ is a cocore
disk of one of the 1-handles dvrll and is therefore disjoint fromk1.

Now since we obtained from Wi and W» the disksA and A’ are a canceling
pair. But this implies that the minimal genus Heegaard splittivig, V) is reducible in
contradiction. Hence this case cannot happen and the proof of Claim 2 is comptete.

This completes the proof of the theorent

6. Sub-additive knots

In this section we consider connected sums of kikgts™ S as in Fig. 6 and 2-bridge
knotsK(%) c $3 determined by% C Q. These are the only examples so far of prime knots

K1, K> C S8 sothatr(K) =t(K1) + 1(K2) — 1. For these examples we have:

Theorem 6.1. Let K, C S be the knot as in Figé and K@ c 53 a 2-bridge knot

determined b)% C Q. Let K denote the connected sukp, #K(%), then the Heegaard
splitting of E(K) determined by the minimal tunnel system kofas in Fig.6) is strongly

irreducible.

t1 F{53)

e B
|

%
K, (n=3) ‘_XI/_

Fig. 6.
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In Fig. 6, A denotes the decomposing annulus and denote the unknotting tunnels.

Proof. SinceE (K (%)) has a genus two Heegaard splitting (ée%) is a tunnel number

one knot) and is irreducible, the Heegaartitspg is strongly irreducible. Otherwise we

could compress the Heegaard surface to both sides and obtain an essential 2-sphere in
contradiction. Similarly any Heegaarglgting of minimal genus three of a hyperbolic

knot is strongly irreducible: As the knot complement is irreducible we can compress at
most twice (once to each side). But then, by compressing the Heegaard surface we obtain
an incompressible non-boundary parallel torus in contradiction to the fact that the knot
is hyperbolic (see [8]). The knotK, are alternating knots and not torus knots so by
Corollary 1 of [6] they do no contain incomgssible non-boundary parallel tori and hence

are hyperbolic.

Note thatE(K) induces minimal genus Heegaard splittings, of genus two and three
respectively, on both OE(K(%)) andE(K,). By slightly abusing notation we will denote
the components of (K) — A by E(K(%)) andE(K,).

As in Fig. 7 let D denote the cocore disk of the tunngl which intersects the
decomposing annulug and let D’ denote the cocore disk @$ the tunnel interior to
E(K,). We can choose the disks= {D, D’} as a meridional system of disks for the
compression body;. Note also that minimizes the intersection withiy asif ANV1 =@
the Heegaard genus &f(K) would be additive and equal to three.

Let F be the Heegaard splitting surfag®&1 = dV>, and letFy = F N E(K(%)), and
F> = F N E(K,). For each essential digk;, Do in V1 and V» respectively, we choose a
representative in their isotopy class so thah A is minimal; in particular, each component
of 0D; N F;, i, j € {1, 2}, is an essential circle or essential arcion and each component
of D; N A is an arc.

¢

fi‘ * D # S E
/ oy - ral HE
= .. o . :
() — o0 E—
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Claim. Let E be an essential disk il'1 minimizing the intersection with in its isotopy
class. Then

(@) If EN A # @ then the outermost sub-digk” of E — A is an essential disk in the
component’? C E(K,) or Vit C E(K (%)) of V1 — A, depending on which side of
A containsE”. If itis in E(K(%)) thend E# = y U § wherey is an inessential arc on
one of the vertical annuld} ands is an arc ondV; — A as indicated in Fig7.

(b) If ENA=¢andE is contained in theE(K(%)) component thet is parallel to D.

Proof. (a) Note thatd E¥ is the union of two arcy c A ands. If E* is inessential we
could isotopeE* off A. This is a contradiction to the choice &f

Assume now tha* is contained inE(K(%)). Note thatVy N E(K (%)) is a solid
torus whose fundamental group is generated by a meridiafi(&f). If the curvey is
also contained in the disk thend E* is isotopic to a curve which represents a power of
the meridian inr1(E(K)) which is a contradiction as the meridian has infinite order in
71(E(K)). So E* N D = @. Consider now the dislg which is the intersection ol (1)
with the component oN (d E(K)) — A contained inE(K(%)). If E N Do =@ then since

E*NJE(K) = the diskE* is an inessential disk in this componentiaf— A which is
a solid torus. IfE# N Do # ¢ then since this solid torus is irreducible we can reduce the
intersection by isotoping:* off the neighborhood of the half tunnel unfif* is isotopic
to Do.

