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a b s t r a c t

This paper presents two valuable procedures used to calculate the stress field in plane contacts between a
punch and a half-plane in partial slip regime. These procedures greatly simplify both the Muskhelishvili
potential and the calculation of direct stresses produced on the contact surface, and, therefore, the stress
field in the half-plane is simplified as well. The results are applicable when the contacting bodies have
isotropic elastic behaviour and identical mechanical properties. It is further assumed that both bodies
behave as a semi-infinite medium. To validate the procedures obtained here, they are applied to two
cases for which analytical solutions already exist.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Contact is the principal method of applying loads between
deformable solids, and therefore is present in a wide variety of
mechanical components. In addition, contacts usually act as stress
concentrations, and are thus probable locations for mechanical
failure. Some of the most typical mechanical failures involving con-
tact include: fretting, fretting fatigue, wear, fretting wear and false
brinelling. These common failures make contact mechanics one of
the principal developing areas in solids mechanics and the focus of
many researchers.

One essential characteristic of a contact is the presence or ab-
sence of friction. Frictionless contacts only exhibit a pressure nor-
mal to the contact surface. While in frictional contacts, a shear
stress field can also be produced at the contact surface, which, lead
to a partial slip condition in which stick and slip zones are devel-
oped inside the contact area.

Due to the stress concentration that contacts constitute, the
stress and strain fields taking place between two bodies in con-
tact, represent some of the main objectives of contact mechanics,
since these fields determine the mechanical behaviour of the
material affected by the contact. Despite this, it is only possible
to give an analytical solution to these stress and strain fields in a
limited number of contact problems. As a result, many numerical
methods have been developed. In the case of a two-dimensional
contact between a punch and a half-plane, one of the most
useful tools for implicitly obtaining the stress and strain fields
produced in the interior of both bodies is the Muskhelishvili
ll rights reserved.
complex potential (Muskhelishvili, 1954). In the case of partial
slip regime this potential is given by the following line integral
along the contact zone:

/ðzÞ ¼ 1
2pi

Z
contact

ryyðt;0Þ þ irxyðt;0Þ
t � z

dt; ð1Þ

where ryyðx;0Þ and rxyðx; 0Þ represent the distributions of normal
and shear stresses on the surface respectively, and where t 2 R

and z ¼ xþ iy 2 C. It is assumed that the indenter is in the plane
xy defined by y > 0, and the half- plane is in y 6 0, as shown in
Fig. 1.

Once the complex potential, /ðzÞ, is obtained, the interior stress
field in the half-plane is given by Muskhelishvili (1954):

rxxðx; yÞ þ ryyðx; yÞ ¼ 2 /ðzÞ þ /ðzÞ
h i

ð2Þ

ryyðx; yÞ � rxxðx; yÞ þ 2irxyðx; yÞ ¼ 2 z� zð Þ d
dz

/ðzÞ � /ðzÞ � /ðzÞ
� �

; ð3Þ

where, if the complex potential is defined by /ðzÞ ¼ uðx; yÞ þ ivðx; yÞ,
then /ðzÞ ¼ uðx; yÞ � ivðx; yÞ and /ðzÞ ¼ uðx;�yÞ � ivðx;�yÞ.

Another important parameter is the direct stress or normal
stress parallel to the surface, rt

xxðx;0Þ, due to the contact shear
stress, rxyðx;0Þ, which is given by the Flamant equation (Johnson,
1985):

rt
xxðx;0Þ ¼

2
p

Z
contact

rxyðt;0Þ
t � x

dt; ð4Þ

where, depending on the location of x, the above integral is under-
stood in the sense of Cauchy principal value – x inside the contact
zone –, or in the ordinary (Riemann) sense – x outside the contact
zone. The value of this direct stress at the trailing edge of the
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Fig. 1. Position of the Punch and the half-plane in the xy plane.

