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a b s t r a c t

Self-stabilization ensures automatic recovery from an arbitrary state; we define self-
organization as a property of algorithms which display local attributes. More precisely, we
say that an algorithm is self-organizing if (1) it converges in sublinear time and (2) reacts
‘‘fast’’ to topology changes. If s(n) is an upper bound on the convergence time and d(n) is
an upper bound on the convergence time following a topology change, then s(n) ∈ o(n)
and d(n) ∈ o(s(n)). The self-organization property can then be used for gaining, in sub-
linear time, global properties and reaction to changes. We present self-stabilizing and self-
organizing algorithms formany distributed algorithms, including distributed snapshot and
leader election.
We present a new randomized self-stabilizing distributed algorithm for cluster

definition in communication graphs of bounded degree processors. These graphs reflect
sensor networks deployment. The algorithm converges in O(log n) expected number of
rounds, handles dynamic changes locally and is, therefore, self-organizing. Applying the
clustering algorithm to specific classes of communication graphs, in O(log n) levels, using
an overlay network abstraction, results in a self-stabilizing and self-organizing distributed
algorithm for hierarchy definition.
Given the obtained hierarchy definition, we present an algorithm for hierarchical

distributed snapshots. The algorithms are based on a new basic snap-stabilizing snapshot
algorithm, designed for message passing systems in which a distributed spanning tree is
defined and inwhich processors communicate using bounded links capacity. The algorithm
is on-demand self-stabilizing when no such distributed spanning tree is defined. Namely, it
stabilizes regardless of the number of snapshot invocations.
The combination of the self-stabilizing and self-organizing distributed hierarchy

construction and the snapshot algorithm forms an efficient self-stabilizer transformer.
Given a distributed algorithm for a specific task, we are able to convert the algorithm into a
self-stabilizing algorithm for the same taskwith an expected convergence time ofO(log2 n)
rounds.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The availability and robustness, as well as the possibility for on-demand reconfiguration of large systems, are in many
cases vital; be it clusters of servers that support commercial activity, a grid of computers that participate in a complicated
computation or a dynamic sensor network. In particular, an important aspect for large on-going systems is the ability to
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automatically recover from an inconsistent state, namely to be self-stabilizing [8,9] or in other words, to have a system that
can be started in an arbitrary state.
To capture the need of the industry in autonomic and self-* systems, we propose combining self-stabilization (in fact

SuperStabilization [10]) with self-organization. While self-stabilization is well defined, the self-organization property has
no widely agreed upon definition. We propose to define self-organization as satisfying two main properties: locality and
dynamicity. Namely, we require that (1) the algorithm stabilizes in sublinear time with regard to the number of processors
and that (2) the addition and removal of processors influences a small number of other processors’ states. In other words,
if s(n) represents the stabilization time and d(n) represents an upper bound on the stabilization time (and number of state
changes) following a dynamic topology change, then: s(n) ∈ o(n) and d(n) ∈ o(s(n)). This definition can be naturally
extended to also capture the effect of local transient faults that corrupt the states of a subset of the processors rather than
only topology changes (thus it is in the spirit of both the superstabilizing and fault-containment approaches [9]).
In this work, we allow algorithms to define (on the fly) and (then immediately) use hyper communication links, which

are overlay links that are constructed of communication links along a path. We regard the time that a message travels over
such a link as one time unit, assuming that (practically) no processing is involved in forwarding messages over these links
(e.g., [12,26],mpls [5]). This definition is motivated by (e.g., telephony) systems, where switches along a path are configured
for a session and the path is essentially a wire. We propose to use the self-stabilizing and self-organizing properties of our
schemes combined with such switching capabilities to obtain dramatically faster convergence rates and global information
transmission with relation to traditional communication networks. In traditional settings, there are obvious lower bounds
that are proportional to the number of nodes (or the diameter of the communication graph of the system), while the
existence of overlay links allows us to obtain logarithmic bounds.

1.1. Main contribution

Self-stabilizing and self-organizing hierarchy definition. The hierarchy of subsystems is defined by partitioning the
communication graph into small clusters, after which clusters are merged to form larger clusters and so on. The partition
can be done according to a designer’s input, using an automatic off-line clustering algorithm or even an on-line clustering
algorithm that reflects the system’s current behavior. In particular, we suggest a randomized self-stabilizing and self-
organizing partition that is based on periodical collection of local topology (up to a certain distance). The collected local
topology supports a randomized local leader election, in which a non leader processor that does not identify a leader within
a certain distance x tries to convert itself to a leader. Leaders within distance x from each other are eliminated, until there
are no leaders that are within distance x or less from each other. Higher level partitions, using larger distances and overlay
network abstraction between leaders, are constructed in a similar way.
In asynchronous systems, our clustering algorithm uses (for each processor) a (local) self-stabilizing snapshot algorithm

for obtaining local synchronization of actions.
Self-stabilizing snapshots.We present a snap-stabilizing (e.g., [6]) snapshot algorithm for distributed systems, that uses
message passing with bounded link capacity, in which a spanning tree is distributively defined. Our snapshot algorithm is
designed for a message passing system in which any initial state of link contents is considered and in which the possibility
of messages overflow (due to sending a message through a full link) is incorporated into the model.
Our snapshot algorithm can also be applied to systems with a general communication graph in which a rooted spanning

tree is distributively defined by another self-stabilizing algorithm. The spanning tree may be an output of a self-stabilizing
(BFS) rooted tree construction algorithm. In this case, however, we obtain only on-demand stabilization rather than snap-
stabilization. On-demand stabilization ensures that regardless of the number of new requests (for snapshots), the system
reaches a state, such that eventually any new request results in a correct output (snapshot). In other words, stabilization
does not rely on repeated invocations of new (snapshot) requests. Our on-demand self-stabilizing snapshot algorithm serves
us as a basic building block in order to obtain our hierarchical snapshot schemes.
Overlay network based snapshot.We suggest an approach for hierarchical snapshot based on an (fifo preserving) overlay
network abstraction. We enable each subsystem to perform an independent snapshot, and further enable each level of
the hierarchy to perform a local snapshot. We suggest the use of overlay communication links which ‘‘directly’’ connect
leaders of clusters. It is worthwhile noting that an (fifo) overlay network link may be in fact a path of physical links. It is also
evident that the communication over an overlay link is much faster than the sum of the single hop communication links
that implement the overlay link.1
Leaders of subsystems are defined, and the communication between processors in different subsystems traverses the

overlay communication links between the leaders of the subsystems. Thus, there is no need for recording themessages over
physical links between subsystems unless they are part of an overlay communication link. When a snapshot is invoked by a
leader of a subsystem (possibly due to a request forwarded to the leader by another processor), the leader uses the overlay
network to notify (send snapshot markers to) the leaders of the subsystems that belong to its subsystem. These leaders, in
turn, are responsible for performing a snapshot in their subsystem in the same manner.

1 In some cases, preassigned frequencies or/and supporting switching hardware can be used. e.g., mpls [5].
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Discussion concerning overlay network architecture. We assume the existence of communication switches that are
reconfigurable by (commands of) our algorithm. Our approach is layered; the first layer is based on traditional point to
point neighboring communication, where communication is between processors that are directly connected by physical
communication mean. The output of this layer (which is the local topology of each processor) is used to configure overlay
links, using the capabilities of the switches. An analogous procedure is implemented for higher levels in the hierarchy
defining new overlay links using wider topology knowledge. We assume that the bandwidth of a physical communication
link is sufficient for implementing of all the overlay links that this link participate in implementing (this number is typically
small, and is always less than the number of possible source–destination for the overlay links).
One may wish to employ our algorithms to system that does not consist of the above programmable switches. In other

words, to provide an abstraction of overlay links in software. To ensure message delivery in such a case, one may need
local buffers in each intermediate processor along the overlay path. Each processor may maintain a message buffer for
each outgoing edge. The buffer will hold a ‘‘bucket’’ for each overlay path which traverses the corresponding link (again,
this number is typically small). Each bucket holds the last message received which is associated with the bucket’s path
and did not yet traverse the attached link. The processor will send the contents of the buckets repeatedly and fairly (say,
simultaneously using high bandwidth). Thus, ensuring eventual delivery (fairness) and fifo ordering.
As assumed in the scope of overlay communication networks, processing (of higher level protocol-stack are avoided and)

is done only at the end-points of the communication, therefore the delay is still assumed to be one time unit. End-to-end
arq stabilization can be analyzed in theway suggested in [7], resulting in a constant time aswell (twice the number of round
trip time between the overlay endpoints).

