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INTRODUCTION 

In the study of Chevalley groups, one naturally studies the relations 
between two root subgroups corresponding to the long roots. These relations 
are used by M. Timmesfeld to characterize the characteristic 2 case. 
Aschbacher and Hall, Jr., studied some cases for the odd characteristic. 
Besides these relations the root subgroups act on the standard module 
quadratically, namely, they are generated by a set of elements whose minimal 
polynomials are (X - 1)“. This observation leads to the study of quadratic 
pairs which is connected with the p nonstability in the theory of finite groups. 
John Thompson obtained the complete classification for the case for the 
prime p > 5 in [7]. For the prime 3, it appears that one has to distinguish 
between two cases, namely, the case where the root group has order 3 and 
that whose root group has order greater than 3. By introducing the notion of 
long r-involution, one can subdivide the first case into subcases. It is known 
that the first case involves the following groups: the Conway group. 0, 
G,(4), Suz, HJ. 

MAIN THEOREM. Let (G, M) be a quadratic pair for p such that G is 
quasisimple. If (G, M) is a quadratic pair for 3 whose root group has order 3, 
then we also assume that all r-involutions are long and B(X) = e,(X) for some 
XEZ. 

Under these conditions there exist positive integers 01 and n such that 
G/Z(G) is isomorphic to one of the following groups where q = p. 

A,(q) (n > 2 except in the case q = 3 where we have n > 3), 2A,(q) 

(n 2 2), B,(q) (n 2 3), Cdq) (n 2 2), WA (n 2 3), 2&k7) (n 3 3), 
34(q)> G,(q)> F,(q), G(q), 2-%z), &k). 

The following theorems in the case of quadratic pair for 3 whose root 
group has order 3 are also proved in this paper. 

THEOREM A. Suppose that (G, M) is a quadratic pair for 3 whose root 
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group has order 3 such that G is quasisimple. If there exists X, YE Z such that 
{X, Y) g 31+2, then (1) Z = ,?? is a conjugacy class of subgroups, (2) O(E) = 
B,(E) for any E E 2 and (3) all r-involutions are long. 

THEOREM B. Suppose that (G, M) . zs a quadratic pair for 3 whose root 
group has order 3 such that G is quasisimple and O,(X) is the empty set for some 
X E 2. Then (1) Z is a conjugacy class of subgroup, (2) 2 = 2 or 2 = 4. 

Furthermore if we let K be the set of abstract groups (E, F) where E, F E 2 
and [E, F] + 1, then K C (SL(2, 3) SL(2, 5)) or K C (SL(2, 3), 3lf”). 

Theorem A, Theorem B and the known Theorem 2.5 give a justification 
of subdividing the case of quadratic pair for 3 whose root group has order 3 
into subcases. 

Remark. The original proof of the main theorem in [4, 6, 71 is quite 
different from the given proof in this paper. On one hand the new proof 
which we appeal to the tremendous result in [I] gives a uniform treatment of 
the main theorem. On the other hand the old proof is more elementary and 
gives a lot of information about the root structures of the groups which we 
classified. There is some mistake in [4] which the author corrects in the ori- 
ginal submitted version. Another remark is the following. Suppose (G, M) 
is a quadratic pair for 3 such that G is quasisimple. The proof of Lemma 
4.1 of [6] shows that if there is X E Z such that 1 X 1 > 3, then 1 Y [ > 3 for 
any Y E Z. 

1. DEFINITION AND NOTATION 

DEFINITION. Let G be a finite group and M a vector space over the finite 
field GF( p) of p elements where p is an odd prime. We say that (G, M) is a 
quadratic pair for p if the following is true: 

(1.1) M is a faithful irreducible GF( p)G module with dim,,~# > 1. 

(1.2) G is generated by a set Q of linear transformations of M such that 

Q ={gEG\{l}IM(g- 1)2 =O}. 

For any subset S of G and any subgroup I/ of M, let V, = C,(S) = 
{D 1 w E I’, zx = v for all s E S> and Vs = {w(s - 1) [ o E I’, s E S}. For 
u E G, set 3d(o) = 1 Mu I. If (3 E Q, then MU C M, . For any integer e, let 
Qa ={uEQId(a) =e}. 