Fig. 2. A general shear stress distribution at the contact surface in partial slip
conditions.
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contact is of great interest in the fretting fatigue phenomenon
(Domínguez, 1998; Navarro et al., 2006).

In view of Eqs. (1) and (4), it is clear that in general it is not sim-
ple to perform a direct integration of these expressions. In the case
of the Muskhelishvili potential, to overcome the integration of the
complicated integral shown in Eq. (1), the normal and shear stress
fields at the surface, ryyðx;0Þ and rxyðx;0Þ, can be expressed by
means of a Chebyshev or Legendre series (Ciavarella et al.,
1998a,b), and then integrated. On the other hand, the integral in
Eq. (4) can be evaluated using the Clenshaw–Curtis numerical inte-
gration (Nowell and Hills, 1987). To greatly facilitate obtaining
analytical expressions for /ðzÞ and rt

xxðx;0Þ, this paper presents a
novel and simple way to calculate both expressions without the
need for performing any type of integration. The procedure used
herein is based on the relationship between the Cauchy principal
value of a singular integral and the value of such an integral ob-
tained in the ordinary (Riemann) sense. This relationship is given
by Muskhelishvili (1954):

1
2pi

C:P:V :
Z b

a

f ðtÞ
t � t0

dt ¼ 1
2

f ðt0Þ þ
1

2pi

Z b

a

f ðtÞ
t � t0

dt; ð5Þ

where the abbreviation C:P:V : indicates that the Cauchy principal
value of the line integral must be considered. In Eq. (5) again
t 2 R and t0 2 ½a; b�. The integral on the right side of Eq. (5) cannot
be obtained in the ordinary or Riemann sense, but it is possible to
evaluate it by means of its indefinite integral

1
2pi

Z
f ðtÞ

t � t0
dt; ð6Þ

after being evaluated at t ¼ a and t ¼ b. With respect to f ðtÞ, it must
be integrable in an ordinary sense into ½a; b�.

As an example, considering f ðtÞ ¼ t and t0 ¼ 1=2 the Cauchy
principal value of the next integral

C:P:V :
Z 1

�1

t
t � 1=2

dt ð7Þ

taking into account thatZ
t

t � 1=2
dt ¼ t þ 1

2
lnð2t � 1Þ ð8Þ

can be calculated as follows:

C:P:V :
Z 1

�1

t
t � 1=2

dt ¼ pif ð1=2Þ þ t þ 1
2

lnð2t � 1Þ
� �

t¼1

� t þ 1
2

lnð2t � 1Þ
� �

t¼�1

¼ 2� 1
2

lnð3Þ: ð9Þ
2. Half-Plane surface stress rt
xxðx;0Þ due to tangential load

In this section it will be assumed that a punch is pressed against
the half-plane with a normal force, N, so that a contact zone is
generated. Next, a tangential load, Q < lN, is applied producing a
partial slip condition. In this situation, it can be shown that inside
the stick zone the following singular integral equation must be ful-
filled (Johnson, 1985):

C:P:V : � 1
p

Z
contact

rxyðt;0Þ
t � x

dt
� �

¼ k; 8 x 2 stick zone; ð10Þ

where k is a constant that depends on the type of problem under
study.

In view of Eqs. (4) and (10), it seems feasible to use the relation-
ship given by Eq. (5) to obtain the stress distribution along the sur-
face rt

xxðx;0Þ. For this, a contact in partial slip conditions with a
surface shear stress distribution like the one shown in Fig. 2 can
be assumed. In this figure the half-plane surface has been divided
into the following 5 areas:

Zone 1 :x < a; rxyðx;0Þ ¼ 0

Zone 2 :a 6 x < b; rxyðx;0Þ ¼ rð2Þxy ðx;0Þ
Zone 3 :b 6 x 6 c; rxyðx;0Þ ¼ rð3Þxy ðx;0Þ
Zone 4 :c < x 6 d; rxyðx;0Þ ¼ rð4Þxy ðx;0Þ
Zone 5 :x > d; rxyðx;0Þ ¼ 0;

where r ið Þðx; 0Þ are the surface stress distributions in the zones
i ¼ 1; . . . ;5. Further developing Eq. (4) and taking into account Eq.
(10) the direct stress inside the stick zone (b 6 x 6 c) can be ex-
pressed by:

rt;ð3Þ
xx ðx;0Þ ¼ �2k ¼ 2

p
C:P:V :

Z d

a

rxyðt;0Þ
t � x

dt

" #
; ð11Þ

which can also be written as:

rt;ð3Þ
xx ðx;0Þ ¼ �2k

¼ 2
p

Z b

a

rð2Þxy ðt;0Þ
t� x

dtþ C:P:V :
Z c

b

rð3Þxy ðt;0Þ
t� x

dtþ
Z d

c

rð4Þxy ðt;0Þ
t� x

dt

" #
:

ð12Þ

Similarly developing Eq. (4) when x < a:

rt;ð1Þ
xx ðx;0Þ ¼

2
p

Z b

a

rð2Þxy ðt;0Þ
t � x

dt þ
Z c

b

rð3Þxy ðt;0Þ
t � x

dt þ
Z d

c

rð4Þxy ðt;0Þ
t � x

dt

" #
:

ð13Þ

Considering Eqs. (12) and (13), it is easy to see that the only dif-
ference between the right hand sides of these equations is that the
former is calculated as C:P:V : while the latter is calculated in the
ordinary sense. Subtracting both equations gives

rt;ð1Þ
xx ðx; 0Þ þ 2k ¼ 2

p

Z c

b

rð3Þxy ðt;0Þ
t � x

dt � C:P:V :
Z c

b

rð3Þxy ðt; 0Þ
t � x

dt

" #
: ð14Þ

Taking into account the relationship given by Eq. (5) and after some
algebraic manipulations the following equation is obtained
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rt;ð1Þ
xx ðx;0Þ ¼ �2k� 2irð3Þxy ðx;0Þ: ð15Þ

The simplicity of the above procedure cannot be denied, pro-
ducing as it does, quickly and directly the direct stress on the con-
tact surface rt

xxðx;0Þ given only the shear stresses developed on the
surface and, regardless of the indenter geometry.

Similarly to the previous procedure, it is possible to obtain the
direct stress field, rt; ið Þ

xx ðx;0Þ, on the rest of the surface.
To obtain rt;ð2Þ

xx ðx;0Þ, first Eq. (4) is developed when a 6 x < b,
which leads to:

rt;ð2Þ
xx ðx;0Þ ¼

2
p

C:P:V :
Z b

a

rð2Þxy ðt;0Þ
t � x

dt þ
Z c

b

rð3Þxy ðt;0Þ
t � x

dt

"

þ
Z d

c

rð4Þxy ðt; 0Þ
t � x

dt

#
: ð16Þ

Therefore, recalling Eq. (13) the stress rt;ð2Þ
xx ðx;0Þ � rt;ð1Þ

xx ðx;0Þ must
be equal to

rt;ð2Þ
xx ðx;0Þ þ 2kþ 2irð3Þxy ðx; 0Þ ¼

2
p

C:P:V :
Z b

a

rð2Þxy ðt;0Þ
t � x

dt

"

�
Z b

a

rð2Þxy ðt;0Þ
t � x

dt

#
: ð17Þ

Re-calculating and considering Eq. (5) leads to

rt;ð2Þ
xx ðx;0Þ ¼ �2k� 2irð3Þxy ðx;0Þ þ 2irð2Þxy ðx; 0Þ: ð18Þ

The distribution rt;ð5Þ
xx ðx;0Þ can be found in a similar manner to

that of rt;ð1Þ
xx ðx;0Þ, producing

rt;ð5Þ
xx ðx;0Þ ¼ �2k� 2irð3Þxy ðx;0Þ: ð19Þ

Similarly to the way in which rt;ð2Þ
xx ðx;0Þ is calculated, the distribu-

tion rt;ð4Þ
xx ðx;0Þ is now achieved thusly:

rt;ð4Þ
xx ðx;0Þ ¼ �2k� 2irð3Þxy ðx;0Þ þ 2irð4Þxy ðx; 0Þ: ð20Þ

Although the procedure developed here has been applied to a
contact area with two sliding areas and one adhesion area, it is
adaptable for other contact configurations, such as a single slip
zone commonly occurring in rolling contacts (Carter, 1926).

3. The Muskhelishvili potential

The Muskhelishvili potential, given above by Eq. (1), can be di-
vided into two parts, one due to the normal stress distribution
ryyðx;0Þ, designated by /nðzÞ, and the other due to the shear stress
rxyðx;0Þ and designated as /tðzÞ, so that

/nðzÞ ¼ 1
2pi

Z d

a

ryyðt;0Þ
t � z

dt ð21Þ

/tðzÞ ¼ 1
2p

Z d

a

rxyðt;0Þ
t � z

dt: ð22Þ

Eq. (21) is quite similar to the integral equation that relates the
profile of the indenter, vðxÞ, with the normal stress distribution,
ryyðx;0Þ, which is given by

d
dx

vðxÞ ¼ C:P:V : � A
p

Z d

a

ryyðt; 0Þ
t � x

dt

" #
ð23Þ

In Eq. (23), A is a constant that in plane strain conditions is equal to
4 1� m2
� �

=E and where, again, except for the constants involved, the
only difference between Eqs. (21) and (23) lies in the way in which
both integrals are obtained.
After using algebraic operations and evaluating the relationship
given by Eq. (5), Eq. (23) can be expressed as

1
2pi

Z d

a

ryyðt;0Þ
t � x

dt ¼ i
2A

v 0ðxÞ � 1
2
ryyðx;0Þ ð24Þ

A comparison of Eq. (24) with the definition of /nðzÞ previously
given by Eq. (21) shows that, after exchanging x for z

/nðzÞ ¼ i
2A

v 0ðzÞ � 1
2
ryyðzÞ: ð25Þ

This result was partially achieved by Adibnazari and Sharafbafi
(2008), but, because the term, iv 0ðzÞ=2A, was not included directly
in that work, it is necessary to obtain such a term by means of the
complete form, both real and imaginary, of the pressure distribu-
tion which is obtained by inverting the integral equation Eq.
(23). This fact illustrates that the method presented here is one
of direct application; extra integration is made unnecessary.

The term of the potential /ðzÞ, corresponding to rxyðx;0Þ; /tðzÞ,
can be obtained using the expressions given by Eqs. (12) and (22).
After some algebraic operations and using the relationship given
by Eq. (5), Eq. (12) can be expressed as follows:

1
2p

Z b

a

rð2Þxy ðt;0Þ
t � x

dt þ
Z c

b

rð3Þxy ðt;0Þ
t � x

dt þ
Z d

c

rð4Þxy ðt;0Þ
t � x

dt

" #

¼ � k
2
� 1

2
irð3Þxy ðx;0Þ: ð26Þ

Comparing Eq. (26) with Eq. (22), and exchanging x for z yields

/tðzÞ ¼ � k
2
� 1

2
irð3Þxy ðzÞ; ð27Þ

Again, this result shows a similarity with the result previously ob-
tained by Adibnazari and Sharafbafi (2008), but with two important
differences: in the previous work, a full sliding condition was con-
sidered and the term, �k=2, was not included.