1.2. Related work

Self-organization. In recent years, the concept of self-organization has been widely mentioned in the scope of distributed
computing and peer to peer networks. Many works have claimed being self-organizing, but a mere fraction of these works
also tries to give a specific definition of what self-organization really is. In [2] a framework for self-organization is proposed,
including formal definitions of the self-organization concept and complementary proof techniques which can be used to
prove that algorithms are indeed self-organizing. Each algorithm is required tohave an associated evaluation criterion,which
operates on the immediate neighborhood of a process. This evaluation criterion does not take into account the influence of
other local neighbors, say those that are within a constant distance.
Fault containment. Fault containment, using persistent bits, voting on replicated bits (usually for non reactive systems)
is another way of addressing locality (e.g., [19,14,1,3]). The idea is to repair transient faults starting from a safe global
system configuration. In such a case, it is possible (unlike in the case of topology changes) to change the state of the affected
processors back to the state prior to the fault. In this context, our algorithm is self-stabilizing and when started in a safe
configuration can handle k transient faults as well as topology changes occurring approximately at the same time, in expected
O(log k) rounds. Moreover, our scheme is the first to support many core distributed tasks, such as self-stabilizing leader
election algorithm and snapshots algorithms in O(log2 n) expected rounds.
Cluster and hierarchy construction. Self-stabilizing and self-healing constructions of hierarchies, in the domain of sensor
networks, appear in [28]. The authors divide the plane into hexagonal cells. In each cell a head that corresponds with a
cluster leader is elected. The existence of a unique processor, the big node, which acts as an initiator is assumed. The big
node determines the center of the first hexagon, fixating the location of its own cluster. The big node elects heads in adjacent
hexagonal cellswhichwill subsequently elect heads in their adjacent cells. The time complexity of this algorithm is obviously
proportional to the diameter of the communication graph. Our algorithm does not assume a leader and converges within
O(log n) expected number of rounds and reacts to dynamic changes locally.
Our clustering algorithm is in fact a maximal independent set algorithm. A classical maximal independent set algorithm

is presented in [24]. The algorithm is designed for a synchronous system and converges (from a pre-defined initial state)
within O(log n) expected convergence time. Our algorithm is designed for asynchronous systems, is self-stabilizing and
self-organizing and converges within expected O(log n) rounds for constant degree graphs.
A recent work by Wattenhofer and Moscibroda [25] presents an algorithm for computing a maximal independent set

in radio networks. The system model is fundamentally different from the one presented here: Processors can broadcast
their messages asynchronously, but no collusion detection mechanism is provided. The algorithm presented converges
in (expected) polylogarithmic time, and processors which join the algorithm are promised to be covered in (expected)
polylogarithmic time.
In [21], the authors present lower bounds on distributed approximation algorithms for the minimum vertex cover

problem. Their bounds can also be applied to the maximum independent set problem. We do not seek a maximum
independent set, and our algorithm defines a maximal independent set.
Other approaches for distributively defining maximal independent sets in bounded degree graphs appear, for example,

in [20] and in [15]. The algorithms presented usually define a maximal independent set in O(log∗ n) rounds. However, a
synchronized environment is assumed and is heavily relied upon; for example, in [15] the authors first define a coloring of
the graph, using a bounded number of colors. The colors are then used to define a maximal independent set iteratively, by
first choosing all the processors coloredwith the lowest color, removing all of their neighboring processors and repeating the
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process with the next color. Unfortunately, these algorithms do not fit asynchronous systems, nor are designed to tolerate
faults and dynamic changes gracefully.
Applications of hierarchy in the self-stabilization domain are described in [13]. The authors argue that the hierarchical

construction can be used to shorten the convergence time of various self-stabilizing distributed algorithms. As an example,
the authors present an application to spanning tree construction. However, the authors do not present an algorithm for
defining the hierarchy but assume it is defined beforehand.
Distributed snapshots. The first distributed snapshot algorithm was introduced in [4]. The authors describe a distributed
algorithm for collecting the states of processors and the states of links such that a global state of the system, called the system
snapshot, that has special properties is obtained. Namely, the obtained system snapshot can be reached by an execution that
starts in the system state in which the snapshot algorithmwas initiated. Moreover, there is an execution that starts from the
obtained system snapshot and reaches the system state in which the snapshot algorithm terminated. Therefore, the system
snapshot is a global state that can be used to detect stable properties. For example, if there is a deadlock in the global state
recorded by the snapshot algorithm, then we may conclude that there is a deadlock in the system.
The snapshot algorithm is defined for message passing system, and is based on special messages called markers, which

are used to partially order processors’ actions. The algorithm is based on rules, which state for each processors, p, the steps
p must take each time p receives a marker m on a communication link l: if m is the first marker p received, p records p’s
local state and immediately sends markers on all of p’s outgoing links. Moreover, p records the state of l as empty. If m is
not the first marker p received, p records the state of l as the list of messages received from l following the first marker p
received. When p received a marker from each incoming link, p publishes its portion of the snapshot which consists of p’s
recorded state and the state of all the links adjacent to p. The combined published portions of all the processors form the
global snapshot. The algorithm is initialized by one ormore processors sendingmarkers to themselves and terminates when
each processor received markers on all of its adjacent links.
Self-stabilizing snapshot. A self-stabilizing snapshot algorithm was first introduced in [17], where repeated invocations
of snapshots are used to ensure stabilization of a non-stabilizing algorithm. When the obtained snapshot indicates an
inconsistent system configuration, a reset is invoked. The stabilization of the snapshot itself is based on its repeated
invocation. We present an on-demand self-stabilizing snapshot that does not rely on repeated invocations and, in fact,
reaches a safe configuration also in cases in which snapshot invocations cease as well. Following [17], several works have
studied ways of achieving efficient snapshots in different models e.g., message passing, bounded links message passing and
shared memory [27,1,6].
In [27], the author takes a different approach to self-stabilizing snapshots. A common counter is shared among processors

and is used to number markers of the snapshot algorithm. Processors only participate in snapshots which match their
counter value. In order to obtain self-stabilization, the counter is reset using a self-stabilizing reset algorithm. The system
settings do consider links of bounded capacity, but assume that this capacity is never reached. Our algorithm handles link
overflows gracefully.
A different approach for the snapshot task is taken by using a snap-stabilizing propagation of information with feedback

(PIF) algorithm [6]. In [6], the authors present a snap-stabilizer—a tool that converts any given sharedmemory algorithm to a
snap-stabilizing one by using a technique similar to the one in [17]. The snapshot algorithm uses snap-stabilizing PIF. Shared
communication registers are used in [6] for communication among processors. We consider message passing systems. It is
worthwhile noting that the conversion of a shared memory algorithm to message passing suggested in [11,9] does not
preserve the snap-stabilization property, at least when randomization is not used.
Dynamic graph algorithms. Extensive research on distributed dynamic algorithms appeared in the literature (e.g., [12]
and the references therein). Still, our algorithm is the first self-stabilizing and self-organizing distributed (graph) algorithm.
Another related aspect of our work is related to dynamic (graph) data structures (e.g., [16] and the reference therein). We
achieve a committing time (logarithmic and polylogarithmic) in (fault tolerance) distributed settings for an important class
of graphs.
Our contribution. We define the self-organization property to capture locality and dynamicity. We present a clustering
algorithm (in fact, a distributed maximal independent set algorithm) which is both self-stabilizing and self-organizing. To
realize the clustering algorithm in an asynchronous systemwe present a scheme of local synchronization, achieved by using
a local snapshot protocol. We employ the aforementioned clustering algorithm to define a graph hierarchy which can be
used to convert any distributed task to be self-stabilizing incurring only a sublinear time overhead.
Paper organization. In Section 2 we present the system model and in Section 3 the basic on-demand snapshot algorithm.
Hierarchy construction schemes are described in Section 4. The hierarchical snapshot algorithm is presented in Section 5.
Extensions and concluding remarks appear in Section 6.

2. Systemmodel

The system consists of n processors, denoted by p1, p2, . . . , pn. The processors are connected by communication links. Each
processor is modeled by a state machine that can send and receive frames (or low level messages) to/from a subset of the
processors. We use a uni-directed communication graph G = (V , E) to represent the system, where each processor pi is
represented by a vertex vi ∈ V and each communication link used for transferring frames from pi to pj is represented by
an edge (i, j) ∈ E. We further assume that the existence of the edge (i, j) ∈ E implies the existence of an opposite directed
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edge (j, i) ∈ E and that the number of edges attached to a processor is bounded by a constant. We define the dist of two
processors p and q, dist(p, q), as the length of the shortest path between p and q in the graph. For a processor p and a constant
x, we denote fp(x) as the number of processor q such that dist(p, q) ≤ x. We further define fG(x) (or just f (x)where G is clear
from the context) as the maximal fp(x) over all processors p in the graph.
Processors may join and leave the system at any time. Similarly, links may spontaneously fail and recover. We model

processors’ join and leave as the addition or removal of all of their links from the system. We assume that processors may
detect such topological changes in a timely fashion (e.g., by observing voltage levels of the underlying physical layer). In the
context of self-organization the pattern and the sequence of topology changes influence the convergence time. We require
that following a single topological change at most o(s(n)) rounds are needed for stabilization. In case k topological changes
occurs together or in a sequence, such that any two consecutive changes among these k changes took place within o(s(n))
asynchronous rounds, and within o(s(n)) distance apart, then the stabilization time is bounded by min{k · o(s(n)), s(n)}
rounds. Note that, any (non constant) number of changes occurring approximately simultaneously in the graph, but in
distance of at least o(s(n)) from each other, will require only o(s(n)) rounds to stabilize.
We assume a class of graphs for which a correlation exists between the number of edges along a shortest path and the

geographical distance of the path’s end-points.
The system is asynchronous, meaning that there is no correlation between the non constant rate of steps taken by the

processors.We assume that the capacity of the communication channels (equivalently the number of items in the fifo queues
that represent the links) is bounded, by the constant lc. Whenever a processor pi sends a frame to a neighbor pj, when the
link (i, j) already contains lc frames, we assume that one of the frames (not necessarily the new one) is lost while the fifo
order of the rest of the frames is preserved. In fact, since frames can always be lost, we restrict the pattern of frame loss
steps to be such that if frames are sent infinitely often, frames are also received infinitely often.
We further abstract the activity of communication links by assuming an underline snap-stabilizing ARQ data link