Let d = minoeo d(u). For each u E Qd , set E(a)* = {T E Q\{l} 1 Mu = MT 
and M0 = Mr} and let E(a) = E(a) u (1). Then Qd is partitioned by E(U)* 
and E(o) is an elementary abelian p subgroup of G. Let Z = {E(o) 1 u E Qd}. 
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We call an element of ,Z a root subgroup of G. We say that (G, M) is a qua- 
dratic pair for 3 whose root group has order 3 if 1 X 1 = 3 for any X E Z. 

For X E 2, let U(X) be the stability subgroup of G of the chain M 3 M,r 3 
Mx 3 0. For 0, 7 E G, we let d(o, 7) = (a - I)(7 - 1) + (7 ~ l)(o - l), 
where O, 7 are regarded as elements of the ring of endomorphisms of M. 

For any subgroup H of G, let Z n H = {X j X E .Z and X C H}. Let 
Z(G) be the center of G. 

Let 31+2 be the nonabelian 3-group of order 27, exponent 3, and nilpotent 
class 2. 

All groups considered are of finite orders. Most notations are standard and 
can be found in [3]. 

2. THEOREM A AND THEOREM B 

Let (G, &I) be a quadratic pair for 3 whose root subgroup has order 3 
in this section. For the convenience of the reader the following known results 
are recollected. 

THEOREM 2.1. Let CJ, 7 E Qd and let H = (0, T). Then H is isomorphic to 
one of the following groups: 

(a) SL(2,3), (b) SL(2,% (c) SL(2,3) x -G, (4 Z3 x 2, , 
(e) 31t2. 

Furthermore in the case H g 31f2 if we let h = [a, T], then 

(1) h~Qd, 

(2) M=MO+MT, M0nM7=0, 

(3) MA = (Mm n MT) + (MO + MT>, 
MA = (MO n M,) A (MO+ MT), 

(4) H C u(O)). 

Proof. Lemma 4.2 and Theorem 4.3 of [5]. 
For each X E Z, let B(X) = {Y j Y E Z such that (X, Y) is not a 3-group} 

and I(X) = {j 1 j is the unique involution of (X, Y) for some Y E O(X)}. We 
also define O,(X) = (Y 1 YE e(X) such that (X, Y) E SL(2,3)}, 0,(X) = 
{Y / YE O(X) such that (X, Y> E SL(2,5)} and 8,(X) = {Y / YE e(X) 
such that (X, Y) e SL(2, 3) x Z,). Thus O(X) = O,(X) u B,(X) u B,(X) 
is a disjoint union of subsets in Z. 

Let i be an involution of G. We say that i is an r-involution of G if there 
exist X, YE 2 such that i E (X, Y). Clearly d(i) < 2d. An r-involution i is 
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long if d(i) = 2d. An r-involution which is not long is a short r-involution. 
Let I,(G) be the set of all r-involutions of G. 

Let Qd = {z E Qd / there exists x, y E Q, such that [x, y] = z} and let 
27 = {(z) j z E Qd}. 

THEOREM 2.2 (Thompson). If X E 2, j EI(X), then j is long. 

Proof. Theorem 4.4 of [S]. 

LEMMA 2.3. Let X E 2 and YE e(X). Let i EI(X) such that i E (X, Y). 
If Y E B,(X), then i is long. If Y E B,(X), then i is short. 

Proof. Lemma 4.6 and Lemma 4.7 of [5]. 

LEMMA 2.4. Let X E Z and YE e,(X). Let (x) = X, ( y) = Y where x 
is conjugate to y in (X, Y). If the involution i of (X, Y) is long, then M has a 
basis such that, with respect to this basis, the representating matrices of x andy are 

respectively. Furthermore, M = MX @ My @ Mx n My. 

Proof. Lemma 4.8 of [5]. 

THEOREM 2.5. If X E 2, then e(X) = e,(X). 

Proof. Theorem 4.9 of [5]. 

LEMMA 2.6. (a) If i E I(X) is a long involution, then i inverts Mx, M/Mx 
and centralizes Mx/Mx. 