With these clarifications in mind the Muskhelishvili potential,
/ðzÞ, is obtained directly as

/ðzÞ ¼ /nðzÞ þ /tðzÞ ¼ 1
2
�ryyðzÞ � irð3Þxy ðzÞ þ

i
A

v 0ðzÞ � k
� �

: ð28Þ

This result shows that the stress field at any point in the interior
of the half-plane can be easily calculate by utilising the analytical
expressions of the normal and shear stresses on the area of contact.
The parameter, k, which is defined by the problem under study,
and the profile of the indenter, vðxÞ, are parameters that must be
known. Thus, this procedure avoids the integration of Eq. (1) to ob-
tain the Muskhelishvili complex potential.

4. Application examples

To verify the above results, they are applied in the following
sections to two cases for which analytical solutions already exist.
The first case analysed is one in which a cylindrical punch with
radius, R, is pressed against the half-plane with a normal force,
N. Then a tangential force, Q, and a bulk stress parallel to the
surface, r, are applied simultaneously. In the second case, a
wedge-shaped punch is initially pressed against a half-plane
with a normal load,N, and later, a tangential force, Q, is applied
to the punch.

4.1. Contact between a half-plane and cylinder in the presence of bulk
and tangential load

This situation is shown schematically in Fig. 3, which qualita-
tively shows the stress distributions developed on the contact
surface.



Fig. 3. Schematic view for a cylindrical contact subjected to normal and tangential
loads.
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In this situation the distribution of normal stresses at the con-
tact surface is defined by Johnson (1985) and Hills and Nowell
(1994):

ryyðx;0Þ ¼ �p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=aÞ2

q
; jxj 6 a ð29Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8NR 1�m2ð Þ

pE

q
; p0 ¼ 2N

pa and m and E are the Poisson and
Young’s modulus, respectively. Furthermore, due to the simulta-
neous application of the tangential load Q and the bulk load, r, an
eccentric stick zone along the contact surface is developed in

jxþ ej 6 c, where c ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q=ðlNÞ

p
and e ¼ Rr 1�m2ð Þ

lE . The shear

stress distribution in this zone is given by

rð3Þxy ðx;0Þ ¼ �lp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

a

� �2
r

þ lp0
c
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xþ e

c

� �2
r

; jxþ ej

6 c: ð30Þ

In the slip zone, the shear stresses are defined by:

rð2Þxy ðx;0Þ ¼ rð4Þxy ðx;0Þ ¼ �lp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=að Þ2

q
; jxþ ej > c; jxj 6 a ð31Þ

Before applying the results of the previous sections, it is impor-
tant to note that the function

ffiffiffi
z
p

has two possible branches, i.e.,
�

ffiffiffi
z
p

, and therefore it is necessary to choose the branch that makes
physical sense for the problem at hand. For example, to obtain rt

xx

when x < �a, and considering the sign of the shear stress distribu-
tion at the surface, it is expected that rt;ð1Þ

xx ðx;0Þ < 0 and
rt;ð1Þ

xx ð�1;0Þ ! 0. Applying Eq. (15), taking the appropriate
branches for

ffiffiffi
z
p

and remembering that in this situation k ¼ r=4
(Hills and Nowell, 1994), the following expression is obtained

rt;ð1Þ
xx ðx;0Þ ¼ � r=2� 2i lp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x=að Þ2

q
� lp0

c
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xþ e

c

� �2
r" #

;

x < �a: ð32Þ

Similarly after applying Eq. (18) rt;ð2Þ
xx ðx;0Þ the following equa-

tion is obtained

rt;ð2Þ
xx ðx; 0Þ ¼ �r=2� 2i lp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=aÞ2

q
� lp0

c
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xþ e

c

� �2
r" #

þ 2ilp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=aÞ2

q

¼ �r=2þ 2ilp0
c
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xþ e

c

� �2
r

; �a 6 x < �c � e: ð33Þ

The calculation of rt;ð3Þ
xx ðx;0Þ by means of Eq. (12) is trivial, and

therefore rt;ð3Þ
xx ðx;0Þ ¼ �r=2. While obtaining the appropriate
branches for rt;ð5Þ
xx ðx;0Þ, it must be taken into account that