algorithm that transfers frames in order to ensure that high level messages transfer respects the following: (1) messages
sent from pi to pj are received by pj in a finite (but yet unbounded) time (2) and message delivery respects the exactly once
delivery and fifo ordering policies. We note that the ARQ algorithm performed on one link of a processor pi does not block
the receive operations (and corresponding steps) from the links attached to pi. We assume that eventually when pi sends a
messagem to pj (and pi does not send further messages), pi receives acknowledgment form after pj receivedm.
We use the term overlay edge to denote a path of edges that connects two processors in the system. When the path is

predefined and fixed, it acts as a virtual link in which (practically) no processing is required by intermediate processors in
order to forward the frame from source to destination. We allow processors to define and use, on the fly, overlay edges
to other processors, when the underlying path is known. We regard the time it takes a frame to traverse such an overlay
link as the time for traversing a link that directly connects two neighboring processors. We assume these overlay edges
preserve fifo ordering of frames between processors and maintain the assumption that a frame which is infinitely often
sent is infinitely often received.
A configuration c of the system is a tuple c = (S, L); S is a vector of states, 〈s1, s2, . . . sn〉, where the state si is a state

of processor pi; L is a vector of link states 〈l1,2, l1,3, . . . , l2,1, l2,3 · · · 〉. A link li,j is modeled by a fifo queue of frames that are
waiting to be received by pj and the contents of the queue is the state of the link. Whenever pi sends a frame f to pj, f is
enqueued in li,j. Also, whenever pj receives a frame f from pi, f is dequeued from li,j. A processor changes its state according
to its transition function (or program). A transition of processor pi from a state sj to state sk is called an atomic step (or simply
a step) and is denoted by a. A step a consists of local computation and of either a single send or a single receive operation.
We model our system using the interleaving model. An execution is a sequence of global configurations and steps,

E = {c0, a0, c1, a1, . . .}, so that the configuration ci is reached from ci−1 by a step ai of one processor pj. The states changed
in ci, due to ai, are the one of pj (which is changed according to the transition function of pj) and possibly that of a link
attached to pj. The content of a link state is changed when pj sends or receives a frame during ai. An execution E is fair if
every processor executes a step infinitely often in E and each link respects the bounded capacity loss pattern. In the scope
of self-stabilization we consider executions that are started in an arbitrary initial configuration.
A task is defined by a set of executions called legal executions and denoted LE. A configuration c is a safe configuration for

a system and a task LE if every fair execution that starts in c is in LE. A system is self-stabilizing for a task LE if every infinite
execution reaches a safe configuration in relation to LE. We sometimes use the term ‘‘the algorithm stabilizes’’ to note that
the algorithm has reached a safe configuration with regards to the legal execution of the corresponding task.
In some cases, we would like to define processes executed by the processors so that each processor executes steps for

several processes. Consider the case in which each processor pi executes two processes p1i and p
2
i . Assume further, that a

process p1i can communicate directly with a (neighboring) process p
1
j residing in a neighboring processor. The transition

function of p1i is defined by the state s
1
i of p

1
i and the messages received from a neighboring processes p

1
j . The transition

function of p2i is defined by the state of p
1
i and p

2
i and the messages sent by neighboring processes p

2
j . The definition of

configuration for the multi-processes case is defined by a vector of state 〈s11, s
1
2, . . .〉 for the state vector of the first layer

processes and a vector 〈l11,2, l
1
1,3, . . .〉 of the link states of the first layer, while the later is composed of the queues associated

with the links, restricted to the messages sent by processes in layer one, p1i . The layer’s definition allows us to separate the
snapshot protocol activity (in the lowest layer) from the original system (upper layers) that is the subject of the snapshot.
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Amulti-process fair execution is a fair execution in which every process executes a step infinitely often (in the sequel we
use the term fair execution for multi-process fair execution).
The snapshot task S for a system is defined by a set of executions ES started in an arbitrary configuration, so that if

a snapshot starts in an atomic step ar , there is a configuration cs, that follows ar , in which a processor receives a global
snapshot gs. Moreover, assuming r is minimal, there exists an execution of processes in level one that starts immediately
before ar , reaches gs and then continues to the configuration of level one in cs.
We use the notion of asynchronous rounds to measure the time complexity of an algorithm. The first asynchronous round

in execution E is the shortest prefix of E in which each processor (or process) communicates with all of its neighbors
(either through a directly connecting communication link or through an overlay edge). The second asynchronous round
in E is the first asynchronous round of the suffix of E that immediately follows the first asynchronous round in E . The time
complexity of an algorithm is the number of asynchronous rounds (or simply rounds) that are required to achieve the task
of the algorithm.

3. On-demand (snap-)stabilizing message passing (tree-)snapshot algorithm

In this section, we present the first snap-stabilizing snapshot for message passing systems. We do not require repeated
invocations of the snapshot algorithm in order to stabilize, in contrast to the assumption needed in order to employ the
snapshot algorithm of [17]. A snap-stabilizing snapshot algorithm for the shared memory system is presented in [6]. In the
context of self-stabilization, message passing systems introduce additional intricacy due to unknownmessages in transient
in the arbitrary first configuration from which the system should converge to a legal behavior [9].
When designing our snapshot algorithm, our starting point is the unbounded snapshot algorithm presented in [17] and

the snap-stabilizing algorithm presented in [6], which wemodify to a boundedmessage passing snap-stabilizing algorithm.
Namely, we ensure that any new request for a snapshot will result in a correct snapshot. This requirement differs from the
one presented in [17] where snapshotsmust be continuously and infinitely often invoked. In our case, the algorithm is ready
for future requests even when no snapshot requests are made.
The algorithm is designed for a system inwhich a rooted spanning tree is distributively defined. It is based on performing

two consecutive tree-PIFs (propagation of informationwith feedback using a spanning tree) and then employing the original
snapshot algorithm of [4]. Each PIF uses the rooted tree in order to propagate a command (initialize and then prepare) and
receive feedback on the completion of the propagation (of the initialize and prepare commands, respectively). A processor
that receives a command from its parent, propagates it to its children and also ‘‘cleans’’ the non-tree edges attached to it. Once
a processor p receives an acknowledgment from all its children that their subtree received the command and once p finishes
cleaning the attached non-tree links, p sends an acknowledgment to its parent regarding the completion of the command
propagation. Both tree-PIFs are completed within O(d) rounds (assuming a BFS tree is used), where d is the diameter of
the network. When the first (initialize) tree-PIF is completed, no marker of previous incarnations of the snapshot algorithm
is present in the system and processors disregard all incoming snapshot markers. After the second (prepare) tree-PIF is
completed, processors do not ignore markers and the root may then initiate the original snapshot algorithm of [4].
To guarantee snap-stabilization we have to ensure that when the root starts a tree-PIF and then receives an indication

from its children regarding completion, the system’s configuration is indeed the desired one - namely, a configuration in
which all nodes are instructed by the propagated command. The technique used to achieve the above is based on a method
of ensuring the happened before (see [22]) relation, using a snap-stabilizing data link algorithmwhich is specifically designed
for bounded capacity links (Fig. 2). When a processor p would like to pass a command to a neighbor q, p repeatedly sends
frameswith a label iuntil p receives a framewith label i from q. Then p repeatedly sends frameswith label i+1 (mod 2·lc+1)
to q until a framewith the new label is received from q and so on until p sends 2 · lc+1 distinct labels. In each frame q sends
the last local synchronization color q received from p. Thus, when p receives a frame with the last label among the set of the
distinct 2 · lc + 1 labels, p knows the current local synchronization color known to q and sends frames with a different local
synchronization color together with the global command (initialize or prepare) that pwould like to pass to q. Following that,
q identifies the new local synchronization color and invokes the global command.
To simplify our presentation we use a self-stabilizing version of the aforementioned frame communication algorithm.