(b) If 4 ,G gI(X) are long involutions, then i1i2 E U(X). 

Proof. Lemma 5.1 and Corollary 5.2 of [5]. 

THEOREM 2.7. Let X, YE Z and [X, Y] = E E Z, then X is conjugate 
to E. 

Proof. Since G acts irreducibly on M, O,(G) = 1. Hence P = (X, Y) $ 
O,(G). Since P g 31f2, Y permutes the three one dimensional subspaces of 
XE, namely, (x), (xe) and (xe-l) where (x) = X, E = (e). 

Theorem 2.2 and Lemma 2.3 imply B,(E) = 4. Since SL(2, 5) 1 SL(2, 3), 
we may choose 2 E B,(E). Let (a) = Z and z be conjugated to e in (2, E). 
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Theorem 2.2 and Lemma 2.4 imply that M has a basis such that with respect 
to this basis the representing matrix of e is 

i Id 0 0 I, Id 0 Ld 0 0 

1 

and the representating matrix of z is 

We identify an element of G with its representing matrix with respect to this 
basis of M. Let 

i = (j? -) I,7!2], w = (+ i Lj. 

Then i and w E (2, E). By Theorem 2.1 we see that (X, Y) C U(E). Thus 

Since(x-l)2=0,$I=0.Set U=U(E).Let U-={UEUjUi=U-l 
and let U+ = C,(i), Thus U = U+U- and U+ = E. We label II E 1’3 by 
u = (6, T, <), provided that 

With this notation we find (6, q 5)” = (-5, -7, 5) and (fr ,7;r, , &)(t, q, 1;) = 

(5, + E, ~1 + 7, 51 + 5 + 51$. Thus (8, rl, 5) = (f, v> Bs%)(O, 65 - 854 
where (l, 7, 357) E U- and (0, 0, 5 - 45~) E E. Let (r = (a, /3, &3) = 
(OL, /3,0) = x(0,0, y - $x/3). Thus u EXE. Since x $ E, u $ E. Hence (0) 
is one of the three subgroups of XE permutated by Y. In particular (a) is 
conjugated to X. Let Q- = ow and X = [u, ~1. Then 
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Therefore (h - 1)2 = 0 as $I = 0. If /3o1 # 0, then as rank&) < rank@) < d, 
the definition of Qd implies h E Qd . Thus d = rank(/\ - 1) < rank(pLu) < 
rank@) < d. Therefore d = rank@). From x cQd one sees rank(x - 1) = d. 
Since d = rank@) and 

0 Y LY 
x--l= 0 0 0, 

t i OF0 

(Y = 0. However this implies C@ = 0, a contradiction. Therefore pa = 0. 
Let 6 = e7. Then 

6 = 

t :, 
od Id 

;d pa+!I,..2~ = f ; ,.“?,) =eas 

Since D $ E, S $ E. As o E XE, 6 E XE. Thus (a) is one of the three subgroups 
in XE not equal to E. Hence (u) is conjugate to X. Since 8 = eO, (8) is 
conjugate to E. Therefore X is conjugate to E as required. 

We now prove Theorem A. Let X, Y, 2 E 2 such that 2 = [X, Y]. Let 
Er be the conjugacy class of subgroups which contains 2. Then Z; C 2. 
Let A E Z. Suppose there is B EZ; such that A E 6(B). Theorem 2.2 
and Lemma 2.3 imply that B,(B) = 4. Thus A is conjugate to B in this 
case as (A, B) E SL(2,3) or SL(2, 5). Therefore A E Jr in this case. 
Suppose there is B E Z; such that (A, B) is a nonabelian 3-group. Theorem 
2.7 implies A E Zr in this case. However G is generated by the elements 
in Z; and O,(G) = 1. Therefore for any A E Z, there is B E Z; such that 
[A, B] # 1. The above argument implies A E Zr . Therefore Z = Zr = 2 
is a conjugacy class of subgroups as required. Theorem 2.2 and Theorem 2.5 
imply the rest of the statements of Theorem A. 