rt;ð5Þ
xx ðx;0Þ > 0 and rt;ð5Þ

xx 1;0ð Þ ! 0, leading to

rt;ð5Þ
xx ðx;0Þ ¼ � r=2þ 2i lp0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=aÞ2

q
� lp0

c
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xþ e

c

� �2
r" #

;

x > a: ð34Þ

Finally, to obtain rt;ð4Þ
xx similar considerations as those taken to

calculate Eq. (33) must be utilised. They lead to
rt;ð4Þ
xx ¼ �r=2� 2ilp0

c
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xþ e

c

� �2
r

; c � e < x 6 a: ð35Þ

The method used here can be validated observing that the re-
sults shown in Eqs. (32)–(35), are mathematically identical to
those given in Hills and Nowell (1994).

As mentioned later, the direct stress acting at the trailing edge
of the contact zone is an important parameter. In this case it peaks
at x ¼ a with the value

rt
xxða;0Þ ¼ �r=2þ 2lp0

c
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ e

c

� �2

� 1

r
: ð36Þ

The maximum value of rt
xxða;0Þ is reached when a full sliding

condition is set, i.e., c ¼ 0. This maximum value is obtained by tak-
ing the limit of Eq. (36) when c ! 0þ. Therefore, the value of
rt

xxða;0Þ in a full sliding condition is, as expected, the following:
lim
c!0þ

�r=2þ 2lp0
c
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ e

c

� �2

� 1

r !

¼ �r=2þ 2lp0
aþ e

a

� �
¼ 2lp0: ð37Þ

To obtain the Muskhelishvili potential, in addition to the distri-
butions of surface stresses, it was necessary to know the profile of
the indenter, in this case vðxÞ ¼ x2=ð2RÞ. Again, as similarly per-
formed with direct stresses rt; ið Þ

xx , the proper branch of the functionffiffiffi
z
p

must be taken. With this in mind and applying Eqs. (25) and
(27), the Muskhelishvili potential for y < 0 (within the half-plane)
is given by
/nðzÞ ¼
1
2 ið z

ARþ
p0
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

Þ ¼ i p0
2a ðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

Þ; x < 0;
1
2 ið z

AR�
p0
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

Þ ¼ i p0
2a ðz�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

Þ; x P 0;

(
ð38Þ
/tðzÞ ¼

� r
8 þ

lp0
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ eð Þ2 � c2

q� �
; x < �e;

� r
8 þ

lp0
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ eð Þ2 � c2

q� �
; �e 6 x < 0;

� r
8 �

lp0
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ eð Þ2 � c2

q� �
; x P 0:

8>>>>>>><
>>>>>>>:

ð39Þ

The complex potential offered by Eqs. (38) and (39) is identical
to those obtained in Hills and Nowell (1994). Finally, when c ! 0
and no bulk stress is present, i.e., r ¼ 0, the classical solution of
a sliding cylindrical punch is recovered (Hills and Nowell, 1994)
/ðzÞ ¼ p0

2a
ðiþ lÞðzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

Þ; x < 0; ð40Þ

/ðzÞ ¼ p0

2a
ðiþ lÞðz�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2
p

Þ; x P 0; ð41Þ
which indicates that the method presented here, is also adaptable
for full sliding conditions.



Fig. 4. Schematic view for a contact between a shallow wedge and a half-plane.

Fig. 5. Direct stress rt
xxðx;0Þfor a wedge indenter for different c=a values.
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4.2. Half-plane and shallow wedge with normal and tangential load

Fig. 4 shows the type of contact to analyse, which consists of
a wedge indenter first subjected to a normal load N and
subsequently to a tangential load Q, that lead to a contact in partial
slip conditions. This configuration has been studied previously by
other authors (Ciavarella, 1998; Truman et al., 1995), wherein they
show the shear stress field at the surface developed in partial slip
conditions. Also in Truman et al. (1995), in the case of global slid-
ing, the stress field in the half-plane is obtained by means of
Chebyshev polynomials.