The self-stabilizing frame communication algorithm is used to send control messages between neighboring processors.
Each control message is either piggy backed on messages sent by the original algorithm (the snapshot subject) or sent
independently (as part of a frame). Each processor p maintains 3 arrays: next , current and last . Each array has an entry for
each neighbor of p. next[q] is the entry in which the next value that p is about to send to q is stored. pmay decide to send a
different value to q before next[q] is sent. In such a case, the value in next[q] is overwritten. current[q] holds the data that p
is currently sending to q. last[q] contains the last acknowledged data that p sent to q along with the actual acknowledgment
of q. We note, that transforming the self-stabilizing version presented in Fig. 2 into a snap-stabilizing one can be achieved
by iterating the sending operation 2 · lc + 1 times. Correctness is trivially preserved and the conversion adds a constant
amount of time to each send operation which can be considered O(1) for a time complexity measure.
We now describe the way next[q], current[q] and last[q] are accessed. We use Figs. 1 and 2 in our description. For each

frame arriving from q, p checks whether the frame contains an acknowledgment (Fig. 2 line 2). The acknowledgment should
also be numberedwith the current number that p is expecting to receive from q. When an acknowledgmentwith the current
number arrives, p ‘‘advances’’ the values next[q] to current[q], and current[q] to last[q]. In more details, last[q] is assigned by
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Fig. 1. Frame communication algorithm - data flow.

current[q], current[q] is assigned by next[q], and next[q].val is assigned by null, while next[q].num is assigned by the next
control number (Fig. 2, line 8).
If the frame arriving is not an acknowledgment, p first sends an acknowledgment to q (line 10). Afterwards, if q is the

parent of p and if q sent a control message with a different color than p’s color, p changes state accordingly (line 13).
Alternatively, if p is the parent of q, and the frame contains a done message, p updates the data structure which denotes
which child has finished the current initialization phase.
At the end of the frame communication algorithm, p passes the encapsulated message to the algorithm subject to the

snapshot. Equivalently, in line 21, each message destined to q is encapsulated in a frame, holding current[q].
The self-stabilizing snapshot initialization algorithm is responsible for cleaning old markers from the communication

links. Roughly speaking, there are two phases, in each of which the root instructs each child, q, to color itself with a color that
is different from the color that q is currently colored by. Each processor q repeats the same procedure with its tree children
and sends an acknowledgment to its parent once it is done. Following the initialization, processors do not participate in
snapshots. Later on, when the root receives done messages from each of its children, the root starts the prepare phase.
When the second phase is completed, the processors may start participating in a snapshot.
The code of the initialization-prepare algorithm appears in Figs. 3 and 4. We use a convention inspired by the guarded

commandsnotation for representing the programof a processor. The program in Fig. 3 is composed of six guarded commands.
Each guard is a predicate. A guard is enabled if, and only if, the predicate is evaluated as true. Each command is a finite set of
instructions that a processor must take when the corresponding guard is enabled. We assume that the guards of a certain
processor are scheduled by an internal scheduler which repeatedly chooses to execute the commands of an enabled guard.
Furthermore,we assume that the internal scheduler ensures that a guard that is infinitely often enabled is executed infinitely
often.
In general, the initialization-prepare algorithm task uses phases identified by processor states to coordinate the operation

of the processors. The algorithm has two main phases (initialize, prepare) each of which has a few states associated
with it. In particular, the initialization phase is composed of state changes according to the following order: initialize,
sync_initialize, propagate_initialize, children_initialize, finish_initialize and finally the done state.
The first guard of the initialization-prepare algorithm (Fig. 3, line 1) describes the first actions a processor (p) takes when

starting a new phase (either initialize or prepare). First, p cleans the links connecting it to its neighbors. The cleaning
is achieved by sending a probe message on each link. Each neighbor q, when receiving a probe message, acknowledges
receiving the message and attaches to the acknowledgment q’s current synchronization color (Fig. 2, line 10). After sending
all probemessages, pwill change state to the sync state, e.g., if p’s state was initialize, it will change state to sync_initialize
(line 8). Moreover, if pwas in the initialize state, then before changing state it will set the ignore_markers flag to true (line 7).
The second guard appears in line 10. If p is in the sync_initialize (or sync_prepare) state and receives acknowledgments

from all of its neighbors, line 11 ensures that pwill change state to propagate_initialize or propagate_prepare respectively.
Line 13 describes the actions p must take in the propagate states. Essentially, p propagates its phase state to its children
(lines 14–19). We define the phase state as initialize if p is in the initialize phase, and prepare if p is in the prepare
phase. For example, if q is in the propagate_initialize state, the phase state for p is initialize. Similarly, if p is in the
propagate_prepare state, the phase state for p is prepare. The propagation is achieved by sending an appropriate command
to each child. The command contains a color that is different from the last color each child had already sent (line 19). This
ensures that the children identify the command as a new command and change state accordingly. Finally, p changes state
to children_initialize (or children_prepare).
The third guard appears in line 23. This guard ensures that pwill wait for each child to acknowledge the command. After

each child acknowledges the command, pmust wait for its children to finish propagating the command to their subtrees. To
this end, p utilizes the done[] array. When a processor is in the done state, it repeatedly sends donemessages to its parent.
To make sure that p considers only relevant donemessages, pmust first initialize the done[] array with false (line 25). pwill
then change state to the finish state (with the appropriate suffix, according to p’s phase state).
Once all of p’s children finish synchronizing their sub-trees, they will send a donemessage to p. This will cause the guard

in line 29 to be enabled. At this point, p will have finished synchronizing its subtree and can proceed to the done state.
However, before changing state, if p is in the prepare state, it will change ignore_markers to false. From this point on, p is
ready to participate in a snapshot.
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Fig. 2. Frame communication with a neighbor q.

The last guard, which is in line 34, ensures that if p is in the done state, pwill repeatedly send donemessages to its parent
(line 35).
Correctness proof.We will first show that the data link algorithm stabilizes. The proof which is already a folklore, is for a
particular pair of processors, for example pi and pj, where pi is the sender and pj is the receiver.
Lemma 1. In every fair execution E , assume pi assigns a new value to currenti[pj] in a global configuration cl. Then, there exists
a global configuration ck, such that an acknowledgment from pj arrived at pi and k > l. Furthermore, eventually the happened
before relation holds between the atomic steps ak in which the assignment of a new value x to currenti[pi] is executed, a later
atomic step al in which a frame with x is received by pj and an atomic step am in which the acknowledgment regarding the receipt
of x in pj is received by pi.
Proof. Since each frame numbered with num is sent repeatedly by pi, an acknowledgment with numwill eventually arrive
from pj. Hence, piwill infinitely often change the frame number in a round robin fashion (Fig. 2, line 8). Since the link capacity
is bounded by lc and pi increments the frame numbers modulo 2 · lc + 1, a value ywhich is not present in the first arbitrary
configuration in either the link (i, j) or (j, i) will be chosen. From this point on, it is obvious that our claim holds, since pi
will only accept acknowledgments for y.
Considering the snap-stabilizing version, an analogous proof can be derived to show that the data link algorithm is indeed

snap-stabilizing. �

Lemma 2. In every fair execution E , eventually after a processor pi executes lines 3–4 in Fig. 3 (denoted writing) for a
particular neighboring processor pj and assuming no consecutive write of pi to pj takes place, an acknowledgment will arrive
at pi. Immediately after the atomic step in which the acknowledgment arrives, a configuration in which lasti[pj] is equal to
ack_pendingi[pj] will be reached (Fig. 4).
Proof. Since no writes occur and since pi repeatedly sends frames with currenti[pj] an acknowledgment for currenti[pj]will
eventually arrive. Since we assumed no writes occurred, pi will assign nexti[pj] to currenti[pj], according to Fig. 2 lines 3–
5. Using Lemma 1 we know that an acknowledgment will eventually arrive after pj receives currenti[pi]. Hence, and again
according to lines 3–5, pi will assign currenti[pj] to lasti[pj]. We can conclude the correctness of the Lemma from the fact
that the value that was originally present at nexti[pj]was copied to ack_pendingi[pj] and eventually to lasti[pj]. �

For the following lemmas, we assume that the data link algorithm used is the snap-stabilizing version discussed earlier.
We wish to draw the readers’ attention to the fact that the correctness of the on-demand version also holds if the following
condition is met: the self-stabilizing data link has stabilized – a step that ensures that whenever an acknowledgment arrives
for a frame sent by pi, pj will have received the message. Overall correctness is further ensured by the fair composition
technique ([9], chapter 2.7).
Lemma 3. In every fair execution, if a processor pi is in state initialize at a configuration cj and does not receive any command
from its parent to change its state, then there exists a configuration ck, k > j, such that the following claim holds for each processor
q in the subtree of pi (including pi): there exists a series of configurations (after cj), in which q changed state from initialize to
sync_initialize to propagate_initialize to children_initialize to finish_initialize and finally to done. Furthermore, q stays
in the done state in all subsequent configurations, after (and including) ck.
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Fig. 3. Initialize-Prepare algorithm for a processor p.

Fig. 4. Root rules for initiating a new snapshot.

Proof. The proof is by induction on h, the height of processors in the tree. For h = 0 we have a leaf processor pi. Assume
pi changed state to initialize at cj. According to the initialization algorithm (Fig. 3), the only guard enabled is the guard
in line 1. Since this guard is the only one enabled, it will eventually get executed. pi then writes a probe message to each
of its neighbors and changes state to sync_initialize (lines 1–9). Since we assume that pi receives no command from its
parent to change state, no guard is enabled by default. According to Lemma 2, the guard in line 10 is the only guard which
will eventually be enabled. pi then changes state to propagate_initialize. The next enabled guard is only the guard in line
13. Since pi is a leaf, pi will immediately change state to children_initialize and then to finish_initialize. The only guard
enabled now is the guard in line 29, since pi does not need to wait for an answer from any child. Hence, pi will change state
to done. Marking the last configuration as ck concludes the proof for the base case.
Now, let pi be a processor of height greater than 0. Assume pi changed state to initialize at cj and no further commands

arrive from pi’s parent. The only enabled guard in cj appears in line 1 and will eventually be executed. pi will then send a
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probe message to each of its neighbors and change state to sync_initialize. No guard will be enabled until each neighbor
replies. However, Lemma 2 ensures that a reply will eventually arrive. Hence, the guard in line 10will eventually be enabled
and executed. pi will then change state to propagate_initialize. The guard in line 13 will now be enabled, and executed. pi
will send an initialize command to each of its tree children, and change state to the children_initialize state. Again, from
Lemmas 1 and 2, eventually the guard in line 23 will be enabled and pi will reinitialize the done array for each child to hold
false. Since Lemmas 1 and 2 ensure that pi gets a reply for the probe message from each child that is sent after each child
receives the aforementioned probe message, pi will send each child a color different to the one this child currently holds.
Consequently, each child will enter the initialize state. As a result, it is ensured that no old donemessages exist on either
channel directed at pi, since each child has changed state to initialize before sending the acknowledgment regarding the
initialize command to pi.
Using the induction assumption and since pi does not send any more messages to its children (no guard is enabled), we

can conclude that the lemma holds for each child of pi. Moreover, the guard in line 29 will eventually be enabled, since
each child is in the done state and the only action taken in this state is sending donemessages to the parent. Hence, pi will
receive donemessages from each of its children and the guard in line 29 is finally enabled. Now, pi will enter the done state.
Based on the induction assumption, each child fulfills the requirements of Lemma 3 and from the proof we get the series of
configurations for pi as required by Lemma 3. Furthermore, pi does not change its state after reaching the done state, unless
pi receives a new command from its parent. �

Following the proof of Lemma 3we can deduce a similar argument for the prepare state. Using these lemmas, we deduce
that once the root changes state to initialize, the whole tree will change state to initialize and will stop receiving markers
(Fig. 3 line 7). It also follows that eventually the root will receive a done message from all of its children, ensuring all
processors in the tree are in the done state. When in this state, we can deduce that no markers exist in any of the channels.
Assume the contrary, that between pi and pj there exists a marker sent by pi. pi would not have been able to send themarker
after receiving the initialize command since after changing state to the initialize state, pi ignores all markers and snapshots
(Fig. 3 line 7). The only option left for pi is to have sent the marker before receiving the initialize command. Since channels
are fifo ordered and pi sent a probemessage to each neighbor before finishing the initialization algorithm, we conclude that
no such marker can exist.
After finishing the initialization phase, the root will start the prepare phase. After finishing the prepare phase, each

processor will start to receive markers again (Fig. 3 line 31). Once the root has entered the done state, it is ensured that all
processors are ready to start a new snapshot and that no old markers exist in the system.

Time complexity:

Lemma 4. In every fair execution once a processor p assigns initialize to its state, there is an atomic step in the following
5 · height(p) rounds in which p assigns done to its state (where height(p) is the height of p in the tree).

Proof. By induction, over the height of a processor in the tree. Let us assume p is a processor of height 1 in the tree (a
leaf). Then, according to the snapshot algorithm (Fig. 3), the steps p follows are: sending a probe to all neighbors (time
complexity: 1 round (line 1)), waiting for an answer to the probe (time complexity: 1 round (line 10)), propagating the
initialize command to each child (line 13) and finally waiting for a done message from each child (line 29). The last two
steps are internal events, since p has no tree children and no communication is needed. As a result, an atomic step in which
p assigns done to its state is executed after 3 rounds.
Let us assume Lemma 4 is correct for all processors of height at most k, for some k. Let p be a processor of height k + 1

and assume p assigns initialize to its state. According to the snapshot algorithm, p must make take the following actions:
send a probe to all neighbors (time complexity: 1 round (line 1)), wait for an answer to the probe (time complexity: 1 round
(line 10)), propagate the initialize command to each child (line 13) and finally wait for a donemessage from each child (line
29). The propagation of the initialize command takes 1 round. Now, since all tree children of p operate in parallel and are of
height k− 1, in 5 · (k− 1) rounds each child will assign done to its state (according to the induction assumption) and after
another round, the command will be propagated to p. In the following round, p will also set its state to done. To conclude,
the atomic action in which p assigns done to its state is executed in 3+ 5 · (k− 1)+ 2 = 5 · k rounds. �

The time complexity of the algorithm, as clearly follows from Lemma 4, is O(d). The root must first assign initialize to its
state and after 5 · height(root) rounds the root will receive a donemessage from all of its children. The root will then assign
prepare to its state, and a similar argument can show that after another 5 · height(root) rounds the root will receive a done
message from all of its children. Overall, the tree will be ready for a new snapshot after at most 10 · height(root) = O(d)
rounds. The snapshot itself requires an additional O(d) rounds, thus the total number of rounds required for performing a
snapshot is O(d).

4. Hierarchical construction schemes

A hierarchical system is represented by a communication graph, G = (V , E) and a hierarchy treeHT = (Vh, Eh). Each
node inHT , li, represents a set of nodes in V , called a subsystem, so that if li and lj are at the same level ofHT , then li∩lj = ∅.
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Furthermore, if K is a set of nodes at level i ofHT , then∪j∈K lj = V . The nodes of the graph are processors and the edges are
their communication channels. We require that each subsystem is a connected component of G.
Next, we present a self-stabilizing and self-organizing algorithm for constructing clusters. In general, the clustering

algorithm builds clusters of diameter smaller than a fixed parameter. Furthermore, each cluster is defined by a ‘‘native’’
leader.

4.1. Synchronous cluster construction

The clustering algorithm is based on a self-stabilizing, randomized, synchronous, local leader election algorithm. We
assume the existence of a global shared clock. If no such clock exists, a self-stabilizing digital clock synchronization algorithm
(e.g., [9]) can be used. However, in such a case the resulting algorithm is not self-organizing. Assume clusters of diameter at
most 2 · x are desired. All processors will participate in a self-stabilizing update algorithm, up to distance x. At predefined
intervals of x clock ticks (which we call a phase), all processors will execute the algorithm presented in Fig. 5.
The update algorithm is designed for an asynchronous system. Each processor p holds a table of tuples, each of the form

〈idq, distq, parentq〉. Each tuple represents a processor q in the communication graph. idq is the unique identification of q,
distq is the minimal distance between p and q and parentq is the id of a neighboring processor of p, which is the first on a
shortest path from p to q. Repeatedly, p combines all the tables of its neighbors and for each of the conflicting tuples (in
which the id is the same), p chooses the tuple with the minimal dist (further ties are broken using the parent value). Next,
p chooses only entries with dist = k, such that there exist entries with dist = j for all j < k. All other entries are deleted.
Afterwards, p adds 1 to the distance field of every tuple and finally adds the tuple 〈idp, 0, nil〉 to form the new table.
We adapt the aforementioned update algorithm to our system in several manners. First, each tuple will hold two

extra values, leaderp, rtpp. Next, each processor p continuously sends its table to all neighboring processors. In addition,
pmaintains an internal array which consists of the most recent topology tables p received from each neighboring processor.
The computation of p’s topology table is done on the basis of this array. Furthermore, in the validation phase we also delete
entries with dist > x. Consequently, p’s table will reflect its neighborhood up to distance x from p. The correctness of the
revised update algorithm is trivially preserved, and the convergence time is O(x) rounds.
Continuing the description of our algorithm, each processor p with leaderp = true first chooses a random temporal

identifier rtp for the current phase and uses the tuple 〈rtp, id〉 as its identifier for the phase. This randomchoice of an rtp value
is used to break the symmetry between processors (for further motivation, see the asynchronous version of the algorithm).
The variable leaderp is used to indicate whether p regards itself as a leader or not. The self-stabilizing update algorithm
collects the new identifiers and leader variables value within the x clock ticks of the phase. Thus, at the end of the phase, a
processor pwith leaderp = true checks whether p is the only leader in the area defined by radius x from itself. If there does
not exist a processor qwith leaderq = truewith distance less than x from p, then p is a stable leader and does not change state.
Otherwise, if leaderp = false and there is no other processor q with leaderq = true within distance x from p, then p assigns
leaderp ← true. Last, consider the case in which leaderp = true and there exists another processor qwith leaderq = true that
is within distance x from p. If p’s 〈rtp, id〉 is larger than q’s 〈rtp, id〉 (first comparing the rtp and breaking symmetry by the
use of id) then p assigns leaderp ← false.
The leaders define the cluster structure and since each processor p has at least one leader in its neighborhood, p may

choose to join the cluster formed by one of the closest leaders.
To prove that the algorithm stabilizes, we first assume that the update algorithm has stabilized. Hence, at the start of

each new phase, each processor holds a consistent table, denoting the processor’s neighbors of distance not larger than x.
For the proof, we will use a potential function. For each c , a configuration of the system at the end of a phase, define SL(c)
to be the number of stable leaders at c.
In the following Lemmas we use the term synchronous execution to denote an execution of a synchronous algorithm. For

further details see [9].

Lemma 5. In every synchronous execution, if p is a stable leader in configuration ci, p will stay a stable leader in every
configuration cj, such that j > i.

Proof. p is a stable leader if, at the end of a phase i, p is the only local leader within a radius of x. Assume, by contradiction,
that at the end of phase j, such that i < j, p has stopped being a stable leader. If p became a candidate leader, it follows that
there exists a processor q, such that dist(p, q) < x and q is also a (either stable or candidate) local leader. Hence, there exists
a phase k, such that i < k < j and q has become a leader at the end of phase k. However, this contradicts the fact that p
was a leader at the same phase. The second option is for p to assign leaderp by false at the end of phase j. This can only be a
consequence of p losing (line 14) to another processor q, which was also a leader at phase j, but 〈rtpp, idp〉 < 〈rtpq, idq〉. A
similar argument as in the previous case holds and can be used to show that q cannot exist. �

From Lemma 5 it follows that SL is a monotonically increasing function. The next lemmas will show that if SL cannot be
increased any longer, the system has stabilized:

Lemma 6. In every synchronous execution, if no new stable leader can be added at configuration ci, either by turning a candidate
leader or a regular processor into a stable leader, then each processor p has at least one leader within a distance x in every
configuration cj such that j ≥ i.
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Fig. 5. Leader election algorithm for processor p.