We conclude this section with the following proof of Theorem B. 
Let E, F E 2:. By Theorem A we may assume that [E, F] = 1 whenever 

(E, F) is a 3-subgroup. Let Z; be the conjugacy class of subgroups containing 
X. Since G is quasisimple and O,(G) = 1, G is generated by the elements 
of Zr . Thus for any A E 2 there exists B E Zr such that [A, B] # 1. Since 
B E Zr , 0,(B) = 4. As A E B(B) we see that (A, B) s SL(2,3) or SL(2,5). 
Hence A E Zr and ,?Z = Zr is a conjugacy class of subgroups. The rest of 
the proof follows from Theorem 2.5 and Theorem A. 

3. PROOF OF THE MAIN THEOREM 

THEOREM 3.1. Let G* be a simple group. Let i be an involution of G*. 
Suppose C,,(i) contains a subnormal subgroup H such that H contains i and H 

4W4Il'-'4 
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is isomorphic to SL(2, q), q odd. Then G* is a Chevalley group of odd 
characteristic or Ml, . 

Proof. Corollary 3 of [l]. 

LEMMA 3.2. There is no vector space V over GF( p) such that (Ml, , c’) is 
a quadratic pair for p, p an odd prime. 

Proof. Case (a). p =- 3. 

There is only one conjugacy class of element of order 3. In this class there 
are elements a and b such that (a, 6) is isomorphic to the alternating group 
on four letters. Since the alternating groups has no quadratic module, the 
lemma is true in this case. 

Case (b). p = 5. 

There is only one conjugacy class of subgroup of order 5. In this class 
there are two subgroups A and B such that (A, B) is isomorphic to the 
alternating group on five letters. Since the alternating group has no quadratic 
module, the lemma is true in this case. 

Case (c). p = 11. 

There is only one conjugacy class of subgroups of order 11. In this class 
there are two subgroups A and B such that (A, B) is isomorphic to PSL(2,Il) 
which also has no quadratic module. Therefore the lemma holds in this case. 

Since 3, 5, 11 are the odd primes which divide 1 Ml, /, the proof of the 
lemma is complete. 

The proof of the main theorem is broken into three cases. 

Case 1. (G, M) is a quadratic pair for 3 whose root group has order 3 and 
satisfies: 

(A.l) G is quasisimple. 

(A.2) I,.(G) consists of long r-involutions and O(X) = O,(X) for some 
XE‘T. 

By Theorem B we see that .Z is a conjugacy class of subgroups. We note 
that (A.2) is a consequence of Theorem A if Qd # o . 

LEMMA 3.3. If X E 2, Y, 2 E O(X) such that (X, Y) n (X, 2) contains 
an involution, then (X, Y) = (X, 2). 

Proof. Let S = <X, Y) and let S* = (X, Y, 2). Let i be the involution 
of S. Since [S*, i] = 1, Mi and Mg are S*-submodules. Since i is a long 
involution, S* induces 1 on Mi . Hence we may identify S* with a group of 
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automorphisms of Mi = N. Let K = (0, , Id , -Id}. By Lemma 2.4 N has a 
basis such that with respect to this basis X = {X(t) / t E K} and Y = 
{Y(t) 1 t E K} where 

and Y(t) = [: i). 

Suppose ( Y, Z) E 31+2. By Theorem 2.1, N = N, + N, and NY n Nz = 0. 
Since (Y, Z) is a 3-group, N, n Na # 0. From NY C N, and Nz C N, we 
see that N contains NY @ Nz properly. Hence dim N > dim NY + dim Nz. 
However dim N = 2d and dim NY = d = dim Nz. The last inequality now 
reads 2d $ d + d, a contradiction. Hence (Y, Z) g 31f2. 

Next suppose [Y, Z] = 1. Let .z E Z such that z is conjugate to X(1) in 
(X, Z). Since [a, Y] = 1, x = (z i), where a, c are d x d matrices. From 
(X(Id)-lz)z = i we get 2a2 = ca and -ca + a2 == --I. Hence u2 = I, . 
Since z3 = 1, u3 = Id . Therefore a = Id . By the definition of ,J? we see that 
z E Y in this case. 