The surface contact stress due to the normal load can be written
as (Johnson, 1985)

ryyðx;0Þ ¼ �
2 tan h
pA

cosh�1 a
jxj

	 

; ð42Þ

where a ¼ AN= 2 tan hð Þ. The surface shear stress distribution devel-
oped by Q is given by Ciavarella (1998):

rð2;4Þxy ðx;0Þ ¼
2l tan h

pA
cosh�1 a

jxj

	 

; c < jxj 6 a; ð43Þ

rð3Þxy ðx;0Þ ¼
2l tan h

pA
cosh�1 a

jxj

	 

� cosh�1 c

jxj

	 
� �
; jxj 6 c; ð44Þ

where c ¼ a 1� jQ=ðlNÞjð Þ is the half-width of the stick zone. Once
again, the function cosh�1 1

z

� �
has two branches, i.e., �cosh�1 1

z

� �
, so it

is necessary to select the branch that is physical relevant to the
problem at hand. With these considerations, given that k ¼ 0 and
applying Eqs. (15), (18)–(20) the following expressions for
rt; ið Þ

xx ðx;0Þ are obtained

rt;ð1Þ
xx ðx;0Þ ¼

4il tan h
pA

cosh�1 a
jxj

	 

� cosh�1 c

jxj

	 
� �
; x < �a; ð45Þ

rt;ð2Þ
xx ðx;0Þ ¼ �

4il tan h
pA

cosh�1 c
jxj

	 

; �a 6 x < �c; ð46Þ

rt;ð3Þ
xx ðx;0Þ ¼ 0; ð47Þ

rt;ð4Þ
xx ðx;0Þ ¼

4il tan h
pA

cosh�1 c
jxj

	 

; c < x 6 a; ð48Þ

rt;ð5Þ
xx ðx;0Þ ¼ �

4il tan h
pA

cosh�1 a
jxj

	 

� cosh�1 c

jxj

	 
� �
; x > a: ð49Þ
These expressions can be transformed considering that for
jxj < 1; cosh�1ðxÞ ¼ i cos�1ðxÞ and when x < 0; cos�1ðjxjÞ ¼ p�
cos�1ðxÞ. Therefore

rt;ð1Þ
xx ðx;0Þ ¼

4l tan h
pA

cos�1 a
x

� �
� cos�1 c

x

� �h i
; x < �a; ð50Þ

rt;ð2Þ
xx ðx;0Þ ¼

4l tan h
pA

p� cos�1 c
x

� �h i
; �a 6 x < �c; ð51Þ

rt;ð3Þ
xx ðx;0Þ ¼ 0; ð52Þ

rt;ð4Þ
xx ðx;0Þ ¼ �

4l tan h
pA

cos�1 c
x

� �
; c < x 6 a; ð53Þ

rt;ð5Þ
xx ðx;0Þ ¼

4l tan h
pA

cos�1 a
x

� �
� cos�1 c

x

� �h i
; x > a: ð54Þ

Fig. 5 shows the stress rt
xxðx;0Þ obtained for different values of

the ratio c=a.
Again, the direct stress, rt

xxðx;0Þ, peaks at the trailing edge of the
contact zone. In this situation, the maximum value is obtained at
x ¼ �a:

rt
xx �a;0ð Þ ¼ �4il tan h

pA
cosh�1 c

a

� �
¼ 4l tan h

pA
cos�1 c

a

� �
ð55Þ

As previously stated, the maximum value of rt
xx �a; 0ð Þ is

reached when a full sliding condition is met, and again c! 0þ,
being this maximum value equal to rt

xx �a;0ð Þ ¼ 2l tan h=A.
To obtain the Muskhelishvili potential, it is necessary to define

the profile of the indenter, which in this case is given by

vðxÞ ¼
�x tan h; x < 0;
x tan h; x P 0:

�
ð56Þ

Remembering Eqs. (56) and (25), it is easy to see that
/nðzÞ ¼ �i tan h= 2Að Þ � ryyðzÞ=2. However, Eqs. (2) and (3) show
that the interior stress state is not affected when the potential
/nðzÞ is replaced by /nðzÞ þ ib (where b is a real constant), and
therefore /nðzÞ ¼ �ryyðzÞ=2.