Proof. The proof is by contradiction. Assume there exists a processor pwhich has no stable local leader within distance x in
configuration ci and that no stable leader can be added. According to the algorithm, this processor can become a candidate
leader and at subsequent phases a stable leader. This contradicts our assumption that no stable leader can be added. �

Lemma 7. In every synchronous execution, at the end of each phase i if no new stable leaderswere added if and SL can be increased,
then there is a positive probability that at the end of phase j, such that i < j, there is at least one more stable leader than in phase i.

Proof. Let us examine the set CL, of all candidate leaders. If CL = ∅, then in the following phase, at least one processor pwill
declare itself a local leader (since SL can be increased). If p is a stable leader, then the proof is complete. Otherwise, assume
CL 6= ∅. Let us denote p as the processor with the highest 〈rtpp, idp〉 tuple in CL. During the transition from phase i to phase
i+ 1, leaderp will be propagated up to distance x from p. For each q, such that q /∈ CL and dist(p, q) ≤ x, qwill be aware that
leaderp is true and will not change state. Furthermore, each q, such that q ∈ CL and dist(p, q) ≤ x, will enter line 14 in the
algorithm (since 〈rtpp, idp〉 > 〈rtpq, idq〉) and set leaderq ← false. Thus pwill become a stable leader. �

From Lemma 7 it follows that as long as stable leaders can be added, stable leaders will be added. Lemma 6 ensures us
that SL is a monotonically increasing function. It is easy to note that SL is also bounded. Therefore, starting from any initial
configuration, SLwill reach a value fromwhich no new stable leaders can be added. From Lemma 5, it follows that the system
has stabilized �

Lemma 8. In any synchronous execution, starting with an arbitrary global configuration, the algorithm converges to a stable
state within O(log n) expected number of rounds, where a stable state denotes a configuration in which all processors are stable.

Proof. Define the neighborhood of a processor p as the set of all processors q, such that dist(p, q) ≤ x. Further define
fp(x) = |neighborhoodp| and f (x) = maxp(fp(x)). Note that since the maximal degree of a processor is constant and since x
is a constant, f (x) is also a constant. We say that a processor is stable if it is either a stable leader or has a stable leader in its
neighborhood.
We now bound the probability for a processor p to become a stable leader in O(x) rounds (assuming p has no leader).

According to the algorithm, pwill set itself a leader and choose a random rtp. Wewould now like to calculate the probability
that p chooses a unique rtp value, which is larger than any rtp value which may be chosen in p’s neighborhood. Call this
probability Psuccess. Assume each processor chooses rtp values uniformly in the range [1,m]. Obviously, Psuccess is larger than
the probability of the events in which no other processor in p’s neighborhood chose the same value as p and p is maximal in
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p’s neighborhood. The probability that p has the highest rtp value, given that no other processor has the same rtp value as p,
is 1
fp(x)
. This is due to symmetry considerations. We now calculate a lower bound for Psuccess:

Psuccess >
1
fp(x)
·

(
m− 1
m

)fp(x)
>

1
f (x)
·

(
m− 1
m

)f (x)
If we assume thatm = c · f (x) for some c ≥ 1, then we get:

Psuccess >
1
f (x)
·

(
c · f (x)− 1
c · f (x)

)f (x)
≈

1

e
1
c · f (x)

.

The probability of any processor to become stable is clearly larger than Psuccess. Fromnowon,we examine a set of Bernoulli
trials, where one conducts several trials in parallel. The success probability in our case is the probability a processor has to
become stable and the convergence time is the expected length of the longest trial. Since the probability of success is larger
than Psuccess, the expected time for convergence is smaller than the expected length of the longest Bernoulli trial. As presented
in [18], the expected value of the longest trial is O(log 1

(1−Psuccess)
n), where n is the number of concurrent trials held.

A note is in order regarding the dependability of processors. Since for every twoprocessorswithin the sameneighborhood
the probabilities of success are dependent, using a reduction to Bernoulli trials only gives a correct upper bound since if one
processor has succeeded, the probability of of a neighbor to succeed is increased.
To conclude, we can see that if f (x) is constant, the expected convergence time of the synchronous algorithm is O(log n)

phases. Since each phase is exactly x rounds, we get that the convergence time in terms of synchronous rounds is also
O(log n). �

4.2. Asynchronous cluster construction

Wenowpresent an asynchronous version of the previous hierarchy construction algorithm. Each processor p uses several
key variables: leaderp, candidatep, idp and rtpp. leaderp denotes whether p is currently a leader. candidatep is set to true if p
is trying to become a leader. idp is the identifier each processor has, and rtpp is a random temporary identifier used to break
the symmetry between processors.
One may try using the processors’ identifiers in order to break symmetry. However, occasionally an unfortunate order of

id’s may lead to a convergence time which is proportional to the diameter of the graph. We use randomness to break ties in
order to overcome such a scenario.
The construction algorithm is composedof several parts. All processors participate in an (asynchronous) update algorithm

up to distance x. Based on the update tables, each processor p constructs a tree rooted at p and of depth not exceeding x.
Using the tree, each processor invokes the snapshot algorithm to collect the state of its neighborhood. We use the snapshot
algorithm to perform a PIF algorithm, and by adding information to the markers used in the snapshot process we achieve
the desired PIF effect. The number of trees and snapshot protocols each processor must participate in can be calculated from
the topology collected earlier.
Constantly (this is to say that the time frame is not important), each processor pwill take a snapshot of the surrounding

neighborhood (up to distance x). After the snapshot is collected, the algorithm in Fig. 6 is invoked. Since the snapshot
algorithm is guaranteed to be finished in each invocation (although the result might be incorrect, since the rooted tree
has not stabilized yet), we are guaranteed that future invocations of the snapshot algorithm will take place. For a snapshot
obtained at p, Cp, we denote leader(Cp) = true if there exists a processor q 6= p in Cp, such that leaderq = true.
Let us assume that a complete snapshot Cp is obtained at p. The four combinations of leaderp and leader(Cp) determine

the course of actions p must follow. First, consider the most simple cases where leaderp = false ∧ leader(Cp) = true or
leaderp = true∧ leader(Cp) = false. In these cases, p should avoid taking any action, since, as far as p can tell, the situation is
correct. The complex cases arewhen there are no leaders in p’s vicinity and p is not a leader itself orwhen p is a leader and can
see another leader within a distance of x from itself. In case leaderp = false∧ leader(Cp) = false, pwill first choose a random
number (from a predetermined range) and store it in rtpp. Then, p will assign true to candidatep (Fig. 6 lines 3–4). The next
operation is propagating the information that p wishes to become the leader of its neighborhood. This is achieved through
the use of the snapshot protocol which results in a new snapshot at p, C ′p (line 5). Now, if C

′
p does not contain information

about a leader or another candidate, p can safely place itself as a leader and set leaderp = true. However, if leader(C ′p) = true
holds, p should set candidatep to false, since there is now a leader in p’s neighborhood. Last, if there are other candidates in
C ′p, pwill become a leader if (and only if) the tuple 〈rtpp, idp〉 is larger than all other candidate’s tuples in C

′
p (line 10).

The last case is when leaderp = true ∧ leader(Cp) = true (line 16). Upon detecting such a condition, p will immediately
assign leaderp and candidatep with false and will start a new cycle of the algorithm.
To prove that the asynchronous hierarchical construction algorithm works, we will take an approach similar to the

proof of the synchronous algorithm. We will denote a processor p as stable in two cases. The first case is a stable leader,
when leaderp = true, ∀q ∈ neighborhoodp(leaderq = false). Furthermore, all topology tables for each processor within
p’s neighborhood are up to date and reflect p’s leadership and no other message exists in the system denoting another
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Fig. 6. Asynchronous leader election algorithm for processor p.

processor as leader or candidate. The second case is of a stable node, when p is not a leader, but there is a stable leader in
p’s neighborhood.
Our first claim is that once a processor is stable, it will remain stable. Next, we show that a processor has a positive

probability of becoming stable. We then use the scheduler-luck game to show that the algorithm stabilizes ([9], chapter 2.9)

Lemma 9. Let E = (c0, a0, c1, a1, . . .) be a fair execution. If at a global configuration ci, a processor p has become stable, then p
will remain stable for all configurations cj ∈ E, such that j > i.

Proof. First, let us consider the case in which p is a stable leader in ci. From the definition of a stable leader, for each
q ∈ neighborhoodp, leaderq = false and q denotes p as a leader in q’s update tables. Now, since the topology tables do not
change, p can lose the stability property only if another processor within p’s neighborhood becomes a leader too. Assume
that such a processor q becomes a leader in cj, j > i. Based on the leader election algorithm, this is possible in two cases.
Either q was not a leader and did not see a leader in its neighborhood, or q was a leader and saw another leader. The first
option is not feasible, since q is aware of p being a leader (from the definition of stable). The second option is not possible
either, since qwill not set itself a leader as long as p is. Hence, a stable leader will remain stable.
Now,wewill proceed to discussing a stable node p (not a leader). From the definition of a stable processorwe deduce that

there is a stable leader q in the neighborhood of p. Since q is a stable leader andwill remain such, pwill remain stable too. �

Lemma 10. Let E = (ci, ai, ci+1, ai+1, . . .) be a fair execution, such that the update algorithm and the snapshot algorithm have
stabilized. Starting from any configuration in E , each processor p has a positive probability to become stable within O(x) rounds.