Suppose the lemma is false. Let cr be any element in X. Let WE C n S. 
The above argument shows that Za E e(W). Let 7 E Z. Then 

7= ( 
&+a P 

Y ) Id+8 ’ 
where 01, /I, y, 6 are d x d matrices. Since Z E e(X), there is t E K such that 

47, X(t)) = I2d . This implies y = t-l and 01 + 6 == 0. Since Z E e(Y), 
there exists u E K such that d(~, Y(U)) = 122d. This implies that /3 = 
u-l E K\(O). A short calculation shows that 

,X(b) - 4 
* p+ct--6-y 
* * 1. 

The preceding argument yields /3 + 01 - 6 - y E K\(O). This implies that 
ol-S6Kas~,yEK.Sinceac+6-OEK,olEKandS=--CLEK.Since 
TEQ~, (T-1)2=0. Therefore a”+&.~=0 and c++@ =O. This 
shows 7 E S, a contradiction. The proof of the lemma is complete. 

LEMMA 3.4. Let X E Z and YE e(X). Let S = (X, Y) and let i be the 
involution of S. Then S is a subnormal subgroup of C,(i). 

Proof. Let A, B be two members in the conjugacy class of subgroups in 
C,(i) which contains X. Then A induces the identity on Mi . Similarly B 
induces the identity on Mi . 

Suppose (A, B) is a nonabelian 3-group. Set T = [A, B]. Theorem 2.1 
implies that Mi = (Mi)A + (Mi)B and (Mi)A n (Mi)B = 0. Since (A, B) is 
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a 3-group, (Mi)c~.B, f 0. We note that (iVP)A = MA. Similarly (M~)B = MB. 
Since (AP)A C (Mi)A and (JVP)~ C (A!P)*, Mi contains MA @ MB properly. 
However this implies 2d = dim Mi $ dim MA + dim MB = 2d, a contra- 
diction. Hence [A, B] = 1 whenever (A, B) is a 3-group. 

Let g E C,(i). It suffices to assume S # 59 and show [S, Sg] = 1. Let 
2 E ,E n S, . Suppose there exists WE S n Z such that 2 E 0(W). Let j be 
the involution of (W, 2). Since the restriction of S on Mi is the identity and 
g E C,(i), 9 also induces the identity on ii/l . Thus Mj = Mi . Since Ml 

and Mi are ( j)-submodules, dim Mj = dim Mi implies that i = j. Theorem 
3.2 implies that Sg = (2, W) = S, a contradiction. Therefore Z commutes 
with any member of E which lies in 5’. Since Z is arbitrary, [S’s, s] = 1 as 
required. The proof of the lemma is complete. 

We now prove the main theorem for Case (I). Since G is quasisimple and 
SL(2, 3) is solvable, i E Z(G) by Lemma 3.3. For any subset H of G, let 
R = HZ(G)/Z(G). Th en S is a subnormal subgroup of C,(Z) such that S 
contains Z and S g X(2,3). Theorem 3.1 implies that G is a Chevalley group 
of odd characteristic of Ml, . The argument in Section 26 of [7] shows that 
a covering group of E,(q), q odd, does not have a quadratic module. Since the 
Schur multiplier of M,, is 1, Lemma 3.2 implies the main theorem holds in 
this case. 

Case 2. (G, M) is a quadratic pair for 3 whose root group has order 
greater than 3. 

The corresponding lemma of Lemma 3.4 is valid in this case. In the proof 
of Lemma 3.4 we replace Theorem 2.1 by Theorem 1 and Theorem 2 of [2] 
and Theorem 3.2 by Theorem 6.1 of [6]. If the involution iE Z(G), then 
G/Z(G) e A,(q) where q is a power of 3. Therefore we may assume that 
i $ Z(G). The same argument in the proof of case (1) implies the main 
theorem holds in this case. 

Case (3). p 3 5. 

The argument in this case is the same as in case (2). The only change is 
the following. We replace Theorem 6.1 of [6] by Lemma 10.2 of [7]. 

We remark that the results needed in the proof of case (2) and case (3) can 
be deduced more directly in [6] and [7]. 
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