It is important to note that to implement Eqs. (2) and (3) in a
numerical code, it is more effective to write the function
cosh�1ðC=zÞ as

cosh�1 C
z

	 

¼ �i cos�1 C

z

	 

; ð57Þ

where C is a real constant. This allows for easier selection of the
appropriate branch.

Hence, taking the appropriate branches, the Muskhelishvili po-
tential for the case under study is given by Eqs. (25) and (27), and
therefore



Fig. 6. Half-plane stress field for a wedge indenter in partial slip condition c=a ¼ 0:5 at differents depths.
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/nðzÞ ¼ � i tan h
pA

cos�1 a
z

� �
; ð58Þ

/tðzÞ ¼ l tan h
pA

cos�1 a
z

� �
� cos�1 c

z

� �h i
: ð59Þ

With the exception of a pure complex constant, the expression
given by Eq. (58) is mathematically identical to that obtained by
Sackfield et al. (2005) for an inclined punch when the tilt angle,
a, is equal to zero.

Fig. 6 shows, with a solid line, the stress field produced in the
half-plane and obtained by the potential defined by Eqs. (58) and
(59) for different depths and with a ratio of c=a ¼ 0:5. In this case,
the comparison has to be made with the values obtained by the
numerical integration of the surface stresses by means of the fol-
lowing equations (Johnson, 1985):

rxxðx; yÞ ¼ �
2y
p

Z a

�a

ryyðs; 0Þðx� sÞ2

ðx� sÞ2 þ y2
� �2 ds� 2

p

Z a

�a

rxyðs; 0Þðx� sÞ3

ðx� sÞ2 þ y2
� �2 ds ð60Þ

ryyðx; yÞ ¼ �
2y3

p

Z a

�a

ryyðs;0Þ

ðx� sÞ2 þ y2
� �2 ds� 2y2

p

Z a

�a

rxyðs;0Þðx� sÞ

ðx� sÞ2 þ y2
� �2 ds ð61Þ

rxyðx; yÞ ¼ �
2y2

p

Z a

�a

ryyðs;0Þðx� sÞ

ðx� sÞ2 þ y2
� �2 ds� 2y

p

Z a

�a

rxyðs;0Þðx� sÞ2

ðx� sÞ2 þ y2
� �2 ds; ð62Þ
As shown in Fig. 6, the numerical results, those plotted with the
circular symbol, agree perfectly with those obtained using the
complex potential /ðzÞ, thus reaffirming the method described in
this paper.

5. Conclusions

Two new relationships for two-dimensional contacts in partial
slip conditions have been found. These relationships enable a quick
and easy method for obtaining two important parameters in the
field of contact mechanics. The procedure developed herein shows
that if the normal and shear stress distribution at the contact sur-
face is known, it is possible to easily obtain the complete stress
field in the entire half-plane. The first relationship allows one to
obtain, analytically and explicitly, the direct stress field at the sur-
face, rt

xxðx; 0Þ, developed by surface shear stress rxyðx;0Þ. The sec-
ond of these relationships, and perhaps the most important, is
applicable to the Muskhelishvili complex potential, from which
the complete stress field in the interior of the half-plane is implic-
itly obtained.

Although the methods described herein are applicable to con-
tacts with a half-plane as defined in a Cartesian coordinate system,
it is possible to make some modifications in the formulation to take
into account a curvilinear coordinate system. Finally, despite the
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simple procedures, the resultant expressions for any other case
would not be completely defined, because the application would
involve taking the correct branch of a multivalued function.
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