Proof. The stabilization time for the topology update algorithm and the snapshot algorithm is O(x). Consider now a
processor p which is not stable in c0. Let ci be the first configuration in which p has obtained a correct snapshot of its
neighborhood, Cp (obviously, ci is reached within O(x) rounds). If p is stable in ci, then the process has been completed.
Otherwise, we will show that p has a positive probability of becoming stable within O(x) rounds.
Wewill now show thatwithin 3·x rounds atmost, either p becomes stable or there exists a processor in p’s neighborhood

which chooses a new rtp value andhas a positive probability of becoming a stable leader. Assume, towards contradiction, that
no processor in p’s neighborhood chooses a new rtp value within 3 · x rounds and p does not become stable during this time.
If there were no leaders in p’s neighborhood, p would have chosen a new rtp value within x rounds (the number of rounds
which would take p to finish a new snapshot). Hence, there exists a processor q ∈ neighborhoodp such that leaderq = true
(it is possible that q = p). Since p is not stable, we can deduce that q is also not a stable leader. Suppose, that after x
rounds, q has not set leaderq to false and q is still not stable. This implies that a different processor which is also a leader
exists in q’s neighborhood. After x rounds at most, q will detect this fact by way of a new snapshot and will set leaderq to
false. In a similar manner, we can show that each leader in p’s neighborhood eventually either becomes stable within 2 · x
rounds or relinquishes leadership. If one leader becomes stable, the proof is now completed. Otherwise, a processor in p’s
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neighborhood (possibly p) will notice the fact that there are no leaders and will choose a new rtp value within x rounds.
Overall, we get that after O(x) rounds at least one new rtp value is chosen.
Denote pr as the processor which first chooses a new rtp value in p’s neighborhood. This assignment is a result of pr

finishing a snapshot Cr (which takes O(x) rounds to complete) and of noticing that no leaders exist in this snapshot. Our
next claim is that between the start of the snapshot that resulted in Cr and the end of the next snapshot that pr will take
(line 5) and which is denoted C ′r , each processor in pr ’s neighborhood cannot assign more than one new value to its rtp if
the right conditions hold. Denote cstart as the configuration in which the snapshot Cr started and cend as the configuration
in which C ′r ended. Assume that each processor q, which chooses a new rtp value between cstart and cend chooses a value
smaller than that of pr . Once the PIF snapshots initiated by pr reach q, q loses to pr , and will not enter line 2. Thus, qwill not
choose a new random rtp value more than once between cstart and cend. The probability that pr will choose an rtp value in
such a way is larger than Psuccess. As a result, pr will assign leaderpr by true (line 10) and within x rounds will become a stable
leader. This way, pwill also become stable within 4 · x rounds from c0. �

Thus, we can make the following corollary:

Corollary 1. In every fair execution, each processor has a positive probability of becoming stable in every O(x) rounds and it holds
by [18] that within O(log n) expected number of rounds the algorithm converges to a stable state.

4.3. Hierarchy construction

Constructing the hierarchy is achieved by a repeated application of the clustering algorithm. We suggest using the
clustering algorithm on the original graph G, constructing clusters with x > 1 (in essence, a minimal x-dominating set).
We then propose to dynamically define an overlay network between the leaders of each cluster and apply the same scheme
to the resulting graph. The process is completed after a single cluster, composed of the entire graph G, is finally defined. The
resulting hierarchy is of O(log n) levels, and in each level i (level 0 is the original graph, G) there exist at most n

2i
processors.

This bound arises from the fact that each leader p has at least one processor directly connected to p, which is not directly
connected to any other leader. Since there exist O(log n) levels in the hierarchy and since communication on overlay edges
is considered non expensive, the hierarchy construction algorithm stabilizes within O(log2 n) expected rounds (O(log n) for
each level, times O(log n) levels), assuming the degree of each of the hierarchy levels is bounded.
Next, we describe the construction of the overlay network and present a graph class inwhich the degree of each hierarchy

level is bounded.

4.3.1. Overlay network construction
Let G = G0 = (V0, E0) be the original graph, to which we apply our clustering algorithm. We define Gi = (Vi, Ei) so

that Vi = {p ∈ V0| p is a leader in Vi−1} and (p, q) ∈ Ei iff, the length of the shortest path between p and q in G0 is at most
2 · xi + xi−1 (where x is the parameter of the clustering algorithm). This construction can be easily achieved by each leader
p by extending the update algorithm to include processors up to distance x+ 1 (instead of x) and adding the list of leaders
at distance x to each processor p to p’s tuple. We then apply the clustering algorithm on Gi, so that leaders will dominate
processors up to distance xi+1 in G0. Note that the criteria for distance among leaders is expressed in terms of G0 and the
original x, namely; xi+1 for level i of the hierarchy.

Lemma 11. Each resulting graph Gi is a connected graph.

Proof. By induction: G0 is a connected graph, by definition. Assume Gi−1 is also a connected graph, and Gi is the result of
the clustering algorithm. Let p0 and pk be processors in Vi such that p0, p1, . . . , pk is a path between p0 and pk in Gi−1 (such
a path exists, since Gi−1 is a connected graph). Let qj be the chosen leader of pj (1 ≤ j ≤ k − 1) in Gi−1. According to the
overlay construction, (p0, q1) ∈ Ei ∧ (qk−1, pk) ∈ Ei. Furthermore, ∀2 ≤ j ≤ k − 1 (qj−1, qj) ∈ Ei, since the distance in G0
between pj−1 and pj is at most 2 ·x2+xi−1 (or pj−1 = pj). Hence, p0, q1, q2, . . . , qk−1, pk is a path between p0 and pk in Gi. �

To obtain higher levels of the hierarchy, we continue with the same construction recursively. Suppose we have defined
the levels of the hierarchy up to (and including) level i. The processors of Gi will participate in the clustering algorithm up
to distance xi+1. Gi+1 will be composed of the resulting leaders of Gi, such that two processor are neighbors iff, the length of
the shortest path between them in G0 is at most 2 · xi+1 + xi. Each Gi is, in turn, also connected, according to Lemma 11. To
realize this construction, we suggest each leader p will add to its update table of Gi all the topology p has collected in each
Gj up to now.
Next, we describe the geographically affined class of graphs such that the clustering algorithm and the overlay

construction, applied on these graphs, produces an overlay graph of bounded degree. This class is implied by a typical
deployment of sensor networks.
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Fig. 7.Maximal number of leaders.

4.3.2. Geographically affined graphs
In this class of graphs wewish to explore the relation between the Euclidean distance between processors and the length

of the shortest path between them. This definition is similar to the embedding schemes presented in [23]. We first define
the geographically affined class of graphs.

Definition 4.1. Let G = (V , E) be a graph embedded in the Euclidean plane. For p, q ∈ V , define ‖(p, q)‖2 as the Euclidean
distance between p and q, and dist(p, q) as the number of hops in a shortest path from p to q in G. G is Geographically affined
iff, there exist a constant c ≤ 1 such that ∀p, q ∈ V : c · dist(p, q) ≤ ‖(p, q)‖2 ≤ dist(p, q).

We will next show that each geographically affined graph has a bounded degree. Furthermore, we also show that the
hierarchy construction algorithm presented above produces a bounded degree graph in each level of the hierarchy.

Lemma 12. Given a circle C of radius r and a set S of points in C, where the minimal distance between any two points is y, then
|S| ≤ 16·r2

y2
.

Proof. Consider Fig. 7. C is contained in a square sq1 whose edges are of length 2 · r . In each square sq2 whose edges are of
length y2 , there can be at most one point from S. |S| is obviously smaller than the number of sq2 squares which can be fitted

into sq1. Hence, |S| ≤ 4·r2

y2/4
=
16·r2

y2
. �

Lemma 13. Let G0 = (V0, E0) be an Euclidean graph, such that G0 is geographically affined. Each graph in the series {Gi}
log n
i=0 ,

resulting from the consecutive application of the clustering algorithm with parameter xi+1, has a degree at most 16
c2
· (2 · x+ 1)2.

Proof. Let p be a processor in Gi, and Np the set of p’s neighbors in Gi. The shortest path (in G0) between p and a neighbor q
is at least xi (since in Gi−1 p and q are leaders) and at most 2 · xi+1 + xi (p and q are neighbors in Gi iff, their distance in Gi−1
is at most 2 · x+ 1 hops, which is at most 2 · xi+1+ xi hops in G0). In a similar fashion, the shortest path (in G0) between any
q, r ∈ Np is at least xi (if they are neighbors in Gi). Since the graph is geographically affined, we get the following equations:

c · xi ≤ ‖(p, q)‖2 ≤ 2 · xi+1 + xi

c · xi ≤ ‖(q, r)‖2.