(b) If E is contained in the componeEt(K(%)) N V1 then, as above, since it is in the
component ofV; — A which is a solid torus and cannot intersettt is isotopic to Dg
which is parallel toD. O

Assume in contradiction that the Heegaard splittitg, V>) is weakly reducible and
let D1, D> be a pair of essential disks vk and V» respectively, so thab; N D, = @.
As the single component of (K () N V1) is of type Nk @), in the terminology of
Proposition 3.2(b), of genus one it follows fromoposition 3.2 that all outermost disks of
Do N A are inE(K,). Note, further, thatV1, V») induces the original Heegaard splitting
on E(K,) which is strongly irreducible by the first paragraph of the proof.

If the diskD1N A = @ then itis either contained iB(K,,) or parallel to the dislD: As if
itis notin E(K},) it must be a non-essential disk in the solid tovq’sand these are parallel
to D. In the first case it is essential in theastgly irreducible indaed Heegaard splitting
on E(K,) and so must intersect the outermost sub-disks of any essentiaDdiskV>:
Note that all outermost sub-disks & which are contained i (K,,) are essential disks
in the strongly irreduciblédeegaard dfiting induced onE(K,). In the second, case as
all outermost sub-disks df, intersect the parallel copy db c E(K},) it follows that the
corresponding disks df, must run through the annulusand intersecD = D;.

If the disk D1 N A # ¢ then assume first, that the outermost sub-d¥kc Dy is in
the E(K,) component ofE (K) — A. By the above clainD” is an essential disk there.
Since the induced Heegaard splitting BQK,,) is strongly irreducible any two outermost
sub-disks ofD; andD» in E(K,,) must intersect.
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If the outermost sub-disks @1 are inE(K(%)) then by the claim above if we cut this
component ofi; alongD# we obtain two components one of which is a solid torus and
the other is a 3-balB (see Fig. 8(a) and (b)).

Consider now an essential digk in Vo. If DN A = @ thenDs is an essential disk iﬁzl
or V22, the two components df; — A, depending on which side af the diskD; is. Hence
D> is an essential disk in the handlebodytp the induced Heegpard splitting on either
E(K(%)) or E(K,). However these Heegaard splittings are strongly irreducibl®so
must intersecD the cocore disk ofy as it is an essential disk in the correspondﬁfgor
V12. This implies thaD, must intersect the decomposing annulus which is a contradiction.
HenceD; N A is non-empty.

Let D* C D, be a sub-disk, which is outermost among all sub-diskBpf A which
are contained in thE(K(%)) componentof£(K) — A. Letay, ..., o, be the components
of D*N A, then for all but one, says, the arcsy; are ourtermost arcs d@b, and hence are
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of type Il (as in the proof of Theorem 5.6). Heneg . . ., o, have both end points ob,
the cocore disk of the tunnel. The arces may be of type Il or type | in which case it has
one end point on one @A} or d A3, and one o D.

Since we are assuming th@; N Do = @, in both case9$D* N F1 is a set of arcs
contained in the annular sub-surface Faf depicted in Fig. 8(b) and Fig. 9 with all but
at most one endpoint of\D. Since by assumption all these arcs must be essential,in
it follows thatn = 1 anda is of type I. But this contradicts the fact that an outermost arc
of intersection cannot be of type | as then we can reduce the intersectiomith Vi in
contradiction to the choice of. Thus we have showed that any two essential diskg in
andV> must intersect and hence the Heegaard splitting V») is strongly irreducible. O

Remark 6.2. The induced Heegaard splitting of genus three E)fKn#K(%)) is a
stabilization of the minimal Heegaard splittiagy, V»2) discussed above. This can be seen
as follows: Remove a regular neighborhood of a shortasn A connecting D to one of
the vertical annuli, say ] from V; and add it as a 1-handle 1q. The arcr is of typel on
some meridional disk of V> and since there is only one tunnel crossinig bounds a sub-
disk A on E. Hence the cocore disk &f (t) intersectsA in a single point and therefore the
pair(ViUN (1), Vo — N (1)) is a stabilized Heegaard splitting fén K, #K(%)). However
we can slide the tunnel off by splitting it and sliding alongV (z). We obtain a isotopic
Heegaard splitting with no tunnels crossiAgwhich is isotopic to the Heegaard splitting
of E(Kn#K(%)) which is induced by the two “standard” Heegaard splittingdk ;)

andE(K(%)).
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