Hence, each q ∈ Np must reside inside a circle C , centered at p and of radius 2 · xi+1 + xi. According to Lemma 12, |Np| is
bounded by 16 · (2·xi+1+xi)2

(c·xi)2
=
16
c2
· (2 · x+ 1)2. �

4.4. Self-organization properties

Next, we prove that our algorithms are self-organizing. Firstly, for the clustering algorithm, it is worthwhile noting that
locality holds since the algorithm stabilizes within expected O(log n) rounds. Thus, we focus our discussion on dynamic
changes of the communication graph — namely, on addition and removal of communication links. We wish to draw the
readers’ attention to the fact that addition (or removal) of processors can be modeled by the addition (or removal) of their
communication links (which is a bounded number of operations). When we discuss addition of processors, we consider
addition of processors in a predefined state or in an arbitrary state. We only consider topology changes after the algorithm
has stabilized (otherwise, the global stabilization time applies).
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Lemma 14. Starting in a safe configuration of the clustering algorithm, if the update table of processor p has changed due to
a channel (respectively, processor) addition or removal in configuration ci and the channel (respectively, processor) is attached
(a neighbor) to p, then within expected O(x + log f (x)) = O(1) rounds, a safe configuration is reached. Furthermore, for each
processor q, such that dist(p, q) > 2 · x, q will remain stable.

Proof. Let us assume that p is a processor as described in the Lemma. Since the update tables of each processor are restricted
to processors of distance x, no processor q, such that dist(p, q) > 2 · x, will change its own table. Furthermore, after O(x)
rounds, each processorwill have correct tables. The clustering algorithmnowhas to stabilize only in the small neighborhood
of p, which takes O(log f (x)) expected number of rounds.
Next, let us assume that q was a stable leader in ci and dist(p, q) > 2 · x. First, we argue that each processor r in q’s

neighborhood, maintains a correct tuple of the update algorithm denoting q. This is obvious, since no topology changeswere
made in q’s neighborhood. As a result, q will correctly participate in each spanning tree constructed by such a processor r .
Consequently, each time r takes a snapshot of its neighborhood, r will see that leaderq = true. Hence, r will not assign true
to leaderr and qwill remain a stable leader. Thus, all processor within q’s neighborhood will remain stable. �

We now consider the effects that channel additions have on the clustering algorithm. Let us assume that a new (bi-
directional) channel, (p, q), is added between processors p and q. We argue that any stable processor distanced more than
2 · x from either p or q will remain stable. Furthermore, within an expected constant number of rounds, the algorithm will
stabilize. This clearly follows from Lemma 14. Let us now assume that a channel (p, q) is removed. Let nl be the set of all
processors, so that the removal of (p, q) leaves them leaderless or unstable.We argue that the constant number of processor
in nl are at most at distance x from either p or q and that stable processors which are distanced farther than x will remain
stable. Processor removal is easily reduced to the removal of all channels attached to this processor from the communication
graph.
We also discuss additions and removals of processors. We argue that stable processors which are farther than 2 · x from

the removed/added processor will remain stable. This also clearly follows from Lemma 14.
Thus, our clustering algorithm is self-organizing, since the expected convergence time is O(log n) ∈ o(n) and the number

of processorswhich change state due to a dynamic topology change is constant. In fact, when k changes occur approximately
at the same time, the expected convergence time is O(log k) following the last change occurrence.
Application to hierarchy; Let us examine a dynamic change at G0. There are two processors, p and q, which are involved in
the change ((p, q) was either added or removed). We first concentrate on p. From Lemma 14 we infer that only processors
within a distance of 2 · x+1 hops from p can be affected in G0. The dynamic change can influence the state of leaders within
this range, which can be regarded as a new dynamic change in G1. The radius of the corresponding influenced region from p
in G1 is therefore (2 · x2 + 2 · x+ 1)+ (2 · x+ 1) around p in G0. In a similar way, the radius of the influenced region from p
in Gi is 2 · xi + 2 · xi−1 + xi−2+ (the radius of influence in Gi−1). Overall, the area of effect around p in G0 is less than 4 · xi+2.
Since G0 is geographically affined, the Euclidean radius of such a circle is smaller than 4 · xi+2. The minimal distance in G0
between processor in Gi is at least xi (when counting real edges, not virtual ones), since they are leaders in Gi−1. Again, since
G0 is geographically affined, the Euclidean distance between leaders is at least c · xi. Using Lemma 12, it is evident that the
number of processors affected at Gi because of p is at most 16·(4·x

i+2)2

(xi)2
= 256 · x4 = O(1). Since we have to consider q as well,

we double the total number of changes to have a total of O(1) changes in each level.
To conclude, the hierarchy construction algorithm is self-organizing, since the expected stabilization time is O(log2 n) ∈

o(n) and dynamic topology changes affect only O(log n) ∈ o(log2 n) processors. Similarly, when k changes occur
approximately at the same time, the expected convergence time is O(log2 k) rounds following the last occurring change.

5. Overlay based hierarchical snapshot algorithm

Wenowpresent a self-stabilizing and self-organizing snapshot scheme (which also enables subsystems to take snapshots
independently). Due to the use of overlay links, the resulting snapshot is sublinear.
Let p be a node inHT , so that p is a parent of leaves inHT . Let p1, p2, . . . , pk be the children of p inHT . Note that p and

p1, p2, . . . , pk reside in the same subsystem, subsi, which is a connected component of G. A spanning tree of subsi rooted at
p is constructed and p is responsible for invoking snapshots in subsi.
Let q be a node inHT , so that at least one child of q inHT is a subsystem, consisting of more than a single processor. Let

us assume that q represents (is the leader of) the subsystem subs. Let subs1, subs2, . . . , subsj be the subsystems represented
by the children of q inHT . Note that the union of subs1, subs2, . . . , subsj is identical to subs, the subsystem represented by
q. Let q1, q2, . . . , ql be the processors that are leaders of subs1, subs2, . . . , subsl, respectively. It is important to note that it
is possible that the processor q, that is the leader of subs, may also serve as a leader qi of (at most) one of the above subsi.
Using the communication links in subs, we define an overlay network connecting q, q1, q2, . . . , ql. A spanning tree, rooted
at q, of the obtained overlay network is constructed. q is responsible for invoking snapshots in subs using the spanning tree
of the overlay network of subs. When a snapshot is requested at q, it will initiate a snapshot in subs.
The snapshot initiated at subs can serve two purposes. On one hand, the snapshot algorithm of subs can be used to obtain

a consistent snapshot only of q1, q2, . . . , ql and q. On the other hand, when q sends a marker, it can add another indicator
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bit, which acts as a snapshot request for q1, q2, . . . , ql in subs1, subs2, . . . , subsl. The result is a recursive invocation of the
snapshot algorithm, resulting in a consistent snapshot of all processors in subs.
The overlay network inside subsystem subs is needed to ensure fifo delivery of messages between leaders. We also need

to restrict cross subsystem communications (of the distributed algorithm) to travel only through the subsystem leaders
using the overlay network. This is done in order to ensure that messages will not be able to bypass markers or to corrupt
snapshots.
The addition of the overlay network requires several adjustments of the snapshot algorithm. The overlay network

adds virtual links to the communication graph which should be also recorded. In order to implement virtual links, routing
information such as the one used in the source routing scheme, must be added to messages. Consequently, each processor,
upon receiving a message through a physical link, can decide which virtual link this message belongs to. Furthermore, the
state of the processor is not affected by the arrival of this message, since it is only forwarded to its destination. Hence, the
processor can ignore this message with regards to the snapshot algorithm without recording it on the physical link. Such
messages need to be recorded only at their destination, on the virtual link they traverse on.

6. Extensions and concluding remarks

Self-organization.Wehave given a simple and intuitive definition of self-organization. Furthermore, we have displayed the
relevance of self-stabilization with regard to self-organization. Our self-stabilizing and self-organizing snapshot algorithm
implies sublinear time algorithms in the overlay network model for many core distributed tasks.
Self-stabilizing and self-organizing leader election. The hierarchy construction algorithm which is, by itself, a self-
stabilizing and self-organizing algorithm, naturally defines a leader for each subsystem. Thus, the topmost subsystem (which
contains the entire system) also has a leader, which we define to be the output of the leader election algorithm. Hence,
the output of the hierarchy construction algorithm can be used to define a self-stabilizing leader election algorithm which
converges in O(log2 n) expected number of rounds and handles topology changes gracefully in O(log n) rounds.
Our definition of self-organization can easily capture the effect of transient faults on the system. It can be shown that

a single transient fault in the system can effect only the local updates of a constant number of processors and therefore
influence O(1) states. Moreover, the number of state changes following (approximately) simultaneous faults that occur
in neighboring processors is proportional to the group’s diameter in the graph. In the worst case, when the faults are
approximately x apart (say, all leaders change state to non-leaders) the number of faults is O(n) allowing a complete
stabilization phase.
Self-stabilizing and self-organizing snapshots. Building on top of the hierarchy construction algorithm,we have presented
a self-stabilizing snapshot scheme, where a global snapshot can be collected in O(log2 n) rounds (in fact, if the hierarchywas
previously defined, only O(log n) rounds are necessary).
Self-stabilizing converter. Our self-stabilizing and self-organizing snapshot algorithm implies a new efficient tool for
converting distributed (reactive, or fixed output) algorithms to self-stabilizing algorithms in sublinear time; the leader of
the system can take repeated snapshots and verify each snapshot for correctness. When a snapshot indicates an illegal state,
a global reset procedure may be initiated, using the infrastructure created by the hierarchy definition algorithm, to reach a
predefined (and safe) state.
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